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Underwater imaging faces formidable challenges due to light absorption, scattering, 
and restricted visibility, demanding sophisticated enhancement methods. This research 
presents a novel Multiple Branch Deep Neural Network and Feature Fusion (MB-DNN-
FF) Model tailored specifically for Underwater Images Enhancement (UWIE), with a 
focus on its application to the UFO120 dataset. Driven by the limitations of existing 
techniques, our model harnesses the potential of Deep Learning (DL) and Feature 
Fusion (FF) to effectively address the intricate complexities present in underwater 
environments. The innovative architecture incorporates multiple branches, each 
strategically designed to tackle distinct challenges such as contrast degradation, limited 
visibility, and color distortion. Central to our model is feature fusion, a critical aspect 
that harmoniously integrates information from diverse branches, thereby enhancing 
overall image quality. The training and optimization processes are thoroughly detailed, 
encompassing unique strategies and loss functions fine-tuned for the nuances of UWIE, 
with emphasis on the characteristics of the UFO120 dataset. Experimental evaluations 
leverage the comprehensive UFO120 dataset, employing established performance 
metrics to quantitatively assess the efficacy of our model. Results exhibit substantial 
improvements over baseline models and state-of-the-art methods, showcasing the 
effectiveness and versatility of the proposed multiple branch model, particularly on the 
UFO120 dataset. The discussion interprets these findings in the context of underwater 
imaging challenges, highlighting the model's effectiveness and outlining potential 
applications. This research contributes a valuable asset to the area of UWIE, offering a 
nuanced and potent solution through the integration of multiple branches and feature 
fusion, validated on the UFO120 dataset. The conclusions underscore the significance 
of the MB-DNN-FF in advancing the state-of-the-art in UWIE, opening avenues for 
future research and practical applications in marine sciences, surveillance, and 
exploration. 
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1. Introduction 
 

Underwater Image Enhancement (UWIE) is a crucial domain within image processing, intended 
at overcoming the inherent challenges associated with capturing clear and detailed images beneath 
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the water's surface. Enhancing underwater images involves the development and application of 
advanced algorithms and techniques to mitigate the adverse effects of these challenges, restoring 
contrast, color fidelity, and overall visual clarity [1]. Researchers employ various approaches, ranging 
from traditional methods like color correction and contrast enhancement to cutting-edge techniques, 
including Deep Neural Network (DNN) -based models. The goal of UWIE extends beyond mere visual 
improvement; it plays a pivotal role in advancing scientific exploration, marine research and 
surveillance, where quality images are essential for UWIE. The degradation process of images in 
underwater photography is illustrated in Figure 1. 

 

 
Fig. 1. Degradation of Underwater Images 

 
The exploration of UWIE, with its profound mysteries and ecological significance, has long been 

hindered by the challenges of capturing clear and detailed images beneath the water's surface [2]. 
The attenuation of light, instigated by absorption and scattering, poses a significant hurdle in the field 
of underwater imaging. In recent years, the integration of DNN has emerged as a transformative 
paradigm, offering unprecedented potential for UWIE. This introduction delves into the fundamental 
motivations, challenges, and promises that underlie the utilization of deep neural networks in the 
context of UWIE. 

The aquatic environment introduces a myriad of challenges for imaging systems. Light, which is 
the fundamental medium for visual information, behaves differently underwater, with varying 
degrees of absorption and scattering depending on water composition and depth. These phenomena 
result in a loss of contrast, color distortion, and reduced visibility, making it arduous to capture clear 
and meaningful images. Traditional image enhancement methods often fall short in addressing these 
challenges comprehensively, necessitating a paradigm shift towards more sophisticated and adaptive 
approaches. DNN, inspired by the human brain's structure, have demonstrated remarkable success 
in various domains of artificial intelligence, particularly in computer vision tasks [3]. Their ability to 
automatically learn hierarchical features from data makes them well-suited for complex tasks like 
image enhancement. In the realm of underwater imaging, DNNs offer the potential to adaptively 
learn and extract relevant features from degraded images, allowing for the restoration of details and 
improvement of overall visual quality. The non-linear nature of deep learning models enables them 
to capture intricate patterns and relationships that are challenging for traditional methods. 
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The motivation behind the exploration of DNN-based UWIE is rooted in the urgent need for 
improved imaging solutions that can unravel the mysteries concealed beneath the waves. From 
marine biology and environmental monitoring to underwater archaeology and defense applications, 
the potential impact of clearer and more detailed underwater images is far-reaching [4]. This 
research introduces a novel Multiple Branch Deep Neural Network and Feature Fusion (MB-DNN-FF) 
model, designed to specifically address the multifaceted challenges of underwater imaging. This 
research sets out to explore and advance the capabilities of DNN in the context of UWIE [5]. The 
subsequent sections will elucidate the intricacies of feature fusion, and present comprehensive 
experimental results. Furthermore, the evaluation will include the use of benchmark datasets such 
as UFO120, providing a rigorous assessment of the model's efficacy in diverse underwater conditions. 
Through this investigation, we aspire not only to contribute to the technical aspects of image 
enhancement but also to open new avenues for practical applications and scientific discoveries in the 
fascinating world beneath the surface. 

