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 Traditional materials used in mechanical structures should be swapped out for less 
expensive alternatives that are both strong and simple to produce. ABS+, or poly 
(acrylonitrile-co-butadiene-co-styrene), is a substitute material used in 3D printing. The 
quick changes in model size and forms during the prototype stage and the comparably 
inexpensive cost of new parts are made possible by 3D printing technology. In the 
market for 3D printers, there are several suppliers of plastic materials. A combined 
MCDM technique and analysis of variance are used in the current work to assess the 
FDM process's parameters. During the experiment, three process factors—Layer 
height, extrusion temperature, and printing speed—are considered, and their 
associated response parameters, ultimate tensile strength, and surface roughness are 
established. The multiple-criteria decision-making strategy, which incorporates hybrid 
GRA-TOPSIS and ANOVA, is employed since there are two responses and two 
objectives. The ideal parameters determined by these statistical methods were an 
extrusion temperature of 2600c, layer height of 0.2 mm, and printing speed of 60 
mm/s. This study concludes that the optimal parameters for the investigated 
experimental data are convergent regardless of the two techniques used.  
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1. Introduction 
 

The additive manufacturing (AM) has emerged as one of the industry's top technologies, allowing 
products to be built Layer by Layer after being converted from digital format to standard triangle 
language (STL) [1,2]. The seven approaches include stereolithography, material jetting, material 
extrusion, binder jetting, powder bed fusion, sheet lamination, and direct energy deposition [3,4]. 
Many problems with additive manufacturing are related to product quality, mechanical properties, 
supply chain requirements, shrinkage, and underusing printing [5,6]. Using 3D printing technology, 
an object may be produced with minimal waste, reducing the raw materials needed. According to a 
research report [7], the application of 3D printing has increased in various fields in recent decades. 
Complex shapes and objects are formed easily in 3D, with possibilities for selecting modes of action 
in 3D printing, which is the fundamental reason [8,9]. In addition, 3D printing results in faster 
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prototype creation timelines and lower production costs than CM [10]. 3D printing technology has 
less design flow, dependency, and features than CM [11]. Ramola et al., [12] investigated 3D printing 
method selection in health care. It contains guidelines for using 3D printing to create personalized 
healthcare goods. As a result, Kokotsaki et al., [13] identified a new manufacturing sector and a 
technique for choosing AM methods in the spare parts business. Researchers use the Taguchi method 
to optimize systems in a variety of applications, such as FSW operations, UWFSW and the TIG process 
[14,15]. Sabry et al., [16,17] promoted the Taguchi process optimization methodology, a 
straightforward, efficient, and systematic method of enhancing procedures with favorable quality, 
performance, and cost [18]. In 1982, Deng suggested using the Grey-based Taguchi approach to 
handle multiple objective optimizations with imperfect, insufficient, and uncertain data. The welding 
process's error contributions in multi-objective optimization were 0.91 percent [15], 1.9 percent in 
the EDM process [19] and 2 % in the FDM process [20-23]. 

Xu and Wong investigated the Selection of a model 3D printing procedure. Process variables such 
as build time, build cost, surface roughness, and benchmark components were compared [24]. 
Masood and Soo solved 3D printing education process options using a rule-based expectation system 
[25]. Previous researchers have also employed the TOPSIS method to choose 3D printing techniques. 
The cost of the elongation prototype, the construction material, and the build time were all 
considered [26]. 

In the quantitative comparison approach, Kim and Oh [27] documented reduced material 
wastage in 3D printing compared to accuracy, material characteristics, speed, material cost, and 
roughness. Groth et al., and Ramalingam, well-known for their research into orthodontist 
applications, have issued a paper on the capacities of 3D printing to increase accuracy and reduce 
material waste [28-30]. 

The essential processes of MCDA involve choosing the optimal alternative based on the decision-
criteria maker and available options [31-35]. ABS may be used in additive printing to create a 
prosthetic foot prototype that is both inexpensive and pleasant. Therefore, more BKA patients will 
be able to gain from affordable prostheses, which will ultimately enable them to live better lives [36]. 
Studying the rheology of composite filament before printing or manufacturing processes is 
important. The proper extrusion temperature, viscosity, and shear rate for various fiber fractions may 
be determined through rheological study. Therefore, the latest research on the rheological 
characteristics of fiber reinforced thermoplastic composite for FDM has been reviewed [37]. 
 
2. Material   

 
The used 3D printer is a fused deposition modeling (FDM) printer, and printer specification is 

tabulated in Table 1. 
 

