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 ABSTRACT 

 

 

 

Despite the robustness of existing instruments, routine manual observation in 
psychotherapy faces significant challenges, including lack of time, labour, high 
implementation costs, and potential biases such as response bias and social 
desirability. This study proposes a dynamic assessment approach using machine 
learning and multimodal features extracted from handwriting, incorporating 
graphology-based and content-based features. The integration of content-based and 
graphology-based features involves combining text and handwriting features with the 
Support Vector Machine (SVM) using the Radial Basis Function Kernel (RBF). The results 
show that this approach achieves an impressive accuracy rate of 86.25%. The proposed 
framework not only improves psychotherapeutic practise, but also offers new insights 
into human cognition and emotional dynamics by revealing intricate patterns in 
handwriting. This advance facilitates data-driven decision-making, improves the quality 
of patient care, and overcomes challenges associated with manual monitoring, 
including social desirability bias and response set bias. This research paves the way for 
innovative methods at the interface of mental health and technology, and promises a 
more objective and efficient approach to monitoring the progress of psychotherapy. 
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1. Introduction 
 

Psychotherapy is a well-known and effective treatment process in the psychology domain to 
facilitate in adjusting one’s thoughts, feelings, and behaviour. Psychotherapy has been beneficial 
across age cohorts, gender, and culture to overcome different issues in mental and behavioural 
health (Lambert, Bergin, and Garfield 1994) [1]. Research have proved that different psychotherapy 
techniques contribute to a substantial effect in addressing specific issues in psychological and 
behavioural health. For instance, cognitive-behavioural therapy (CBT) is effective in treating insomnia 
[2], internet gaming disorder [3,4], obsessive-compulsive disorder [5], gambling disorder [4], and 
eating disorder [6]. Interpersonal psychotherapy (IPT) is an effective treatment for postpartum 
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depression and anxiety [7], post-traumatic stress disorder (PTSD) [8], and depression for pre-
adolescents [9].  

Technological advancements have shifted the norms of traditional settings in every sector, 
including mental healthcare [10]. For instance, mobile psychotherapy games have been utilized for 
the elderly with memory disorders [11], and image-based virtual reality has been useful for self-
therapy to reduce stress [12]. When the COVID-19 pandemic hit populations worldwide, the cases of 
mental healthcare increased tremendously. This led to rapid changes in the landscape of counselling 
practices, adopting digital counselling to handle mental health issues. The effect of the pandemic 
causes the growth of digital counselling to be adopted rapidly [13]. Studies have demonstrated that 
digital counselling e.g., text-based cognitive behavioural therapy (CBT) treatment brought a 
significant positive impact on the counselling domain [2,14]. The disinhibition effect of digital 
counselling causes the clients to be more open and natural when consulting with the counsellor 
during the therapy session. The text-based emotion expressed during the therapy could be used to 
frame one’s progress monitoring. Machine learning and deep learning have empowered algorithms 
in enabling models to process, analyse data, and extract patterns in digital healthcare. It holds 
promises for complementing limitations in health care. For instance, research has explored machine 
learning in detecting diabetic retinopathy [15], predicting disease outbreak [16] detecting depression 
[17], and predicting symptoms of depression in cancer treatment [18]. Apart from the 
aforementioned domains, the psychology or counselling domain also leverage deep learning and 
machine learning in monitoring the progress of psychotherapy sessions. These includes verbal 
assessment and counselling [19], monitoring routine outcome in psychotherapy [20], recognize 
emotion through face recognition in psychological intervention system [21], and identifying 
evidence-based psychotherapy outcomes for post-traumatic stress disorder [22]. 

Routine outcome monitoring is important to assess the efficacy of psychotherapy treatment. 
Current practices in monitoring psychotherapy progress are mainly based on behavioural coding and 
routine outcome monitoring instruments. Many instruments have been introduced, e.g., Outcome 
Questionnaire System (OQ-45), the Clinical Outcomes in Routine Evaluation (CORE) and the Partners 
for Change System (PCOMS) [23]. While the current instruments used are robust, the manual 
monitoring practice faces a few challenges. Apart from time constraints [20], manual monitoring 
instruments are labour intensive and expensive to implement. It could also lead to response set 
biases, social desirability biases, and psychometric limitations. 

