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Brain extraction is an important preprocessing step in Computer Aided Diagnosis (CAD) 
from brain MRI. It facilitates stripping off irrelevant extra-cranial tissues including skull, 
eyes, and neck muscles, thereby enhancing accuracy of inference of an AI CAD system. 
Numerous studies have been conducted to achieve this task ranging from old-school 
image processing techniques to more sophisticated deep learning approaches. This 
research investigates the performance of two deep learning-based semantic 
segmentation techniques, DeepLabV3+ and U-Net for brain extraction of brain MRI 
scanning images. The two networks were trained using the largest human brain MRI 
images dataset having more than 160 thousand training images and the performance 
is compared with SynthStrip from MIT, as the current state of the art system. Besides, 
the trained networks were also tested using newly collected MRI images from a private 
hospital, AIH, Islamabad. The result indicates that DeepLabV3+ outperforms SynthStrip 
and U-Net in all public datasets and produces comparable results from the new 
dataset with a mean Dice score of 0.98. Using the trained DeepLabV3+, an app called 
NIVE is developed for public use. Since the DeepLabV3+ was trained using the most 
comprehensive human brain MRI dataset to date, NIVE is essentially the most versatile 
brain extraction app capable of handling MRI images in all types of file formats, 
sequences, orientations, acquisition hardware, and subject age. 
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1. Introduction 
 

Skull stripping, the process of extracting brain region from magnetic resonance imaging (MRI) 
scanning images, is the foremost step of any CAD regimen [1-5]. Its accuracy is of utmost significance 
for all subsequent operations leading to diagnosis [6-11]. Optimum pathology detection is only 
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possible after this process [11] as the presence of the skull can cause misjudgements, especially in 
cases of brain lesions [12] and tumours [6,13]. Manual segmentation by experts (radiologists/ 
neurologists) is considered as the “gold standard”, but it is a very tedious and time-consuming job, 
given the size of massive MRI datasets [1,14]. In order for the CAD system to be fast, accurate and 
human intervention-free, a robust skull stripping tool is mandatory. Extensive research has been 
carried out in this direction resulting in development of algorithms ranging from old-school image 
processing and morphological operations [15] to the more recent artificial intelligence (AI) based 
systems [16].  

Literature suggests that deep learning (DL) based approaches outperform conventional methods 
to carry out this task [2,17]. Deep Convolutional Neural Networks (CNN) have exhibited outstanding 
performance [18], with U-Net architecture being widely used [1,19]. Among the studies conducted 
and systems developed so far, few shortcomings have been observed periodically. Majority of the 
systems work with only T1W MRI [7,10,16,20] for healthy adult brains [6], rendering them unreliable 
for T2W, fluid attenuated inversion recovery (FLAIR) and other sequences and their performance 
drops in the presence of pathologies [16]. Rehman et al., [16] suggest that fast, accurate, user-
friendly, sequence orientation and pathology-agnostic skull stripping tools would be an absolute 
requirement in times to come.  

Addressing this requirement, we propose a software tool, known as NeuroImaging Volumetric 
Extractor (NIVE) for removing the skull from brain MRI. Notably, NIVE has been trained with the most 
comprehensive human brain MRI dataset encompassing normal/pathological and adult/infant brains 
with T1, T2, FLAIR and proton density (PD) sequences in axial, sagittal and coronal orientations. In 
addition, NIVE comes with a vast input file type support and a very simple user interface (UI) to assist 
radiologists and neurologists who might not be comfortable with command line operations. The 
performance of the proposed system has been compared with SynthStrip [10], the current state of 
the art system, in the light of the literature.  

The organization of this paper is such that prior art in this field is given in Section 2, Section 3 
presents the hardware, software, brain MRI dataset and DL architectures used, whereas the results 
are presented in section 4. Section 5 and 6 describe the availability of NIVE and the online resources, 
and the paper is concluded in Section 7. 

 
2. Prior Art  

 
In this section we briefly review the research pertaining to skull stripping, with focus on SynthStrip 

[10] which we have used as the benchmark for performance comparison. A summary of the 
developed algorithms along with their performance metrics and datasets used is given in Table 1. 
Many algorithms have been used in developing skull strippers, but DL based approaches stay 
dominant, with adequate performance for medical image segmentation applications. The use of 
limited datasets for training, relying on a single sequence, T1W predominantly and catering only 
normal adult human brain MR images appear as the major shortcomings in most of the research. This 
results in lower performance accuracy for other sequences and for pathological brains, rendering 
such systems incapable of acting as robust assistive tools.  