Underwater imaging faces inherent challenges such as light absorption, scattering, and limited 
visibility, necessitating advanced image enhancement techniques. In recent years, DNN have 
emerged as a transformative tool for addressing these challenges. This literature survey explores key 
papers in the field of DNN-based UWIE, encompassing a range of methodologies and advancements. 

Li et al., [6] developed a dehazing approach for UWIE, minimizing information loss and 
incorporating a histogram distribution prior. By effectively addressing the impact of light absorption, 
this paper lays the foundation for nuanced UWIE. Iqbal et al., [7] developed an integrated color model 
for UWIE, offering a comprehensive solution to address color distortion. This model combines color 
correction techniques, providing insights into the importance of color fidelity in UWIE. Perez et al., 
[8] propose a DL approach for UWIE, showcasing the adaptability of DNNs to learn intricate patterns 
and features from degraded images. The study emphasizes the potential of deep learning in 
automatically restoring details and improving visual quality. Peng et al., [9] focused on image 
restoration by considering both blurriness and light absorption, demonstrating the importance of 
addressing multiple aspects in UWIE. The paper contributes insights into optimizing image clarity in 
challenging underwater conditions. 

Tang et al., [10] introduced a multi-scale Retinex-based approach combined with color correction 
for UWIE. This paper highlights the significance of incorporating multi-scale processing to effectively 
handle diverse underwater scenes. Dong et al., [11] introduced a hybrid color model for UWIE, 
emphasizing effectiveness in addressing challenges related to color correction. This model combines 
multiple color spaces, showcasing the potential of hybrid approaches in underwater imaging. Chiang 
et al., [12] introduced a comprehensive method combining dehazing and wavelength modification 
for UWIE. By addressing the challenges posed by both absorption and scattering, the paper 
contributes to the holistic improvement of underwater image quality. Emberton et al., [13] proposed 
fuzzy segmentation for underwater images and videos. This method demonstrates a nuanced 
understanding of haze regions, contributing to improved dehazing performance in underwater 
environments. Li et al., [14] presented an UWIE method incorporating adaptive gamma correction. 
This approach effectively addresses contrast and brightness issues, showcasing the importance of 
adaptive adjustments for diverse underwater scenes. 

Xu et al., [15] introduced a deep Retinex decomposition approach to enhance low-light 
underwater images. By leveraging the Retinex theory, the model decomposes images into 
illumination and reflectance components, effectively mitigating the challenges posed by low-light 
conditions. This paper highlights the significance of combining classical theories with deep learning 
for improved underwater image quality. Han et al., [16] presented an extended Generative 
Adversarial Network (GAN) approach for UWIE with perceptual quality awareness. The authors 
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address the limitations of traditional GANs by incorporating perceptual quality metrics, resulting in 
more visually pleasing and perceptually accurate enhanced images. The work demonstrates the 
potential of GANs in capturing complex underwater scene characteristics. Guraksin et al., [17] 
introduced a hue component merging approach for UWIE. By combining three orthogonal color 
components, the method effectively addresses color distortion. This work underscores the 
importance of leveraging color information in UWIE and contributes to the development of 
techniques rooted in color science. 