Therefore, the intervention of an automated approach using artificial intelligence (AI) techniques 
could be implemented to assist in monitoring the progress of a patient during psychotherapy 
treatment to assess the quality and outcomes of treatment. The AI-based monitoring tool is 
potentially needed to complement and enhance the process of treatment monitoring. This paper 
aims to present an AI-based monitoring framework for analysing the counselling therapy session 
throughout treatment using machine learning approach. An AI- based analysis could help to measure 
and analyse a client’s treatment outcome by tracking the client’s current and recurrent views of 
sentiment and emotion. 

Handwriting has substantial beneficial effects in many applications. The handwriting was used to 
assess the fine-motor control skills, kinaesthesia, and sensory awareness in children [24]. For 
neuropsychological assessments, studies have used handwriting to determine the presence of brain 
dysfunction. Parkinsonism symptoms were identified through sequential-based dynamic handwriting 
analysis [25,26]. Early diagnosis and monitoring of neurodegenerative diseases were also reported 
using handwriting analysis, e.g., Alzheimer’s diagnosis [27,28]. Handwriting has also been presented 
in research to determine one’s personality [29-31], learning style [32], in forensic [30,33], as well as 
age detection [34]. Apart from handwriting, other studies have explored content- based to predict 
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the client-rated therapeutic alliance [35]. Other work used topic models with linguistic data i.e., 
psychotherapy textual data to identify the clients’ functioning levels and alliance ruptures in 
psychotherapy [36]. While some studies, such as Ewbank et al., [37], have utilized topic models with 
linguistic data to identify clients’ functioning levels and alliance ruptures in psychotherapy, others 
like Goldberg et al., [38] have focused on predicting therapeutic alliance using linguistic content from 
therapy sessions. Various machine-learning approaches have been used in handwriting analysis. For 
instance, Support Vector Machine (SVM) [29,31], topic model [36], deep learning [14,37], Artificial 
Neural Network (ANN) [39,40], least square linear regression and rule-based algorithms [30], and 
multi-classifiers [27]. However, to our knowledge, no study has addressed the multi-modal features 
of handwriting.  

The current state of psychotherapy emphasizes the value of routine outcome monitoring as a 
tool for assessing treatment efficacy. However, the current methodologies primarily rely on 
behavioural coding and routine outcome monitoring instruments, which highlights a noticeable gap 
in real-time progress assessment. In contrast to the prevalent post-session evaluation approach, 
which offers insights only after the session's completion, there is a compelling need to shift towards 
immediate progress monitoring following each therapy session. The incorporation of immediate 
progress monitoring can play a crucial role in detecting any deviations within ongoing psychotherapy 
sessions and thereby enable timely adjustments to the treatment plan. Addressing this gap, the study 
aims to develop a machine learning-based framework for monitoring the progress of psychotherapy 
sessions using multi-modal features extracted from one's handwriting i.e., graphology-based 
features and content-based features. The objective is to introduce a dynamic assessment approach 
that captures session outcomes as they unfold, in stark comparison to the prevalent retrospective 
analysis method. In this way, it could facilitate the effectiveness and efficiency of monitoring 
treatment progress which potentially further improved the outcomes of therapy. 

 
2. Methodology  
2.1 AI-Enhanced GraphoText: The Holistic Digital Monitoring Framework 

 
The proposed GraphoText framework for digital psychotherapy monitoring is illustrated in Figure 

1. GraphoText is a holistic framework integrating the four (4) major phases from data acquisition to 
data visualization. The initial phase (data acquisition) of this framework is the process of acquiring 
handwriting from a client during each therapy session. The client will require to write whatever 
comes to their thought without dictating i.e. free flow writing. During the feature extraction phase, 
the model will extract two (2) types of features from a piece of handwriting i.e.  

 
i. graphology-based features  

ii. content-based features.  
 

For graphology-based features, there are two (2) specific features will be extracted, which include 
baseline and slanting. Whereas the content-based features will be focused specifically on the Term 
frequency-inverse document frequency (TF/IDF), sentiment, keyword, and absolute words. The 
collection of extracted features will be stored in the client’s monitoring record database. Then, the 
classification model will be performed using the machine learning approach. 
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Fig. 1. AI-Enhanced GraphoText: the holistic digital monitoring framework 

 
2.1.1 Dataset 

 
In this experiment, we utilised a dataset which was extracted from a real-world handwritten text 

sample. We employed Malaysian adults with an age range spanning from 20 to 60 years.  Each 
participant was provided a blank A4 sheet, granting them the freedom to transcribe their unfiltered 
thoughts, whether in Malay or English, in accordance with their preferences. In order to 
comprehensively assess the participants' distinctiveness, a supplementary questionnaire was 
administered, aimed at evaluating the five discrete personality dimensions delineated within the Big 
Five Inventory-10 (BFI-10) [25]. This comprehensive approach aimed not only to capture their 
handwriting attributes but also the nuanced facets of their personality traits. 