Very few systems [10] cater infant MRI due to their small size and dynamic intensity changes [19]. 
Salehi et al., [21] cater fetal brain MRI. The research in [22] uses morphological operations by 
extracting the largest connected component and it sometimes fails, in which case they use 
information from adjacent slices in an MRI volume. This approach is not suitable for individual MRI 
slices. The accuracy in [23] drops in regions around the eyes and below. If extra-cranial content is 
retained, it might hamper optimum pathology detection [11] at later stages especially in cases of 
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brain tumours or lesions [6]. Kaliyugarasan et al., [24] suggest that similar performance accuracy is 
observed using both 2D and 3D U-Nets, with 2D being slower due to slice-by-slice processing 
approach. Others state that in order to improve efficiency, 3D MRI must be broken down into 2D 
sequences and stripped layer by layer [1]. Hence this approach is adopted by NIVE.  

Regarding “Gold Standard” ground truth labelling by experts, Lucena et al., in [4] suggest that 
single-rater based manual annotation may be biased and hence a consensus approach among 
multiple raters may be used. In this research, the gold standard ground truths for testing have been 
obtained from one consultant radiologist only, which stays as a limitation at the moment, and may 
be addressed later. SynthStrip [10] considered as the benchmark tool developed in 2022 by MIT uses 
U-Net as the baseline architecture and outperforms multiple skull strippers including ROBEX [7], BET 
[25], 3DSS, BEaST [9], FSW and DMBE. NIVE developed in this research is compared in performance 
with SynthStrip using online datasets and those acquired from a hospital. The materials and methods 
used in the development of NIVE are presented in the subsequent sections. 

 
Table 1 
Related works on Brain Extraction summarized in terms of techniques, performance; Jaccard index and Dice 
score and MRI dataset 

Paper Technique Performance Dataset 
[26] Watershed algorithms and 

deformable surface models 
Jaccard up to 
0.885 

T1W MRI 

[5] Meta Algorithm, Brain Surface 
Extractor (BSE) from BrainSuite, 
the Brain Extraction Tool (BET) 
from FSL, 3DIntracranial from 
AFNI, and MRI Watershed from 
FreeSurfer 

Dice up to 0.980 ± 
0.00374 

275 subjects - BEMA trained on 25 scans from 
the ICBM data set, 27 from the IPDH, 48 from 
LIJMC, 30 from ZENIT, and 10 from NEUROVIA 

[27] 2D/ 3D brain extraction algorithms 
(BEA). LPF and morphological 
operations to find largest 
connected component (LCC) 

-- 20 normal/ abnormal MRI - T2W 

[28] Morphological operations- double 
and Otsu’s thresholding 

Up to 96.67% 
acceptance 

90 T1W, T2W and FLAIR MRI 

[29] Region labelling and morphological 
operations 

Dice 0.938 61 scans - IBSR, KGS Advanced MR and CT scans, 
Madurai, Tamil Nadu, India, T1W only 

[8] Comparison - BET, BSE, HWA and 
MAPS 

Jaccard up to 0.98 ADNI - 682 1.5 T and 157 3 T T1W MRI 

[7] ROBEX - discriminative model 
(Random Forest classifier), the 
generative model (point 
distribution model) 

Dice up to 96.6% ± 
0.3 

Trained using 92 scans from a proprietary 
dataset – tested on IBSR, LPBA40, and OASIS, 
137 scans in total 

[3] Simplex Mesh and Histogram 
Analysis Skull Stripping (SMHASS) 

Dice up to 0.972 20 simulated T1W MRI images from the 
BrainWeb website, 18 real T1W MRI images 
from the IBSR, 40 real T1W MRI images from the 
SVE 

[9] BEaST - nonlocal segmentation 
embedded in a multi-resolution 
framework 

Dice 0.9781 ± 
0.0047 

NIH Paediatric Database (NIHPD), ICBM, ADNI 

[11] Adaptive intensity thresholding 
followed by morphological 
operations 

Dice up to 0.99 Simulated MR images obtained from “BrainWeb: 
Simulated Brain Database” and real MR images 
of IBSR, T1W only 