This literature survey highlights the diverse approaches and methodologies employed in the 
realm of deep neural network-based UWIE. From dehazing techniques to color correction and multi-
scale processing, these papers contribute to advancing our understanding of the complexities 
inherent in underwater imaging. The collective findings underscore the potential of DL models to 
meaningfully enhance the visual quality of underwater photographs, paving the way for further 
innovations in this critical field. 

 
2. Methodology  

 
The advent of sophisticated image enhancement techniques has paved the way for advanced 

models designed to elevate visual quality across diverse applications. Figure 2 unveils the 
architecture of the proposed MB-DNN-FF, an innovative system characterized by its integration of 
three pivotal modules: the Feature Extraction Module (FEM), the Enhancement Module (EM), and 
the Fusion Module (FM). These modules collectively orchestrate a holistic approach to image 
enhancement, each playing a specialized role in refining and amalgamating information. MB-DNN-
FF's structured composition underscores its potential to address the intricate challenges associated 
with improving image quality, offering a promising avenue for enhanced visual perception and 
interpretation. 

 

 
Fig. 2. Structure of proposed MB-DNN-FF model 

 
FEM is structured as a singular stream network, comprising 10 convolutional layers. Each of these 

layers within FEM utilizes 3x3 kernels, stride of 1, and incorporates Rectified Linear Unit (ReLU) 
nonlinearity for UWIE model's capacity to capture complex patterns. The absence of a pooling 
operation in FEM underscores its focus on preserving spatial information, crucial for maintaining the 
details inherent in underwater color images. The initial layer of FEM receives the underwater color 
image as input, serving as the foundational step in the hierarchical feature extraction process. The 
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output generated by each layer in FEM not only proceeds as input to the subsequent layer but also 
concurrently serves as input to the corresponding subnet within the EM. This intricate connectivity 
ensures a seamless flow of information through FEM, enabling the model to progressively extract 
hierarchical features from the underwater color image. The choice of 3x3 kernels in FEM's 
convolutional layers aligns with the model's objective to capture local patterns effectively, fostering 
a more comprehensive understanding of the input data. The ReLU nonlinearity introduces a critical 
element of non-linearity, allowing FEM to model complex relationships within the underwater color 
image data. FEM's design, with its reliance on 3x3 kernels and absence of pooling, emphasizes a 
meticulous approach to feature extraction, optimizing the model for the challenges posed by 
underwater environments.  The interplay between FEM and EM begins with the interconnected 
outputs, setting the stage for subsequent modules to collectively contribute to the enhancement of 
the underwater color image. Let Xi represent the output of the ith layer in FEM. Conv (⋅) is the 
convolution operation, Wi and bi are the weight and bias for the ith layer, and ReLU(⋅) is the ReLU 
activation function. The convolutional operation can be represented using Eq. (1). 

 
                                                                                                                         (1) 

 
EM introduces a sophisticated architecture with multiple sub-nets, corresponding in number to 

the layers within the FEM. Each sub-net within EM operates on the output of a specific layer from 
FEM, employing a symmetric structure that integrates both convolutional and deconvolutional 
operations. EM sub-net’s input is the FEM output, and its ultimate output is a color image with 
dimensions identical to the original underwater image, emphasizing a meticulous preservation of 
spatial information. The first convolutional layer in each EM sub-net utilizes eight 3x3 kernels, stride 
of 1, and ReLU nonlinearity, setting the foundation for subsequent refinement. Following the initial 
layer, each EM sub-net features 3 convolutional and 3 deconvolutional layers, employing kernels of 
size 5x5, a stride of 1, and ReLU. The strategic use of convolutional and deconvolutional layers in EM 
sub-nets allows for the extraction of intricate features and subsequent enhancement, contributing 
to the model's capacity for nuanced image improvement. The varying kernel numbers, such as 16, 
16, 16, 16, 8, and 3 in the convolutional and deconvolutional layers, underscore the adaptability of 
EM sub-nets in capturing diverse information and fine-tuning the enhancement process. Significantly, 
the sub-nets within EM are trained concurrently, but with an individual focus, ensuring a tailored 
learning process for each sub-net without the sharing of learned parameters. EM's symmetric 
structure, from convolution to deconvolution, reflects a careful design that aims to maintain 
coherence in the enhancement process while effectively addressing underwater image challenges. 
The meticulous configuration of EM, with its unique convolutional and deconvolutional layers and 
kernel specifications, positions it as a crucial element within the MB-DNN-FF architecture, 
contributing to the model's overall efficacy in UWIE. For the jth sub-net in EM, let Yi,j represent the 
output of the ith layer in that sub-net. The operations in an EM sub-net can be explained using Eq. (2) 
and Eq. (3). 