However, during the preprocessing phase, 30 sets of samples were excluded due to a range of 
factors including incomplete personality scores, missing handwriting content (blank submissions), 
and instances where only signatures were provided. As a result, the final dataset comprises a 
compilation of 70 handwritten images, each originating from separate individuals. This compilation 
effectively captures the synthesis of their distinct writing styles and individual personality traits. 

 
2.2 Multi-Modal Feature Extraction 
2.2.1 Graphology-based features 

 
Handwriting carries a unique and exclusive non-verbal expression of the writer. One’s mental and 

psychological state could reveal through strokes and patterns in handwriting. Previous study by Abd 
Yusof et al., [42] found that graphology analysis is useful in identifying a writer’s personality traits. 
Based on the previous finding [42] this framework proposed to focuses on three (3) graphological 
features:  
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i. baseline 
ii. slanting  

iii. whitespace 
 

Baseline is one's handwriting in the flow of writing either straight, ascending or descending.  A 
straight baseline signifies that an individual displays steady and externally organized conduct, while 
also being practical, meticulous, and controlled. An increasing baseline portrays the person as 
optimistic, joyful, engaged, and energetic. Furthermore, it signifies their inclination to remain 
consistently occupied and active. In contrast to ascending baseline, a descending suggests that an 
individual is negative in outlook, going through temporary mental fatigue, and encountering digestive 
problems. The tilt of the handwriting is determined by the angle of inclination and the direction of 
the letters, as well as the angle formed between the letter's downstroke and the baseline. This slant 
conveys information about the writer's emotions, level of sentiment control, and emotional 
regulation.  Rightward slant is when the words leaning towards the right. Whereas leftward slant is 
when the words leaning towards left. For instance, as shown in Figure 2, the baseline is the straight, 
and; leftward slant. Each parameter in handwriting carries a different meaning and analysis. Together 
baseline and slant represent the emotional stability of the writer.  

 

 
Fig. 2. An example of handwriting for 
graphology analysis used in previous 
study [39] 

 

 
Fig. 3. An example of handwriting for content 
analysis used in previous study [39] 

 
 
Table 1 summarizes the graphology-based features used in this study. 
 

Table 1 
Summary of grapho-based features 
used in this study 
Feature Description 
Baseline 0, if baseline is straight 

1, if baseline is ascending 
2, if baseline is descending 

Slant 1, if rightward slant 
2, if leftward slant 
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2.2.2 Content-based features 
 
Content analysis generally is the process of understanding the meaning of and in texts, which 

includes the development of categories from the data. It has been widely used in marketing and 
consumer behaviours [43], mental healthcare [44,45] etc. The content analysis focuses on the 
content itself. For instance, as shown in Figure 3, the content is “.... Saya baru masuk degree bulan 
3. Saya habis diploma hujung bulan 1. So rehat saya hanya ada 1 bulan je. Time diploma i have a lot 
problem in my life. I don’t know why me? So yeah i have to adapt semua yang berlaku and just 
husnuzon, mengharapkan apa yang berlaku ada hikmah. In degree i have to struggle a lot”. The 
analysis of this content will be based on the relevance/importance of specific keywords and with the 
nuances of the document on the depression perspectives as in previous study [41]. Four (4) main 
features have been considered in content analysis: 

 
i. (TF/IDF) 

ii. Sentiment 
iii. keyword  
iv. absolute words 

 
TFIDF is a vector that assesses the significance of a word within the context of the entire 

document. It is then vectorized to effectively reduce feature dimensions and emphasize the word's 
importance in relation to the rest of the content. Sentiment, keywords, and absolute words are all 
related to sentiment-expressing words, words associated with depression, and the connotation of 
words within the document. In this study, we utilized the VADER (Valence Aware Dictionary for 
Sentiment Reasoning) lexicon to analyse sentiment, categorizing it into two (2) categories: 
positive/neutral and negative sentiment. Depression-related keywords are divided into six 
categories:  

 
i. emotions 

ii. feelings 
iii. depression 
iv. issues related to depression 
v. absolutism 

vi. point of view 
 

Absolute words are those that convey totality, such as “entirely” “always” “totally” and “never”. 
In this study, we considered at least three (3) token matches for keywords in the lexicon and an 
absolutist index greater than 1.1%. Table 2 summarizes the content-based features used in this study. 