[30] 3D-CNN Dice 0.9519 IBSR, LPBA40 and OASIS, totalling 135 volumes 
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[31] MONSTR - registration and patch 
matching 

Dice up to 0.9833 6 datasets, ADNI-29 normal, NAMIC-10 normal 
controls and 10 patients with schizophrenia, 
MRBrainS-5 normal controls 

[21] Auto-context CNN, U-Net Dice up to 97.73% LPBA40, 40 T1W MRI scans of healthy subjects, 
OASI) 70 T1W MRI scans of healthy subjects 

[14] 8 publicly available skull stripping 
techniques 

Dice up to 
97.9637 ± 0.631 

Calgary-Campinas-359 (CC-359) 

[1] Multi-view pyramid skull stripping 
network (PSSNet) 

Dice 95.44%–
97.33% 

70 neonates from the local hospital and 7 infants 
from the publicly available dataset 
NeuroBrainS12 (MICCAI 2012). 51 and 26 
subjects used for training and validation, T1W 
only 

[4] 2D U-Net, CONSNet Dice up to 97.353 
± 0.003 

Calgary-Campinas-359 (CC-359), LPBA40, OASIS 

[18] 3D U-Net Mean Dice 0.9903 NFBS, T1W only 
[19] Flattened Residual Network Dice 0.986 343 subjects, covering newborns to 48-month-

olds. UNC/UMN Baby Connectome Project (BCP) 
dataset, T1W sagittal only 

[32] HD-BET, U-Net Dice up to 98% LPBA40, NFBS, Calgary Campinas-359 [CC-359] 
[2] 2D U-Net, 3D U-Net, FCN, 

DeepMedic, 3D-ResUNet 
Dice up to 0.98 3340 mpMRI brain tumour scans, private and 

public, public including TCGA-GBM, n = 328, 
TCGA-LGG, n = 372 BraTS challenge 

[17] Dense-VNet Dice score of 
94.5% for tumour 
brains, 96.2% for 
healthy brains 

70,000 serial structural MR studies of 2,500+ 
unique brain tumour patients acquired across 
20+ institutions, T1Gd and FLAIR 

[24] 2D and 3D U-Net 2D U-Net Dice 
0.9778, 3D U-Net 
Dice 0.9781 

ADNI, AIBL, IXI, PPMI, SLIM, Calgary-Campinas 
and SALD, T1W 

[22] Helmholtz free energy principle 
and morphological operations 

Dice up to 0.968 38 MRI from IBSR, T1W 

[33] PARIETAL, modified U-Net Dice 97.2% 21 subjects from hospitals, T1W. Calgary-
Campinas dataset 359 comprising MR images of 
healthy adults 

[10] SynthStrip – 3D U-Net Dice up to 97.8 ± 
0.3 

80 training subjects from three cohorts: 40 adult 
subjects from the Buckner40 dataset, 30 locally 
scanned adult subjects from HCP-A, and 10 
infant subjects born full-term, scanned at Boston 
Children’s Hospital at ages between 0 and 18 
months 

[23] k-strip based on U-Net Dice scores of 
92%-98% 

36,900 MRI slices, University Hospital Essen, 
consisting of 30000 T1 brain MRI 2D-slices from 
207 patients. The other dataset is obtained from 
the NYU fastMRI initiative database 
(fastmri.med.nyu.edu), containing 6900 fully 
sampled brain MRI scans 

[34] Largest connected component 
extraction using morphological ops 

Dice up to 80% OASIS, T1W 

[6] Ensemble neural network (EnNet), 
3DCNN 

Dice 0.9850 ± 
0.0171 

815 cases with or without glioblastoma 
multiforme (GBM) at the University of Pittsburgh 
Medical Centre (UPMC) and TCIA 

[35] Hyperconnectivity and viscous 
lattices 

Dice up to 0.951 38 MR images obtained from IBSR, T1W 
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3. Material and Method 
 
This section states the hardware and software used in the development of NIVE. It also provides 

details about the datasets used for training, validation and testing, encompassing both online sources 
and the data acquired from a hospital in Islamabad, Pakistan. The end-to-end design and 
development methodology is also provided in this section. 