 
                                                                                                                     (2) 

 
                                                                                                     (3) 

 
In FM, a crucial step involves the concatenation of all EM outputs along the color channel 

dimension, emphasizing a comprehensive integration of the diverse enhancements contributed by 

1 Re ( ( , , ))i i i iX LU Conv X W b+ =

1, , , ,Re ( ( , , ))i j i j i j i jY LU Conv Y W b+ =

1, , , ,Re ( ( , , ))deconv deconv
i j i j i j i jY LU Deconv Y W b- =
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individual sub-nets. The concatenated outputs from EM serve as inputs to a 1x1 convolution kernel 
within the Fusion Module, strategically employed to merge the information effectively. This 
utilization of a 1x1 convolution kernel in FM signifies a weighted sum operation, where the learnable 
weights dynamically adjust the contribution of each EM sub-net to the final enhanced image. FM's 
approach of merging information through a 1x1 convolution kernel demonstrates its adaptability in 
adjusting the emphasis on different enhancement sub-nets, providing a mechanism for fine-tuning 
the overall enhancement process. The color channel dimension concatenation and subsequent 
convolutional merging in FM represent a sophisticated strategy within MB-DNN-FF, allowing for a 
holistic and dynamic integration of information from various sources. FM's capability to adjust the 
weights in the weighted sum operation highlights its role in achieving optimal enhancement by 
balancing the contributions of individual EM sub-nets in underwater image refinement. For the 
Fusion Module, let Zj represent the output of the jth EM sub-net. The fusion operation involves 
concatenation and a 1x1 convolution as explained in Eq. (4). 

 
                                                                                                (4) 

 
Recognizing the limitations of traditional metrics like Mean Squared Error (MSE), Peak Signal-to-

Noise Ratio (PSNR), and Structural Similarity Index (SSIM) in fully assessing image quality, we 
introduce a novel loss function designed to address these shortcomings. Our proposed loss function 
goes beyond conventional measures by incorporating considerations for structural information, 
context information, and regional differences within the image, acknowledging the importance of 
these factors in enhancing both the qualitative and quantitative aspects of image quality. Figure 3 
visually demonstrates the conceptual foundation of our novel loss function, showcasing how it 
captures intricate details related to the structure, context, and regional variations within an image. 

 

 
Fig. 3. Data flow of training process 

 
The computation of our loss involves a comprehensive analysis of these factors, emphasizing a 

holistic approach to image quality improvement that extends beyond the constraints of traditional 
error metrics as explained in Eq. (5). 

 
                                                                                                                                     (5) 

 
The Structure Loss (LS) is a specialized loss function strategically crafted for UWIE, focusing on 

addressing issues arising from underwater image capture. Conventional metrics like Mean Squared 
Error (MSE) may fail to adequately handle structure distortions, but challenging for MSE to effectively 
address. Acknowledging the limitations of MSE in handling specific visual artifacts induced by 
underwater conditions, the LS is introduced to quantify the disparity between ground truth and 
enhanced image, offering a more nuanced guide for the learning process. The primary objective of 

1 2( ( , ,..., ), , )n fusion fusionZ Conv Concat Z Z Z W b=

    S vgg RLoss L L L= + +
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the LS is to combat the distortions inherent in underwater captured images, providing a tailored 
measure that allows the learning algorithm to focus on mitigating specific structural anomalies for 
improved visual fidelity. By incorporating the LS computed using Eq. (6), the learning process is 
sensitized to nuances that may be overlooked by traditional metrics, fostering a more precise and 
perceptually meaningful enhancement of underwater images. 
 