Table 1 
3D printer machine specification 
Specification Description 
Nozzle Temperature 220 - 270 0C 
Layer Resolution 20 – 180 Micron 
Build Volume 180 x 180 x 280 mm 
Print Speed 30 - 150 mm/s 
Nozzle diameter 0.4 mm 

 
In this investigation, the variable input factors were extrusion temperature, layer height, and 

printing speed. The three experimental input variables are shown in Table 2, together with their 
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current level values. The test specimens used in this experiment, as shown in Figure 1, were built 
using SOLIDWORKS CAD modeling software. To study the mechanical properties of FDM-3D printed 
specimens, each sample was tested at room temperature during a quasi-static tensile test with a 1 
mm/min loading rate. Three samples were printed for each experiment and examined. The test 
machine was STM-250 with a 500 kg load cell capacity. Elongation was also measured using an 
extensometer with a gauge length of 50 mm. Data on energy consumption and processing time are 
collected during the production process. The tensile strength test is performed after the product has 
been manufactured.  
 

 
Fig. 1. (a) The geometry of the SR test content (b) TS of specimen ASTM D638 

 
Figure 2 shows ASTM D638 specimens before and after the test.  

 

 
Fig. 2. Specimen ASTM D638 

 
Surface roughness was assessed with the Form Talysurf® i-Series device, as shown in Figure 3, 

with an 8 mm sampling length and a 0.75 mm/s measurement speed. This method was used to 
measure cylindrical samples like the ones. 
 

 
Fig. 3. Surface roughness measurement setup 
for printed samples 
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3. Research Methodology 
 
This study paper's goal was to use the multi-criteria decision-making (MCDM) technique to make 

it possible to choose a particular industry's best FDM process parameters. The TOPSIS-GRA-TOPSIS 
and GRA MCDA approaches are used to identify the best and most appropriate option utilizing the 
three criteria in this study and the two suggestions made by the professionals in the field. The primary 
goal is to choose an optimal and acceptable FDM. Furthermore, this study aimed to identify common 
and crucial standards from industry professionals who supported FDMs by examining the works of 
previous literary scholars. 

 
3.1 Design of Experiments 

 
Layer height (L), extrusion temperatures (T), and printing speed (N) were discovered to be 

independent process variables influencing ultimate tensile strength (UTS) and surface roughness (SR) 
based on preliminary testing and earlier investigations (S). Table 2 shows the parameters of the FDM 
process. Trial runs were undertaken by altering one parameter at a time to determine the maximum 
and lower limits of process parameters for FDM.  
 
𝑋! = 2𝑋 − "!"##"!$%

"!"#$"!$%
              (1) 

 
Where 𝑋!, 𝑋,	𝑋%&' and 𝑋%!( Are the necessary coded value, the variable value, the lower limit 

of the variable, and the higher limit accordingly DOE. Table 2 provides the process parameters' 
ranges, units, and notations. 
 

Table 2 
Levels of process parameters in FDM 

Process Parameters Unit Symbol                 Levels 
-1 0 1 

Printing speed mm/s N 40 60 80 
Temperature oC T 220 240 260 
Layer height mm L 0.1 0.15 0.2 

 
The layer height, printing speed, and Temperature affect the FDM's ultimate tensile strength and 

Surface roughness. As a result, it may be written as Eq. (2). 
 
𝑌 = 𝑓(𝑁, 𝐿, 𝑇)              (2) 

 
Where Y is the response; N is the Printing speed ; L is the Layer height, and T is the Temperature. 

The chosen polynomial might be represented as Eq. (3) for the three factors. 
 
𝛽) + 𝛽*𝑁 + 𝛽+𝑇 + 𝛽,𝐿 + 𝛽**𝑁+ + 𝛽++𝑇+ + 𝛽,,𝐿+ + 𝛽*+𝑁𝐿 + 𝛽*,𝑁𝑇 + 𝛽+,𝑇𝐿      (3) 

 
Where 𝛽) is the free term of the regression equation; the coefficients 𝛽*, 𝛽+ and 𝛽, are linear 

terms; the coefficients 𝛽**, 𝛽++ and 𝛽,, are quadratic terms;, the coefficients, 𝛽*+, 𝛽*, and 𝛽+, are 
interaction terms. The following equations are used in regression analysis to determine the 
polynomial coefficient values: 
 
𝛽) 	= 	0.1663	∑(𝑌) − 	0.0568	∑∑(𝑋!!𝑌)           (4) 
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𝛽- 	= 	0.0732	(𝑋!𝑌)              (5) 
 
𝛽- = 0.0625	∑(𝑋!!𝑌) + 0.00689	∑∑(𝑋!!𝑌) − 0.0568	∑(𝑌)        (6) 
 
𝛽!- = 0.1250	∑(𝑋!-𝑌)             (7) 
 