 
3.1 Hardware and Software 

 
Firstly, the training and testing of the NIVE was conducted on multiple computers. This includes 

Lenovo Legion Y545 using Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz 2.59GHz with 16GB RAM and 
6GB NVIDIA GeForce GTX 1660 Ti. Another Linux based machine with 12GB NVIDIA GeForce RTX 2080 
Ti at the Center for Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi Petronas 
(UTP) was also used for training. MATLAB R2022b and Python 3.10.7 were used for coding. 
TensorFlow 2.10.0, TensorFlow-GPU 2.10.0 with Cuda 11.2.2 and cudnn 8.1.1 were used for training 
and testing, in addition to MATLAB.  

Secondly, for testing SynthStrip, a Windows Subsystem for Linux (WSL) and Ubuntu version 
22.04.1 LTS were used. The SynthStrip is embedded in FreeSurfer version freesurfer ubuntu22-7.3.2 
amd64.deb. In addition, DICOM to NIfTI conversion, DICOM and NIfTI tools, NIfTI visualization 
(version 2023.03.16) by Xiangrui Li (2023) was used to convert Dicoms to NIfTI files (to be fed as an 
input to SynthStrip).  

Lastly, for the ground truth labelling of newly acquired images from a hospital, the Label Studio 
(version 1.7.3) was used with python. This was done by a consultant radiologist via remote access of 
the software using AnyDesk version 7.1.11. Besides, RadiAnt Dicom Viewer (version 2023.1) was also 
used to inspect Dicoms acquired from Advanced International Hospital, Islamabad, Pakistan. 

 
3.2 MRI Brain Dataset 

 
The list of 5 different MRI datasets utilized in the development and evaluation of the NIVE are 

summarized in Table 2. The training images are from three sources; NFBS, SynthStrip and MICCAI 
2016 while the testing images come from all five datasets. Detailed description of the datasets is 
covered in the subsequent sections. 
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Table 2 
Summary of the five brain MRI datasets utilized in the development and evaluation of NIVE 

 
Dataset 

Subject Type Type of MRI  
Condition 

Mask No. of 
images or 
patients 

 
No. of 
slices 

Utilization for NIVE 
Adult Infant FLAIR T1-

W 
T2-
W 

PD Lesion Brain Training + 
Validation 

Testing 

 
NFBS 

 
ü 
 

 
- 

 
- 

 
ü 

 
- 

 
- 

 
Multiple 

 
- 

 
ü 

125 
volumetric 
data 

 
6000 

 
ü 

 
ü 

 
SynthStrip 

 
ü 

 
ü 

 
ü 

 
ü 

 
ü 

 
ü 

Not 
specified 

 
- 

 
ü 

582 
volumetric 
data 

 
118606 

 
ü 

 
ü 

MICCAI 
2016 

ü - ü ü ü - Multiple 
Sclerosis 

ü ü 53-
patients 

34082 ü ü 

Baghdad ü - ü ü ü - Multiple 
Sclerosis 

ü - 60-
patients 

12 / 
sequence 

- ü 

AIH 
Islamabad 

ü - ü ü ü - Multiple - ü 3-patients Varies - ü 

 
3.2.1 Neurofeedback skull-stripped (NFBS) repository 

 
The NFBS dataset [36] contains 125 T1-weighted anatomical brain MRI NIfTI volumetric data, 

along with brain masks and segmented brain images. Brain slices were extracted from all three 
orientations. 8 slices from deep brain were extracted from axial orientation which had a total of 192 
slices with a resolution of (240 × 320)-pixel, making a total of 1000 MRIs and 1000 masks. Similarly, 
out of 256 coronal slices with (320 × 240)-pixel resolution, 8 deep brain slices per subject were 
extracted, and the same from 192 sagittal slices per subject with (320 × 320)-pixel resolution. This 
constituted a total of 3000 MRIs and their corresponding masks, later to be used for training and 
validation. Data cleaning and augmentation was carried out using MATLAB with removal of border 
artifacts in both MRI and mask images. In addition, all images were rotated by 90 degrees to increase 
the training data along with providing the DL network an ability to handle different MRI orientations. 
This was followed by zero-padding to achieve uniform image resolution of (256 × 256)-pixel. A total 
of 6000 MRIs and masks were eventually used from this dataset. 