                                                                                                         (6) 

 
An effective content extractor for image processing often involves a neural network trained on 

extensive datasets, and we opt for the VGG network due to its well-structured and well-behaved 
characteristics. The choice of the VGG network in our method is motivated by its proven efficacy, and 
specifically, we utilize it as the content extractor to define the context loss, a key component in our 
image enhancement approach. The context loss, integral to our method, is constructed by employing 
a computational approach, calculating the sum of absolute differences, thereby facilitating a precise 
evaluation of contextual discrepancies. Leveraging the VGG network as a content extractor and 
employing the context loss (Lvgg) based on its activation layers, our method harnesses sophisticated 
neural network capabilities to enhance image content by minimizing discrepancies with ground truth 
representations. 
 

                                                                                           (7) 
 
Where, Wi, Hi and Ci represent the dimensions of the feature map (i, j) for both ground truth (G) 

and enhanced (E). Region Loss (LR) is introduced as a pivotal component in our UWIE strategy, 
departing from conventional approaches that consider the entire image as a single entity. In the 
context of underwater enhancement, the LR is designed to address the specific challenge of low-light 
regions, acknowledging their significance in the overall visual quality of the image. Unlike global loss 
functions, LR focuses on balancing the enhancement degree specifically for low-light regions, 
recognizing their unique importance in underwater scenes. LR can be computed using Eq.  (8). 
 

                                                             (8) 

 
In Figure 4, the layers and connections within the MB-DNN-FF are visualized, providing an 

overview of the neural network's structure. FEM, depicted in the initial layers, extracts essential 
features from the input underwater color image. These features are then fed into the EM, consisting 
of multiple sub-nets, each responsible for enhancing specific aspects of the image. Finally, the FM 
combines the EM outputs to create the output. 

 
Algorithm 1: Proposed MB-DNN-FF Enhancement 
Input: X=Test Underwater Image.  
Output: Enhanced Underwater Image (Y) 
Step 1: Initialize the input train images (D). 
Step 2: Generate ImageNet input weights from VGG19. 

2 2 2 2
0

2 21  
N

x y xy
S

x y x y x y

A B
L

N A B
µ µ s

µ µ s s= =

+ +
= *

+ + + +å

, , ,

, , , , ,
1 1 1

1 ( ) ( )
i j i j i jW H C

vgg i j x y z x y z
x y z

L E G
W H C

b
= = =

é ù= -ë û´ ´ ååå

, ,

, , , , , , , ,
1 1

1 ( ) ( ) ( ) ( )
i j i jW H

R L x y z x y z H x y z x y z
x y

L w E G w E G
W H = =

é ù é ù= - + -ë û ë û´ åå



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 39, Issue 2 (2024) 37-52 

44 
 

Step 3: Extract features using FE. 
Step 4: Enhance the Features separately using EM. 
Step 5: Concatenate the enhanced features using FF. 
Step 6: Train the proposed model using these features. 
Step 7: Adjust and tune the hyperparameters. 
Step 8: Save the MB-DNN-FF model.  
Step 9: Test image (X) is given as input and obtain enhanced underwater image (Y). 

 

 
Fig. 4. Proposed MB-DNN-FF architecture 

 
3. Results  

 
In this work, we have chosen to implement our UWIE algorithm using the powerful combination 

of TensorFlow and DL models. TensorFlow, as the underlying open-source machine learning 
framework, offers flexibility and scalability, making it well-suited for the intricacies of our image 
enhancement task. Leveraging the collaborative benefits of Google Colab, we conduct our 
implementation in a cloud-based Python notebook environment. Colab's GPU acceleration enhances 
the efficiency of our model training and evaluation, allowing us to experiment with and fine-tune our 
algorithm in a collaborative and resource-efficient manner. The size of the underwater images is 
standardized to 640x480 for ground truth images and 320x240 for degraded images. This optimizes 
computational efficiency while retaining the essential information within the images. Sample images 
from the UFO20 dataset are displayed in Figure 5. 
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Fig. 5. Sample images from UFO120 Dataset (a) Degraded (b) Ground Truth 

 
The UFO120 dataset comprises a diverse collection of underwater images, encompassing various 

environmental conditions and scenarios commonly encountered in underwater imaging. The dataset 
is meticulously curated to cover a broad spectrum of challenges, making it a comprehensive 
benchmark for assessing UWIE algorithms. The dataset consists of a substantial number of images, 
providing a sufficiently large sample for rigorous evaluation. Moreover, efforts have been made to 
maintain a balanced distribution across different categories, ensuring a representative assessment 
of algorithm performance for each class. The distribution of images in the UFO120 dataset is provided 
in Figure 6. 