Where i; j = 1, 2, 3 and i < j 
 

3.2 MCDM Approach: Grey–TOPSIS Study 
 
Combining different multi-criteria optimization approaches simplifies data processing and saves 

time, allowing decision-makers to choose the proper criteria more quickly. 
The TOPSIS is examined for optimal parametric combinations, and the decision-making model is 

built to identify the FDM process parameter and the performance criterion. The TOPSIS and Analytic 
Hierarchy Process (TOPSIS–GRA) hybrid MCDM technique simplifies calculations and reduces 
processing effort compared to other standard optimization approaches. As a result, this optimization 
method can be used to resolve conflicts in machining settings. This study utilized the hybrid technique 
(Entropy-TOPSIS-GRA) to calculate FDM process parameters. Figure 4 depicts the computational 
procedure. The TOPSIS approach is designed to handle problems requiring simultaneous optimization 
of a single portion or feature. It divides the output reactions into two categories: benefit and cost. 
 

 
Fig. 4. Flowchart of the optimization and evaluation process 

 
Consequently, the optimal solution is achieved by maximizing the beneficial feature and 

minimizing the cost attribute. TOPSIS calculates the positive and negative best alternatives, and 
benchmarks for determining the optimum solution. The surface roughness and UTS were regarded 
as positive features in this circumstance, with the highest values preferred. 

 
 
 
 

Performance Characteristic   
§ Ultimate tensile strength (UTS) 
§ Surfaces roughness (SR) 
 

Grey -Taguchi Method  
§ Grey relation coefficient 
§ Grey relation grade 

Grey -TOPSIS Method 
§ MCDM Matrix 
§ Weight normalized matrix with Entropy method 
§ Performance of the criteria (SR, UTS) 
§ Determine the best alternative 

ANOVA 

Entropy Weight  

Optimal Parameter  
• Printing Speed  
• Layer Height 
• Extrusion Temperature 

Confirmation Test 
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4. Results and Discussions 
4.1 Analysis of Variance (ANOVA) 

 
The Design of experiments was used to carry out the entire factorial analysis. Figure 5 

demonstrates the main effect graphs and interaction graphs of parameters to the tensile strength 
test. The magnitude of tensile strength changed significantly from one level to the next for each 
parameter. Based on the probability value (p-value) for the response-tensile strength-Table 
3illustrates the importance of the main effects and interactions 
 

 
Fig. 5. For Tensile strength (a) Main effect graphs (b) Interaction effect plots 

 
. The findings demonstrate that each of the three parameters is significant, with p-values with a 

95% confidence interval less than 0.05. 
 

Table 3 
Tensile strength main effect and interaction effect statistics 

Source Sum of Squares df Mean Square F-value p-value 
 

Model 736.42 9 81.82 3.14 0.0202 Significant 
 
Statistical examination of three parameters and three levels revealed that, since all primary 

parameter influences and their interactions have p-values more than 0.05 in the 95% confidence 
interval, they are not all statistically significant for surface roughness. The small variation in surface 
roughness for each characteristic from one level to the next is what causes the insignificance. Similar 
results were obtained from the interaction plots (Figures 6, 7 and 8), (Table 4), where the interactions 
were shown to be minimal due to a minor change in the roughness of the surface. In a 95% confidence 
interval, the p-values for all interactions, such as layer height-extrusion temperature, Layer height-
printing speed, and extrusion temperature-printing speed, were greater than 0.05. 
 

 
Fig. 6. For X.axis surfaces roughness (a) Main effect plots  (b) 
Interaction effect plots 
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Fig. 7. For Y.axis surfaces roughness (a) Main effect plots  (b) Interaction effect plots 

 

 
Fig. 8. For Z.axis surfaces roughness (a) Main effect plots  (b) Interaction effect plots 

 
Additionally, F-values were small, illustrating the negligibility of the interaction effect of variables 

on SR. This demonstrated that the FDM process parameters do not affect the surface roughness. 
However, to improve the parameters, tensile strength, and surface roughness are explored in this 
study.  
 

Table 4 
Statistics of the main effect and interaction effect on surfaces roughness 

Response a: SR X-axis 
Source Sum of Squares df Mean Square F-value p-value  
Model 834.59 9 92.73 2.78 0.0331 significant 
Response b: SR Y-axis 
Source Sum of Squares df Mean Square F-value p-value 

 

Model 842.30 9 93.59 2.57 0.0447 significant 
Response c: SR Z-axis 
Source Sum of Squares df Mean Square F-value p-value 

 

Model 149.05 9 16.56 2.62 0.0415 significant 
 
Figure 9 depicts the response optimizer's optimal parameters (layer height, extrusion 

temperature, and printing speed) and the related response values (tensile strength and surface 
roughness). The response optimizer can decide which parameter combination is ideal for a particular 
answer or a collection of responses. In this case, an optimization plot was produced after optimizing 
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a number of responses for the model input variables. Extrusion temperature, Layer height, and 
printing speed were optimized to 260 0C, 0.2 mm, and 60 mm/s. 