 
3.2.2 The SynthStrip dataset 

 
The SynthStrip dataset [10] is a publicly available collection of MR images with corresponding 

ground-truth brain masks from 622 MRI, CT, and PET scans. This diverse data collection includes 
images acquired with various MRI sequences, resolutions, and in subject populations ranging from 
infants to patients with glioblastoma. Since our study deals with MRI modality only, 20 CT and 20 PET 
scans available in this dataset were not used. In total, 118606 T1, T2, FLAIR, PD and infant MRI slices 
from various orientations were extracted and retained from NIfTI volumes after discarding 131 slices 
due to presence of noisy artifacts or too dark/ blank images. A sample set of the images discarded is 
given in Figure 1. The dataset was also cleaned for border artifacts and resized to (256 ×	256)-pixel 
for uniformity. 

 
 

Fig. 1. Discarded noisy images from SynthStrip dataset 
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3.2.3 MICCAI 2016 challenge dataset 
 
The MICCAI 2016 [37] database of images is composed of 53 Multiple Sclerosis patients. The 

dataset contains T1, T2 and FLAIR images among others, both raw and pre-processed versions. It also 
contains whole brain masks and lesion masks, but this dataset is only used for skull stripping. Only 
raw FLAIR images were considered. T1-weighted images were not considered to avoid dataset bias 
since NFBS had all T1-weighted images previously acquired. In addition, T2-weighted MR images and 
their corresponding brain masks had resolution mismatch issues, hence they were also discarded. A 
total of 34082 axial, sagittal and coronal MR slices and their corresponding non-zero masks were 
extracted from this dataset to be used for training and testing the skull stripping model. These images 
were also checked for border artifacts and resized to a resolution of (256 × 256)-pixel. Out of the 
102246 images, 68164 were discarded due to resolution issues. Including brain MR images of MS 
patients for training would empower the system to effectively extract the brain from pathological 
scans with lesions in addition to healthy brain MRI. 

 
3.2.4 Baghdad teaching hospital dataset for multiple sclerosis [38] 

 
This dataset contains NIfTI volumes of FLAIR, T1 and T2-weighted MRIs and their corresponding 

lesion masks from 60 patients with Multiple Sclerosis. In this research we have used all three 
sequences from patient 1 to compare the performance of SynthStrip and NIVE. 

 
3.2.5 Advanced International Hospital (AIH) Islamabad dataset 

 
MRI scans from three subjects were acquired from Advanced Diagnostic Centre, Advanced 

International Hospital Islamabad. This dataset consists of Dicom sequences and was subsequently 
converted to NIfTI volumes to be fed into SynthStrip for performance analysis. The details of the 
subjects are given in Table 3. The ground truth brain masks were labelled by a consultant radiologist 
using Label Studio GUI in python. This dataset was later used for testing, performance evaluation and 
comparison of SynthStrip and NIVE using Dice similarity coefficient as the metric. 

 
Table 3 
Detailed information on the MRI from Advanced International Hospital (AIH) Islamabad 
Subject Gender Age Orientation Sequence Slices 
1 Male 27 Axial T1W 19 
Clinical Information: Diagnosed case of HIV. Presented with fits, desaturation and hypotension 
2 Female 26.2 Sagittal T2W 20 
Clinical Information: Seizure disorder 
3 Male 36.1 Coronal FLAIR 35 
Clinical Information: Fits 

 
3.3 Brain Extraction Technique 

 
Skull stripping was performed using SynthStrip from FreeSurfer and our custom trained models, 

and the results were compared. SynthStrip embedded in FreeSurfer version freesurfer ubuntu22-
7.3.2 amd64.deb was installed on Windows 11 OS using Windows Subsystem for Linux (WSL) and 
Ubuntu version 22.04.1 LTS. 