 

 
Fig. 6. Distribution of images in UFO120 dataset 

 
The robustness of MB-DNN-FF is further demonstrated through quantitative evaluation on the 

UFO120 dataset, a challenging benchmark for UWIE. The model exhibits remarkable performance 
improvements, showcasing a substantial reduction in Mean Squared Error (MSE), an elevated Peak 
Signal-to-Noise Ratio (PSNR), and enhanced Structural Similarity Index (SSIM). This dataset-specific 
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evaluation solidifies the versatility and effectiveness of MB-DNN-FF across diverse underwater 
scenarios. Figure 7 depicts the graphical representation of the training and validation performance 
of the proposed MB-DNN-FF model.  The proposed model loss reduces throughout training and it 
remains constant after 10 epochs. The MSE of MB-DNN-FF reduces throughout the training process 
and it remains constant after 5 epochs. The PSNR of the MB-DNN-FF improves progressively and the 
value remains constant after 5 epochs. The SSIM value of MB-DNN-FF improves progressively and it 
remains constant after 5 epochs during the training process. 

 

 
Fig. 7. Distribution of images in UFO120 dataset 

 
The visual assessment of enhanced images provides valuable insights into the algorithm's 

performance across various underwater scenarios. One notable strength of MB-DNN-FF is its ability 
to preserve intricate details in underwater scenes. It is evident that the algorithm excels in enhancing 
the visibility of fine structures such as coral formations, marine life, and artificial structures. This is 
crucial in applications where maintaining the integrity of visual details is paramount. MB-DNN-FF 
demonstrates effectiveness in reducing artifacts commonly associated with underwater imaging, 
such as blurring and color distortions. The result images showcase a noticeable reduction in noise 
and unwanted distortions, contributing to the overall clarity and fidelity of the enhanced underwater 
scenes. The algorithm's performance in handling DEGRADATION is particularly noteworthy. In images 
where illumination is limited, MB-DNN-FF succeeds in enhancing visibility without introducing 
excessive noise or over-amplifying the existing degradation artifacts. This is crucial for applications 
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requiring accurate interpretation of dimly lit underwater environments. From clear waters to turbid 
environments, the algorithm consistently improves image quality, showcasing its robustness across 
different underwater settings. The application of the MB-DNN-FF to the UFO120 dataset yields 
compelling results, as depicted in Figure 8. 
 

 
Fig. 8. Result images (a) Input degraded image (2) Ground Truth (3) Enhanced Image 

 
To evaluate the effectiveness of the developed MB-DNN-FF approach, it is imperative to conduct 

a thorough assessment of its enhancement performance. In this regard, we carried out a 
comprehensive evaluation of the enhancement performance using the UFO120 dataset. Ten images 
(image 1 to image 10) are selected similar to those illustrated in Figure 8 and analyzed. The efficiency 
of MB-DNN-FF is evaluated using PSNR, MSE and SSIM. The results of this assessment are summarized 
in Table 1, which delivers an analysis of the efficiency of proposed model.  
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Table 1 
Evaluation of Enhancement 
Performance 

Image PSNR (dB) MSE SSIM 
Image 1 54.32 193 72.35 
Image 2 51.18 245 70.87 
Image 3 53.74 213 71.94 
Image 4 55.87 189 74.66 
Image 5 53.43 211 72.11 
Image 6 54.11 197 72.03 
Image 7 53.23 241 71.73 
Image 8 52.45 223 71.25 
Image 9 54.23 195 72.24 
Image 10 54.58 190 73.01 

 
The performance metrics consistently exhibit high values, indicating the effectiveness of the DNN 

and FF techniques in enhancing underwater images. Particularly remarkable achievement is the 
significantly low MSE achieved by the MB-DNN-FF model, which is recorded at an average of 209.7. 
Additionally, the PSNR reaches a notable average value of 53.74 dB, emphasizing the quality of the 
enhanced images. Moreover, SSIM values consistently measure high and provide an average value 
of 72.21, showcasing the ability of the MB-DNN-FF model to maintain structural characteristics during 
UWIE.  