 
Table 2  
Summary of content-based features used in this study 
Feature Description 
TF-IDF Range between 0 to 1. Higher value means higher frequencies 
Keywords 0, if token matches for keywords in the lexicon < 3 

1, if token matches for keywords in the lexicon >= 3 

Sentiment 0, if sentiment is positive or neutral 
1, if sentiment if negative 

Absolute words True, if absolutist index greater than 1.1%. 
False, if absolutist index lower than 1.1% 
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2.2.3 Integration of content-based and graphology-based features 
 
The integration of content-based and graphology-based features involves combining textual and 

handwriting characteristics to create a comprehensive analysis approach that captures both linguistic 
and behavioural aspects for enhanced understanding and interpretation. By training the machine 
learning models on a diverse dataset containing samples of both written content and corresponding 
graphological features, the system learns to recognize intricate correlations that might not be easily 
discernible through manual analysis alone. This integrated approach not only enhances the accuracy 
of interpreting psychological and emotional traits but also provides a more comprehensive and 
automated means of monitoring counselling therapy progress. 

We utilized the Support Vector machine (SVM) with Radial Basis Function Kernel (RBF) kernel. 
RBF employs a sequential composition of multiple polynomial kernels, each with varying degrees, to 
facilitate the transformation of non-linearly separable data into a higher-dimensional space. This 
transformation enabling the separation of non-linearly separable classes through the use of 
hyperplanes. The process involves mapping the dataset into this augmented space by calculating dot 
products and squaring all features. The RBF kernel function in Eq. (1) can be described as 

 
𝐾	(𝑋!, 𝑋") = 𝑒𝑥𝑝(−𝛾	||	𝑋! − 𝑋"||")           (1) 

	
The kernel function's output 𝐾 is to measure how similar or dissimilar the two input data points 

𝑋! and 𝑋" are in the feature space. Where, it calculates the similarity between two input data points 
𝑋! and 𝑋" in a multidimensional space, by computing the exponential of the negative squared 
Euclidean distance between them, scaled by the gamma 𝛾 parameter value ranges from 0 to 1.  

For the performance metrics, we use accuracy, precision and recall as shown in Eq. (2), Eq. (3), 
and Eq. (4). The accuracy is used to evaluate the model's overall performance, while precision and 
recall metrics provide insights into its ability to minimize false positives and effectively capture true 
positive instances, respectively. 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = #$%&'	)*+,-.	$/	0$..-0%-1	2.-130%3$)4

#$%&'	)*+,-.	$/	2.-130%3$)4
         (2) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = #.*-	2$43%35-

#.*-	2$43%35-67&'4-	8$43%35-
          (3) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 = #.*-	2$43%35-

#.*-	2$43%35-67&'4-	9-:&%35-
           (4) 

 
3. Results and Discussion 
3.1 Prediction Outcomes 

 
Table 3 compare the performance metrics (accuracy, precision, and recall) of three different 

models based on the features used:  
 

i. content-based 
ii. grapho-based 

iii. a combination of both.  
 
The content-based features model achieved high recall (1.00), indicating that it effectively 

captured all emotionally unstable cases. However, its precision (0.75) suggests that some emotionally 
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stable cases may have been incorrectly classified as unstable. The accuracy of this model (75.0%) 
reflects the overall correctness of predictions. In contrast, the grapho-based features model 
demonstrated a balance between precision and recall, with a slightly lower precision (0.63) but a 
higher recall (0.82) compared to the content-based model. The accuracy (80.0%) indicates a 
satisfactory overall performance.  

Notably, the integration of content-based and graphology-based features using the SVM-RBF 
classifier yielded the highest accuracy rate of 86.25%, with a notable increase in precision (0.87) 
compared to the individual models. However, the recall (0.65) decreased, suggesting that some 
emotionally unstable cases may have been missed. This finding underscores the model's pronounced 
ability to achieve accurate predictions, particularly in tracking the emotional stability of a writer. This 
holistic approach allows for a more accurate representation of emotional states and tendencies, 
enabling precise predictions with minimal margin for error.  

Moreover, the precision value of 0.87 reflects the model's ability to discern true positive instances 
from false positives, indicating its reliability in identifying emotional stability with high confidence. 
This precision is crucial, especially in sensitive domains such as psychological profiling, where 
accuracy is important for informed decision-making and intervention. Additionally, the recall value 
of 0.65 (also referred to as sensitivity), provides insight into the model's capacity to correctly identify 
positive instances within the entire dataset of actual positive instances. This metric demonstrates the 
model's sensitivity to emotional cues and signals, ensuring that no relevant information is overlooked 
or disregarded during the assessment process. 