For the custom trained models, two separate skull stripping models were trained, one using 
DeepLabV3+ architecture and the other one using U-Net, with a 90-10 split for training and validation. 
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MATLAB Computer Vision Toolbox and Deep Learning Toolbox were used to achieve this. GPU always 
proves to be a lifesaver in such operations since it drastically reduces the training time depending on 
the hardware used. DeepLabV3+ uses Atrous Spatial Pyramid Pooling (dilated convolutions) and 
transposed convolutions for down-sampling and up-sampling respectively, whereas U-Net uses 2D 
Max-pooling and 2D-transposed convolutions. The U-Net model has 58 layers with a total of 31M 
learnable, the learning rate was set to 0.001. On the other hand, the DeepLabV3+ model has a total 
of 43.9M learnable, 206 layers, input layer of 256 × 256 and pixel classification as its output. 

The learning rate was set at 0.01 and the ResNet50 backbone was used. Both the networks were 
trained using 158688 images. This dataset was a merger of 3 publicly available datasets and is the 
most diverse and massive dataset used to train a skull stripper so far, as evident from the literature. 
The models were trained with a minibatch size of 8 for 2 epochs, and validated with 10% of the 
dataset. In addition, testing was conducted using 2 subjects from each of the three online datasets, 
along with the three cases acquired from hospital with the ground truth data provided by a 
consultant radiologist. The system design and development methodology for NIVE is given in Figure 
2.  
 

 
 

Fig. 2. Design and development flow of NIVE 
 

3.4 Performance Metric 
 
Since this is a semantic segmentation problem, in which each pixel is assigned a class, pixel 

accuracy can prove to be misleading if there exists a class imbalance. In that case, the Dice similarity 
coefficient can prove to be a meaningful performance metric. The performance of the segmentation 
method is measured using the normalized confusion matrix and Dice similarity coefficient (Dice). For 
the confusion matrix, TP, TN, FP and FN represent the true positive, true negative, false positive, and 
false negative, respectively.  The Dice computes the similarity of elements between predicted output, 
prediction and original label, target sets, 

 
𝐷𝑖𝑐𝑒 = 2 |"#$%&"∩($&)*+"*,-|

|"#$%&"|.|($&)*+"*,-|
× 100                                                  (1) 

 
where |𝑡𝑎𝑟𝑔𝑒𝑡| represents the cardinal of the set target. Dice is similar to BF (Boundary F1) contour 
matching score between the predicted segmentation and the true segmentation (Ground Truth). 
Intersection over Union (IoU) is also used to evaluate performance of object detection systems, as 
shown in Eq. (2) and Figure 3. The performance comparison results are provided in the following 
section. 

 
𝐼𝑜𝑈 = /$&#	,1	23&$4#(

/$&#	,1	5-*,-
                                                                              (2) 
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Fig. 3. Illustration on 
the area of overlap and 
area of union for 
computation of IoU 

 
4. Result and Discussion 
4.1 Training of U-Net and DeepLabV3+ 

 
The training and validation process for U-Net and DeepLabV3+ is given in Figures 4 and 5 

respectively. The models were trained with a training/validation split of 90/10. The models were 
trained for a maximum of 2 epochs and each one took a little over 32 hours using NVIDIA GeForce 
RTX 2080 Ti.  

 
 
Fig. 4. Training progress, training details (top-right inset) of U-Net, performance evaluation in terms of 
accuracy, IoU and MeanBFScore (lower-right inset) and normalized confusion matrix (left inset) 
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Fig. 5. Training progress, training details (top-right inset) of DeepLabV3+, performance evaluation in terms of 
accuracy, IoU and MeanBFScore (lower-right inset) and normalized confusion matrix (left inset) 
 

The performance of models and the normalized confusion matrices are shown in Figures 4 and 
Figure 5. It can be observed that DeepLabV3+ outperforms U-Net, since U-Net falsely categorized a 
lot of non-brain regions as brain. Further testing of the two models trained in this research and 
SynthStrip was conducted using online datasets and real-time data acquired from a hospital. The real-
time data was labelled by consultant radiologist using RadiAnt and Label Studio plugin for python, 
and the gold standard ground truth brain masks were secured. 

