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Legendre collocation approach is implemented employing the operative-differential 
array escorted by the shifted Legendre polynomials. The significance of the proposed 
approach is reducing the intended partial differential equation problem into an 
algebraic system of equations by the aid of Legendre polynomials as orthogonal basis. 
Using mesh collocation points, the domain of the resulting algebraic system solution 
domain is discretized, and it is then solved to obtain an approximation solution. To 
demonstrate the accuracy of the procedure, the maximum absolute error and the 
estimate error are calculated. Also, Illustrative numerical examples are demonstrated 
to display the veracity of the potential approach in particular pseudo-parabolic viscous 
diffusion, telegraph, Poisson and Helmholtz partial differential equations. The 
generated results are contrasted with the exact solutions/other methods to highlight 
the efficiency of the proposed approach. 
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1. Introduction 
 

There are enormous physical phenomena, engineering and applied science applications modelled 
mathematically as systems of higher-order linear/nonlinear partial differential equations [1]. Solving 
these systems analytically isn’t always promising so the numerical techniques are useful in this case. 
Recent research used computational techniques like collocation and spectral approaches. Spectral 
approaches introduced solutions as an infinite series of polynomials that have orthogonality 
properties. Contrarily, collocation technique  is a strategy for finding the coefficients of a basis 
functions expansion to nullify the values of a problem equation at certain points. Both methods have 
been utilized extensively in computer systems research with many applications. When solving 
differential/integral equations using a spectral approach, the proposed solution is often represented 
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as a truncated series of smooth orthogonal polynomials. The expansion has unknown coefficients in 
such a form where the variables need to be determined. The orthogonal polynomials such as 
Chebyshev, Sinc, wavelet, Laguerre, Legendre, or Jacobi functions used for solving numerous 
engineering and science problems discussed in [2-15]. 

Collocation method has been very helpful in obtaining an accurate solution for 
differential/integral equations utilizing various kinds of bases. The essential principle behind this 
method is that a differential equation's solution may be assumed by a linear compound of basis 
customized to fit the specific problem [16-29]. 

The Legendre polynomials are an essential family of orthogonal polynomials with applications 
throughout the mathematical and physical sciences [30]. Among their many useful qualities, the 
polynomials possess their orthogonality regarding the usual inner product on the interval [-1, 1]. 
These intervals are commonly employed in numerical techniques for solving differential equations 
and in signal processing, as they are convenient for estimating functions on that interval. It turns out 
that the wave functions of particles in a spherically symmetric potential may be described with the 
help of Legendre polynomials, which are not only useful in classical mechanics but also in quantum 
mechanics. When taken as a whole, Legendre polynomials are a powerful tool in a variety of 
mathematical and physical contexts [8-13,31-35]. 

The main purpose of the study is proposing the Legendre collocation approach for solving linear 
partial differential equations using shifted Legendre polynomials as basis. The problem is modelled 
as a linear partial differential equation and diminished to a group of linear equations. Operative-
differential array of Legendre polynomials is obtained according to the problem modelling as 
highlighted in section 2. The solution is approximated using the collocation method as illustrated in 
part 3. An analysis of the estimated error is displayed in section 4. In part 5, the pseudo-parabolic 
viscous diffusion, telegraph equations, Poisson equation and Helmholtz equation are solved 
numerically by the proposed approach to exhibit the efficiency and certainty of solution. Section 6 
presents the conclusion. 

The study problem is modelled as linear partial differential equation 
 

𝜌
𝜕!𝑢
𝜕𝑡! + 𝜐

𝜕𝑢
𝜕𝑡 + 𝜇

𝜕"𝑢
𝜕𝑥!𝜕𝑡 + 𝛼

𝜕!𝑢
𝜕𝑥! + 𝛽𝑢 = 𝑓(𝑥,  𝑡),   in	𝑄 ≡ Ω × 𝐼,	  (1) 

 
susceptible to 
 
𝑢(0,  𝑡) = 𝑢#(𝑡),				𝑢(1,  𝑡) = 𝑢$(𝑡),				𝑢(𝑥,  0) = 𝑢!(𝑥),				𝑢%(𝑥, 0) = 𝑢"(𝑥),   (2) 

 
where 𝑢(𝑥, 𝑡) is an unknown function (required solution), 𝑓(𝑥, 𝑡), 𝑢#(𝑡),  𝑢$(𝑡), 𝑢!(𝑥) and 𝑢"(𝑥)	are 
known functions, 𝐼 is 𝑡 ∈ (0,  𝑇),  𝑇 < ∞, and Ω is 𝑥 ∈ [0, 1]. 
 