Overall, the results presented in Table 3 highlight the robustness and efficacy of the 
transformative advancements in data driven approaches to emotional assessment. They showcase 
the model’s potential for practical application in various domains, such as psychological profiling and 
personality assessment. This comprehensive evaluation not only underscores the model's 
performance but also underscores its utility and adaptability across different contexts, emphasizing 
its relevance and significance in contemporary data analysis and interpretation. However, it is 
important to explore that there is a trade-off between precision and recall, highlighting the 
importance of considering the specific requirements and objectives of the predictive model when 
selecting features. 

 
Table 3  
The result of three (3) different classification model based on 
SVM-RBF classifier 
Model Accuracy Precision Recall 
Content-based features 75.0% 0.75 1.00 
Grapho-based features 80.0% 0.63 0.82 
Content + Grapho-based features 86.25% 0.87 0.65 

 
3.2 Confusion Matrix Analysis 

 
The confusion matrix in Table 4 demonstrates how the model classifying the predictions into 

different categories. In this study, we focus on the model’s ability to predict emotionally unstable 
cases. The matrix highlights that out of the total emotionally unstable cases, the model successfully 
predicted 55, indicating a strong performance in identifying handwriting patterns associated with 
emotional vulnerability. However, it's crucial to acknowledge that there were instances where 
predictions were inaccurate, which highlight areas for potential improvement and underscore the 
task's complexity.  
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Table 4  
Confusion Matrix for Content + Grapho-based features with 10-fold cross validation 

N=80 Actual emotionally not stable Actual emotionally stable 
Predicted emotionally not stable 55 8 
Predicted emotionally stable 3 14 

 
Based on observations showing lower performance in the content-based model compared to the 

grapho-based model, we suggest that these mismatches may have occurred due to language barriers. 
The sentiment and depression-related keyword dictionary may not have comprehensively covered 
the Malay language, potentially leading to misclassifications in emotionally stable and unstable cases. 
This gap risk losing valuable insights, as the uncovered Malay words may carry significant meaning 
regarding the writer's emotional state. 

Thus, we propose further exploration of an improved Malay dictionary for sentiment, depression-
related keywords and absolute words to refine the dictionary and cater to the art of the Malay 
language. This exploration involves expanding the existing dictionary to include culturally relevant 
terms and expressions commonly used in Malay-speaking communities to describe emotions, mental 
health issues, and related concepts. By incorporating these insights and continuously refining the 
dictionary, we can enhance its accuracy and effectiveness in detecting and understanding 
depression-related language cues in Malay text. This effort not only contributes to improving the 
performance of natural language processing tools and models for mental health assessment but also 
promotes culturally sensitive and inclusive approaches to addressing mental health challenges in 
Malay-speaking populations. 

In summary, the results highlight that the integration of content-based and graphology-based 
features, coupled with the SVM-RBF classifier, contributes to a robust predictive performance. The 
model not only excels in accuracy but also demonstrates commendable precision and recall values, 
collectively signifying its competence in accurately identifying emotional states based on handwriting 
features.  

 
4. Conclusions 

 
This research represents a significant step in enhancing the objectivity and effectiveness of 

psychotherapy through the integration of machine learning and multi-modal handwriting analysis. 
The study successfully demonstrates that by extracting various features from participants' 
handwriting, it is possible to monitor the progress of psychotherapy sessions with a high degree of 
accuracy. This objective approach surpasses traditional subjective assessment methods, offering a 
promising tool for evaluating psychological well-being and therapeutic advancement. The 
implications of this research are far-reaching.  

Beyond monitoring therapy progress, this framework creates a bridge between psychological 
analysis and machine learning, opening the door to more precise mental health evaluation methods. 
The success of this approach highlights the untapped potential of seemingly simple handwriting 
features in uncovering complex cognitive and emotional transformations. However, there are 
limitations to consider. The sample size and diversity of participants may affect the generalizability 
of the findings. Additionally, ethical considerations, such as data privacy and informed consent, must 
be addressed for real-world applications. 

In conclusion, this research marks a significant advancement in objective progress monitoring in 
psychotherapy, with the potential to improve the practice of therapy and deepen our understanding 
of human cognition and emotions. It offers data-driven insights that can enhance decision-making 
and patient care while overcoming biases associated with manual monitoring. As the field evolves, 
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this study sets the stage for further exploration, refinement, and application of innovative 
methodologies at the intersection of mental health and technology. 
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