To assess the efficacy of the proposed MB-DNN-FF approach for UWIE, a rigorous evaluation of 
its performance is essential. To this end, a detailed assessment was conducted across various models 
using the UFO120 dataset. The outcomes of this evaluation are succinctly presented in Table 2, 
offering a comparative assessment of the efficiency of different methodologies based on selected 
image quality metrics. 

 
Table 2 
Comparison of Enhancement Performance 
Model PSNR (dB) MSE SSIM 
UDCP [18] 20.23 456 47.53 
IBLA [19] 27.18 245 50.27 
GLNet [20] 31.44 223 61.54 
UNet [21] 45.68 215 64.26 
MB-DNN-FF (Proposed) 53.74 209 72.21 

 
When assessing PSNR, the MB-DNN-FF model stands out with an impressive score of 53.74 dB. 

Among existing models, we observe admirable PSNR with UNet (45.68 dB), GLNet (31.44 dB), IBLA 
(27.18 dB) and UDCP (20.23 dB). It's noteworthy that the PSNR of the proposed MB-DNN-FF model 
surpasses that of UNet by a substantial margin of 8.06 dB. The comparison of PSNR is depicted in 
Figure 9. 
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Fig. 9. Comparison of PSNR 

 
The SSIM value for the MB-DNN-FF model is particularly noteworthy, standing at an impressive 

value of 72.21, marking it as the highest among all the models under consideration. Specifically, UNet 
exhibits a SSIM of 64.26, GLNet provide 61.54, IBLA provides 50.27 and UDCP also records 47.53. In 
comparison, the MB-DNN-FF model's SSIM significantly outperforms that of UNet by a notable 8.05. 
These findings underscore the exceptional performance of the MB-DNN-FF model in higher SSIM and 
higher PSNR, outperforming existing models. The comparison of SSIM is depicted in Figure 10. 

 

 
Fig. 10. Comparison of SSIM 

 
While shifting our focus to MSE, the MB-DNN-FF model outperforms all other models by offering 

a remarkable MSE of 209. In comparison, UNet provides a MSE of 215, GLNet provides 223, and IBLA 
provides 245. The MSE of MB-DNN-FF is lower than that of UNet by 6. These findings highlight the 
exceptional recall and F1-score achieved by the MB-DNN-FF model, emphasizing the positive impact 
of its parameters and the contribution of DL in achieving superior performance. The comparison of 
MSE is depicted in Figure 11. 
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Fig. 11. Comparison of MSE 

 
When these systems are employed in conjunction with large datasets for enhancement purposes, 

the entire enhancement workflow becomes automated. This removes the necessity for labor-
intensive tasks such as feature extraction [22], noise filtering [23,24], delineation of regions of 
interest (ROI), or feature selection. Consequently, predictions generated by MB-DNN-FF models 
exhibit high reproducibility and are devoid of bias, signifying a notable progression from earlier DL 
methodologies. The integration of GPU resources within the Google Colab framework significantly 
mitigates computation time. For example, training the MB-DNN-FF on the UFO120 dataset required 
a mere 30 minutes and 25 seconds. Importantly, the performance metrics of the proposed 
enhancement algorithm surpass those of existing models. 

 
4. Conclusions 

 
This study investigated the exploration of MB-DNN-FF for enhancing underwater image data. The 

approach involves combining multiple branch structures with DNN and fusion to achieve peak 
enhancement performance. Incorporating transfer learning with ImageNet data and VGG19 
improved the learning capability of the proposed model. Particularly, MB-DNN-FF stands out by 
surpassing other enhancement algorithms, showcasing an exceptional PSNR of 53.74 dB, SSIM of 
72.21, and a lower MSE of 209 when applied to the UFO120 dataset. The remarkable enhancement 
capability of MB-DNN-FF serves as evidence of the effectiveness of the employed DL techniques. 
Notably, MB-DNN-FF reduces the necessity for pre-processing stages, outperforming established 
techniques in this regard. Looking ahead, future research endeavors will focus on integrating these 
models into mobile platforms to enhance accessibility, reducing computing complexity, and exploring 
advanced methods for fine-tuning the models. This work not only highlights the achievements of MB-
DNN-FF but also paves the way for continued progress in UWIE. 
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