2. Mathematical Background 
 

The first kind Legendre polynomial of order 𝑛, 𝑃&(𝑥), is  
 

𝑃!(𝑥) = 2!'(𝑛𝑘+,
𝑛 + 𝑘 − 1

2
𝑛

0𝑥"
!

"#$

,  (3) 

 
where 𝑥 ∈ [−1, 1]. The shifted version is denoted by 𝑃A&(𝑥) = 𝑃&(2𝑥 − 1) such that 
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(𝑛 + 1)𝑃A&'$(𝑥) = (2𝑛 + 1)(2𝑥 − 1)𝑃A&(𝑥) − 𝑛𝑃A&($, 𝑛 = 1, 2, …,    (4) 
 
where 𝑃A#(𝑥) = 1 and 𝑃A$(𝑥) = 2𝑥 − 1. Consequently, any role 𝑦(𝑥) ∈ 𝐿![0,1] can be approximated 
as sum of 𝑃A&(𝑥), i.e., 
 

𝑦(𝑥) ≅ 𝑦)(𝑥) =H𝑐*𝑃A*(𝑥)
)

*+#

= 	𝐏(𝑥)	𝐂,			𝑦,(𝑥) ≅ 𝐏(𝑥)	𝐃-𝐂,			𝑦′′(𝑥) ≅ 𝐏(𝑥)	(𝐃-)!	𝐂    (5) 

 
where  𝑐* = (2𝑖 + 1) ∫ 𝑦(𝑥)𝑃A*(𝑥)	𝑑𝑥

$
# , 𝐏(𝑥) = [𝑃A#(𝑥)		𝑃A$(𝑥)⋯𝑃A)(𝑥)], 𝐂 = 	 [𝑐#	𝑐$⋯𝑐)]%	, 𝐃 is 

(𝑁 + 1) × (𝑁 + 1) operative array of derivative whose elements are [32] 
 

𝑑*. = S2(2𝑗 − 1),									for	𝑗 = 𝑖 − 𝑘,
0,																									otherwise  and 𝑘 = S 1,3,5, … , 𝑁,									if	𝑁	is	odd1,3,5, … , 𝑁 − 1, if	𝑁	is	even  

 
3. Legendre Collocation Method 
 

To solve Eq. (1) subject to Eq. (2), it is converted into the system 
 

𝑢% = 𝜈			and				𝜌	𝜈% + 𝜐	𝜈 + 𝜇	𝜈// + 𝛼	𝑢// + 𝛽𝑢 = 𝑓(𝑥,  𝑡)     (6) 
 
susceptible to 
 
𝑢(0,  𝑡) = 𝑢#(𝑡),			𝑢(1,  𝑡) = 𝑢$(𝑡)	on		𝜕Ω, 𝑢(𝑥,  0) = 𝑢!(𝑥),				𝜈(𝑥,  0) = 𝑢"(𝑥)on		Ω.     (7) 

 
The approximate solutions 
 

𝑢%(𝑥, 𝑡) =''𝑐&' 	𝑃6&(𝑥)𝑃6'(𝑡)
%

'#$

%

&#$

= 𝐏(𝑥, 𝑡)	𝐂				and				𝜈%(𝑥, 𝑡) =''�̂�&' 	𝑃6&(𝑥)𝑃6'(𝑡)
%

'#$

%

&#$

= 𝐏(𝑥, 𝑡)	𝐂;     (8) 

 
are invoked into the system of Eq. (6) where 𝐏(𝑥, 𝑡) = 𝐏(𝑥)⊗ 𝐏(𝑡) =
[𝑷#(𝑥)𝑷#(𝑡)…	𝑷#(𝑥)𝑷)(𝑡)…	𝑷)(𝑥)𝑷#(𝑡)…	𝑷)(𝑥)𝑷)(𝑡)], ⊗	is the Kronecker product,  𝐂 =
[𝑐##…	𝑐#) …	𝑐)#…	𝑐))]% and 𝐂h = [�̂�##…	�̂�#) …	�̂�)#…	�̂�))]% . Clearly, it can be said that 
 
𝜕𝑢)(𝑥,  𝑡)

𝜕𝑥 		= (𝐏(𝑥)𝐃- ⊗𝐏(𝑡)𝐈)'$)	𝐂 = k𝐏(𝑥) ⊗ 𝐏(𝑡)l𝐃$𝐂,     (9) 