 
4.2 Evaluation of Skull Stripping for Different Type of MRI Sequence – Qualitative Analysis 

 
SynthStrip results for T1, T2 and FLAIR MRI respectively, are depicted in Figure 6, along with 

results from NIVE. These images have been acquired from the Brain MRI dataset of Multiple Sclerosis 
with consensus manual lesion segmentation and patient meta information, from Baghdad Teaching 
Hospital [38]. 12 slices have been chosen from a 19-slice 256 × 256 NIfTI volume in three sequences 
and axial orientation.  
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Fig. 6. T1, T2 and FLAIR image from patient 1 of Baghdad Teaching Hospital dataset stripped by SynthStrip 
and NIVE 
 

It can be observed that in its default settings as shown in Figure 7, SynthStrip from FreeSurfer is 
incapable of adequate brain extraction. It either removes important cortical areas, or retains skull 
regions as well. The unsatisfactory performance of SynthStrip on Baghdad dataset, as shown in Figure 
6, resulted in the motivation for this research. This section provides a performance comparison of 
DeepLabV3+, U-Net and SynthStrip. 

 

 
 

Fig. 7. SynthStrip command line 
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4.3 Evaluation of Skull Stripping using MICCAI 2016, SynthStrip and NFBS Online Datasets 
 
For semantic segmentation, Dice is considered more accurate. Figure 8 shows the Dice scores of 

the validation set for DeepLabV3+, with about 10% near skull images (containing minimum brain 
content) discarded. The mean Dice score is 0.98 which is quite comparable to SynthStrip. To further 
assess the current state of the art SynthStrip and the models trained in this research, two subjects 
were used for testing from each of the three online datasets namely the MICCAI 2016 challenge 
dataset, the SynthStrip Dataset and the Neurofeedback Skull-stripped (NFBS) repository. From the 
MICCAI Dataset, the subjects chosen for testing include FLAIR axial scans from testing centre 7, 
patient 9 and 10. Qin FLAIR 45 and 46 were chosen from the SynthStrip dataset in FLAIR sequence 
and axial orientation, whereas T1-weighted sagittal scans from subjects 63589 and 64081 were 
selected from NFBS dataset.  

 

 
 

Fig. 8. Mean Dice score for DeepLabV3+ on validation set 
 
The dataset and subject identifier, the number of slices examined, along with the Dice scores for 

the three models is given in Figure 9. DeepLabV3+ can be seen outperforming the other two, closely 
followed by SynthStrip. To further analyse the performance of DeepLabV3+ and SynthStrip, tests on 
real-time absolutely fresh and unseen data from a hospital were performed and the results are 
presented in the following section. 
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Fig. 9. Dice score of 6 different test subjects from MICCAI 2016, SynthStrip and NFBS (from left to right) 
datasets using the SynthStrip, and trained U-Net/DeepLabV3+. The number of MRI slices for each subject is 
given in the plot, with the lowest value of 23-slice and the highest value of 139-slice 

 
4.4 Evaluation of Skull Stripping using AIH Islamabad Dataset 

 
Three subjects were chosen by a consultant radiologist incorporating T1, T2 and FLAIR scans for 

all three orientations. The performance of the three models was compared with the gold standard 
brain masks. The Dice scores of the three models, the MRI sequence and orientation, and the number 
of slices analysed per subject are given in Figure 10. The mean Dice scores are given in Table 4.  

 

 
 
Fig. 10. Dice score of 3 test subjects from AIH Islamabad dataset evaluated using axial, sagittal and coronal 
MRI. The number of slices for subject 1, 2 and 3 (from left to right) is respectively, 19, 20 and 35 

 
The brain masks generated by U-Net, SynthStrip and DeepLabV3+ from subject 1 (T1W axial) are 

given in Figure 11. The intersection of model mask and ground truth mask is given in green, the blue 
region depicts the brain region in ground truth not detected by model, whereas the red region shows 
the areas which were treated as brain by the models but were not actually the brain according to the 
ground truth data.  

 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 50, Issue 2 (2025) 228-245 

241 
 

 
 
Fig. 11. Extraction of brain region of Subject 1 form AIH Islamabad dataset using U-Net (top-row), SynthStrip 
(mid-row) and DeepLabV3+ (bottom-row). Here, green is the intersection of the ground truth (GT) with the 
predicted mask, blue is the pixel in the GT but not detected by the model and red is the wrongly detected pixel 

 
It can be observed here that U-Net did not perform the skull stripping job well, as almost the 

entire MRI is being treated as the brain. SynthStrip seems to be performing quite well other than slice 
1 and 3, in which it misses out some important brain regions. The poor performance of DeepLabV3+ 
in the first slice with very low brain content may be because from the NFBS dataset, only 8 deep brain 
slices were taken for training, compromising the model’s performance on near skull (MRI edge) 
images.  