 

 
Fig. 9. Utilizing the response 
optimizer in ANOVA, optimize the 
variables and responses 

 
4.2 Hybrid GRA- TOPSIS 

 
One of the statistical techniques used in this study to optimize the process parameters is hybrid 

Grey-TOPSIS. The grey relational analysis follows the same procedure as ANOVA: layer height, 
extrusion temperature, and printing speed as parameters, and tensile strength and surface 
roughness as responses. Because tensile strength must be increased and surface roughness must be 
minimized, the hybrid Grey-TOPSIS is appropriate for multi-objective criterion analysis. The output 
responses were normalized using an equation, with higher values indicating stronger tensile strength 
and lower values indicating better surface roughness. Tables 4 show the normalized value of the 
experimental result, the GRA-TOPSIS coefficient, and the grey relational grade calculated using 
references. The distinguishing coefficient was set at 0.5. For each parameter, tensile strength, surface 
roughness, normalization, division square, and grey coefficient were determined. 

The GRA-TOPSIS grade was determined by averaging the coefficients obtained for tensile strength 
and surface roughness. The RI was used to determine the ranking. In this situation, the greatest RI 
was discovered to be 0.812243, so rank one was assigned. The optimal parameters, according to 
GRA-TOPSIS, correspond to rank 1. In this scenario, the best parameters are an extrusion 
temperature of 240 0C, layer height of 0.2 mm, and printing speed of 60 mm/s. Tensile strength was 
45 MPa for these values, and surface roughness was (Z-axis 8.597, Y-axis 20.562, X-axis 16.8). 

42 MPa came close to the greatest tensile strength (45 MPa) and surface roughness among the 
experimental experiments (Z-axis 8.76, Y-axis 19.97, X-axis 18.003). MPY had the smoothest surfaces. 
The least RI received a ranking of 27. (0.390044). The parameters were 2200C, 0.1 mm, and 60 mm/s, 
and the tensile strength and surface roughness were 19 MPa and surface roughness, respectively (Z-
axis 16.007, Y-axis 36.918, X-axis135.264). The ideal parameters reported by ANOVA and GRA-TOPSIS 
are the same (260 0C, 0.2 mm, and 60 mm/s). Figure 10 show the mean coefficient of RI at each level 
of the single parameter with a combination of the remaining two parameters. For each parameter—
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extrusion temperature, layer height, and printing speed—the maximum RI was found for the relevant 
values (260 0C, 0.2 mm, and 60 mm/s)—the printing speed changes just slightly when the ideal 
parameters are used. As a result, it is determined that parameter interaction has an effect on RI 
rather than the main effect of each parameter. 
 

 
Fig. 10. The influence of process parameters on the RI coefficient 

 
5. Conclusion 

 
ABS was successfully manufactured using the FDM process. The process parameters were 

discovered to be important elements influencing tensile strength. As a result, parameter optimization 
is critical for achieving a stronger joint. The results of the ANOVA and hybrid GRA-TOPSIS analyses 
are shown below: 

 
i. The p-values for extrusion temperature-layer height interaction, extrusion temperature-

printing speed interaction, and layer height-printing speed interaction are 0.3782, 0.4081, 
0.3230, 0.0030, 0.6580, 0.0050, 0.0065, 0.8014, 0.0049, 0.0041, 0.7239, and 0.0047, 
respectively. In a 95% confidence interval, all p values are greater than 0.05. As a result, 
the factors' primary effects and interactions do not affect the surface roughness (x-axis, 
y-axis, z-axis). 

ii. A systematic to perform a hybrid GRA-TOPSIS, a systematic technique was used. The 
experimental runs were ranked using hybrid GRA-TOPSIS. Rank 1 was assigned to the 
highest RI, with 260 0C, 0.2 mm, and 60 mm/s parameters. Collecting characteristics 
corresponding to rank one is ideal since higher tensile strength and reduced surface 
roughness are crucial objective attributes. 

iii. The hybrid GRA-TOPSIS and ANOVA optimum parameters are 260 0C, 0.2 mm, and 60 
mm/s. No matter whether the statistical technique was performed, the outcomes of both 
of these studies agreed on a single set of ideal parameters. 

iv. A multi-criteria decision-making approach based on hybrid GRA-TOPSIS and ANOVA is 
helpful for parameter optimization. To choose the appropriate parameters, both 
statistical techniques may be easily controlled by 3D printing from the first FDM 
experiments. 
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