  
𝜕(𝑢%(𝑥,  𝑡)

𝜕𝑥(
= (𝐏(𝑥)(𝐃))(⊗𝐏(𝑡)𝐈%*+)	𝐂 = @𝐏(𝑥)⊗ 𝐏(𝑡)A(𝐃1)(𝐂,   (10) 

  
𝜕𝑢)(𝑥,  𝑡)

𝜕𝑡 = (𝐏(𝑥)𝐈)'$⊗𝐏(𝑡)𝐃-)	𝐂 = k𝐏(𝑥) ⊗ 𝐏(𝑡)l𝐃!𝐂.   (11) 

 
Also, in the same manner, it can be said that 
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𝜕𝜈)(𝑥,  𝑡)
𝜕𝑡 = k𝐏(𝑥)⊗𝐏(𝑡)l𝐃2	𝐂h 			and			

𝜕2𝜈𝑁(𝑥,  𝑡)
𝜕𝑥2

= k𝐏(𝑥)⊗𝐏(𝑡)l(𝐃1)2	𝐂h ,   (12) 

 
where 𝐃$ = 𝐃- ⊗ 𝐈)'$, 𝐃! = 𝐈)'$⊗𝐃-  and 𝐈)'$ is the identity array of size 𝑁 + 1. 
The system Eq. (6) is discretized into the form 
 
𝜕𝑢)k𝑥* , 𝑡.l

𝜕𝑡 = 𝜈)k𝑥* , 𝑡.l,   (13) 

  

𝜌	
𝜕𝜈)k𝑥* , 𝑡.l

𝜕𝑡 + 𝜐	𝜈)k𝑥* , 𝑡.l + 𝜇	
𝜕!𝜈)k𝑥* , 𝑡.l

𝜕𝑥! + 𝛼
𝜕!𝑢)k𝑥* , 𝑡.l

𝜕𝑥! + 𝛽	𝑢)k𝑥* , 𝑡.l = 𝑓k𝑥* , 𝑡.l,   (14) 

 
where 𝑖 = 0, 1, 2, … . , 𝑁, 𝑗 = 1, 2, … . , 𝑁 and the collocation nodes are defined as follows 
 

𝑥* =
1
2 mcos m

𝑖𝜋
𝑁p + 1p 			and			𝑡. =

𝑇
2 mcos m

𝑗𝜋
𝑁p + 1p   (15) 

 
Substituting Eq. (8)-(12) into the system Eq. (13)-(14) obtains 
 
𝐏k𝑥* , 𝑡.lk𝐃!	𝐂 − 𝐂hl = 𝐎)!') ,   (16) 

  
𝐏k𝑥* , 𝑡.lr(𝛼	(𝐃$)! + 𝛽	𝐈)'$)𝐂 + (𝜌𝐃! 	+ 𝜐		𝐈)'$ 	+ 𝜇	(𝐃$)!)𝐂h	s = 𝐟k𝑥* , 𝑡.l,			   (17) 

 
with conditions 
 
𝐏k0, 𝑡.l𝐂 = 𝑢#k𝑡.l,				𝐏k1, 𝑡.l𝐂 = 𝑢$k𝑡.l,				𝐏(𝑥* , 0)𝐂 = 𝑢!(𝑥*),					𝐏(𝑥* , 0)𝐂h = 𝑢"(𝑥*),   (18) 

 
where 𝐎)!')	is zero vector of size 𝑁! + 𝑁. Eq. (16)-(17) is reduced to the matrix form 
 
𝚲	𝚷 = 𝚽 

where 𝚲 = x𝚲𝟏𝟏 𝚲𝟏𝟐
𝚲𝟐𝟏 𝚲𝟐𝟐

y ,			𝚷 = z	𝐂𝐂h	{ ,			𝚽 = x	𝐟𝟏𝐟𝟐
	y ,				𝐟𝟏 = [𝐎)!')		𝑢"(𝑥#)		𝑢"(𝑥$)	⋯		𝑢"(𝑥))]-, 

𝐟𝟐 = [𝑓(𝑥$, 𝑡$)		⋯ 	𝑓(𝑥) , 𝑡)($)		𝑢#(𝑡$)		⋯	𝑢#(𝑡))		𝑢$(𝑡$)	⋯ 	𝑢$(𝑡))		𝑢!(𝑥#)		⋯		𝑢!(𝑥))]-, 
 
𝚲𝟏𝟏 = r𝐏(𝑥#, 𝑡$)𝐃! 			⋯ 		𝐏(𝑥) , 𝑡))𝐃!			𝐎|()'$)×()'$)	s()'$)!