DeepLabV3+ can be observed outperforming SynthStrip in all online datasets. In the AIH 
Islamabad dataset, SynthStrip and DeepLabV3+ show comparable results for T1w axial (subject 1) 
and FLAIR coronal (subject 3). In case of subject 2 (T2W sagittal), the inferior performance of 
DeepLabV3+ may be because of the model being trained on fewer images in that orientation as 
compared to axial and coronal MRI. The overall satisfactory performance of DeepLabV3+ encouraged 
the development of NIVE (NeuroImaging Volumetric Extractor) to serve as a tool to assist 
neurologists, radiologists, data scientists and researchers in medical practice and CAD research. 
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Table 4 
Comparison of Mean Dice Score between SynthStrip, and skull stripping 
techniques using U-Net, DeeplabV3+ 
Dataset Sequence Orientation U-Net SynthStrip DLv3+ 
MICCAI Center7 case9  FLAIR Axial 0.7174 0.9086 0.9094 
MICCAI Center7 case10 FLAIR Axial 0.7275 0.8669 0.9190 
SynthStrip qin 45 FLAIR Axial 0.6801 0.9046 0.9246 
SynthStrip qin 46 FLAIR Axial 0.6001 0.8658 0.8794 
NFBS 63589 T1W Sagittal 0.5064 0.8574 0.9117 
NFBS 64081 T1W Sagittal 0.5137 0.8631 0.9265 
AIH Islamabad Subject 1 T1W Axial 0.6550 0.9356 0.9134 
AIH Islamabad Subject 2 T2W Sagittal 0.5854 0.9337 0.8866 
AIH Islamabad Subject 3 FLAIR Coronal 0.4256 0.9280 0.9043 

 
5. NIVE Graphical User Interface 

 
MATLAB Graphical User Interface Development Environment (GUIDE) was used to design and 

develop NIVE. NIVE is capable of handling NIfTI, Dicom, Jpg, Png, Bmp and other image data formats 
as input which gives it an edge over SynthStrip which only accepts NIfTI file format as input, and 
generates NIfTI volumes for both brain masks and skull-stripped output. Since software used by 
radiologists (like RadiAnt) majorly support Dicom sequences, a diverse input acceptance feature of 
NIVE would prove to be helpful in medical practice. NIVE can provide individual skull-stripped slices 
or entire volumes depending on user input. It has a flexible and user-friendly interface, which offers 
skimming through slices using slider and visualizations for raw unprocessed MRI, its corresponding 
brain mask, and the skull-stripped version simultaneously. SynthStrip on the other hand is a 
command-line based tool, which some medical professionals might find tedious to use. The data 
import and export options in NIVE can be controlled using pushbuttons. The UI for NIVE is given in 
Figure 12. 

 
6. NIVE, Model and Dataset Availability 

 
NIVE v1.0 is available at MathWorks as a MATLAB app installer package at the link 

https://www.mathworks.com/matlabcentral/fileexchange/129574-nive. The online publicly 
available datasets can be downloaded from their respective web links whereas the data acquired 
from Advance International Hospital Islamabad, along with the ground truth masks is available at the 
link https://www.kaggle.com/datasets/khuhedkhalid/aih-skullstripping-data. 

 
 

https://www.mathworks.com/matlabcentral/fileexchange/129574-nive
https://www.kaggle.com/datasets/khuhedkhalid/aih-skullstripping-data
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Fig. 12. NIVE GUI developed on MATLAB 
 
7. Conclusions 

 
Brain extraction is an important preprocessing step in CAD systems using brain MRI. Adequate 

performance of a skull stripping system facilitates the subsequent processes involved in reaching 
concrete diagnoses. DeepLabV3+ model has been trained with the most comprehensive human brain 
dataset and has outperformed U-Net and the current state of the art tool SynthStrip. The trained 
model has been embedded in NIVE to serve as a tool to assist radiologists and data scientists working 
on CAD systems for neurological disorders. NIVE has proven to be the best publicly available system 
so far which is agnostic to MRI input file type, sequence, orientation, subject age, brain pathology, 
and acquisition hardware variations.  
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