-
,  

 
𝚲𝟏𝟐 = [−𝐏(𝑥#, 𝑡$)𝐈			 ⋯		− 𝐏(𝑥) , 𝑡))𝐈		𝐏(𝑥#, 0)		⋯ 			𝐏(𝑥) , 0)]-, 
 
𝚲𝟐𝟏 = [𝐏(𝑥$, 𝑡$)(𝛼	(𝐃$)! + 𝛽	𝐈)	⋯ 	𝐏(𝑥) , 𝑡)($)(𝛼	(𝐃$)!

+ 𝛽	𝐈)				𝐏(0, 𝑡$)	⋯ 	𝐏(0, 𝑡))			𝐏(1, 𝑡$)		⋯ 	𝐏(1, 𝑡))				𝐏(𝑥#, 0)		⋯ 		𝐏(𝑥) , 0)]()'$)!
- , 

 
𝚲𝟐𝟐 = [𝐏(𝑥$, 𝑡$)(𝜌	𝐃! 	+ 𝜐	𝐈	 + 𝜇	(𝐃$)!)	⋯ 	𝐏(𝑥) , 𝑡)($)(𝜌	𝐃! 	+ 𝜐	𝐈	 + 𝜇	(𝐃$)!)		𝐎	]()'$)!

- . 
 
where 𝐎 = r𝐎|, 𝐎}	, 𝐎}s, 𝐎|()'$)×()'$)is zero array of size (𝑁 + 1) × (𝑁 + 1)	and 𝐎})×()'$)is zero array 
of size 𝑁 × (𝑁 + 1). The resultant linear system of 2(𝑁 + 1)! linear equations is then solved to 
determine the unknown coefficients 𝐂 and 𝐂h. Consequently, the solution of Eq. (1) is determined. 
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4. Estimation of The Error 
 

Suppose that 𝑢(𝑥, 𝑦) is a suitably smooth on Ω and its closest approximation is 𝑢)(𝑥, 𝑦). It is 
enquired to get a bound for ‖𝑢(𝑥, 𝑦) − 𝑢)(𝑥, 𝑦)‖!. An 𝑁67 degree polynomial of variables 𝑥 and 𝑦 
is 𝑃)(𝑥, 𝑦) for this purpose as shown in the following theorem. 
 
Theorem 1: If the mixed third partial derivative 𝜕"𝑢/𝜕𝑥!𝜕𝑡 is limited for a continuous function 
𝑢(𝑥, 𝑡) given on [0, 1] × [0, 𝑇], then the Legendre series of 𝑢(𝑥, 𝑡) converges uniformly to 𝑢(𝑥, 𝑡). 
The approximate error for a sufficiently smooth role 𝑢(𝑥, 𝑡) on [0, 1] × [0, 𝑇], is 
 

‖𝑢(𝑥, 𝑦) − 𝑢)(𝑥, 𝑦)‖! ≤ �𝑢(𝑥, 𝑦) − 𝑃A)(𝑥, 𝑦)�! ≤ �𝐶$ + 𝐶! + 𝐶" m
1
𝑁p

)'$

� m
1
𝑁p

)'$

, 

 
where 
 

𝐶$ =
1
4 max
(/,%)	∈	;

�
𝜕)'$	𝑢(𝑥, 𝑡)
𝜕𝑥)'$ � , 𝐶! =

1
4 max
(/,%)	∈	;

�
𝜕)'$	𝑢(𝑥, 𝑡)
𝜕𝑡)'$ � , 𝐶" =

1
4 max
(/,%)	∈	;

�
𝜕!)'!	𝑢(𝑥, 𝑡)
𝜕𝑥)'$	𝜕𝑡)'$�. 

 
The Legendre-collocation method's error function, 𝑒), is evaluated by 
 

𝑒)(𝑥, 𝑡) = 	𝑢<=>?6(𝑥, 𝑡) −	𝑢)(𝑥, 𝑡), 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 ≤ 𝑇,    (19) 
 
Consequently, 𝑢& should satisfy 
 

𝜌
𝜕!𝑢)
𝜕𝑡! + 𝜐

𝜕𝑢)
𝜕𝑡 + 𝜇

𝜕"𝑢)
𝜕𝑥!𝜕𝑡 + 𝛼

𝜕!𝑢)
𝜕𝑥! + 𝛽𝑢) = 𝑓(𝑥, 𝑡) + ℵ)(𝑥, 𝑡),   in 𝑄 ≡ 𝛺 × 𝐼,      (20) 

 
subject to the boundary/initial conditions 
 

𝑢)(0,  𝑡) = 𝑢#(𝑡),				𝑢)(1,  𝑡) = 𝑢$(𝑡),				𝑢)(𝑥,  0) = 𝑢!(𝑥),				
𝜕𝑢)
𝜕𝑡 (𝑥, 0) = 𝑢"(𝑥),      (21) 

 
where ℵ&(𝑥) is a perturbation term associated with 𝑢&. Subtracting Eq. (20) and Eq. (21) from Eq. (1) 
and Eq. (2), respectively, yields 
 

𝜌
𝜕!𝑒)
𝜕𝑡! + 𝜐

𝜕𝑒)
𝜕𝑡 + 𝜇

𝜕"𝑒)
𝜕𝑥!𝜕𝑡 + 𝛼

𝜕!𝑒)
𝜕𝑥! + 𝛽𝑒) = ℵ)(𝑥, 𝑡),   in 𝑄 ≡ 𝛺 × 𝐼,      (22) 

 
subject to the boundary/initial conditions 
 

𝑒)(0,  𝑡) = 0,				𝑒)(1,  𝑡) = 0,					𝑒)(𝑥,  0) = 0,					
𝜕𝑒)
𝜕𝑡 (𝑥, 0) = 0,      (23) 

 
The resultant partial differential Eq. (22) represents the error 𝑒)(𝑥). Consider error �̂�)(𝑥) to be 

estimated one for 𝑒)(𝑥) which is defined in Eq. (19). The estimate error �̂�)(𝑥) is computed by 
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�̂�)(𝑥, 𝑡) =HH𝑎*. 	𝑃A*(𝑥)𝑃A.(𝑡)
)

.+#

)

*+#

. 

 
After applying collocation method, it can be computed as in the previous section. 

 
5. Numerical Examples 
 

This portion focuses on proving the validity, efficiency, and precision of the suggested technique 
of the Legendre collocation technique. Our primary objective is to compare different approaches to 
the same problems as pseudo-parabolic viscous diffusion, Poisson, Helmholtz, and telegraph 
equation. The Intel Core I7, 16GB RAM personal computer running Mathematica 12 did all of the 
calculations. 

 
Example 1: Consider the following pseudo-parabolic viscous diffusion equation 
 
𝜕𝑢
𝜕𝑡 +

𝜕"𝑢
𝜕𝑥!𝜕𝑡 −

𝜕!𝑢
𝜕𝑥! − 𝑢 = 𝑓(𝑥,  𝑡), 

 
susceptible to 
 
𝑢(0,  𝑡) = 	𝑢(1,  𝑡) = 0, 𝑢(𝑥,  0) = 0, 

 
where 𝑓(𝑥, 𝑡) = (−4𝜋! + 1) cos 𝑡 	sin(2𝜋𝑥)+(4𝜋! − 1) sin 𝑡 sin(2𝜋𝑥). This equation is generated 
from Eq. (1) by putting 𝜌 = 0	and	𝜐 = 𝜇 = −𝛼 = −𝛽 = 1 and is satisfied by 𝑢(𝑥, 𝑡) =
sin 𝑡 sin(2𝜋𝑥). Figure 1(a) and Figure 1(b) presents the accurate and approximate solution, 
respectively. The error and the estimate error for the proposed method introduced in Figure 1(c) and 
Figure 1(d), respectively. Table 1 reveals the highest absolute exact/estimate error for various values 
of 𝑁. 
 

Table 1 
Highest absolute error/estimate error of Example 1 
𝑁 ‖𝑒"(𝑥, 𝑡)‖ ‖�̂�"(𝑥, 𝑡)‖ 
7 3.44085 × 10#$ 3.42827 × 10#$ 
9 1.25294 × 10#% 3.14315 × 10#&' 
12 1.66636 × 10#( 2.57393 × 10#&' 
15 1.86581 × 10#&& 1.92238 × 10#&' 
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Fig. 1. The exact/approximate functions (a) the 𝑢(𝑥, 𝑡) and (b) 𝑢+/(𝑥, 𝑡) and the errors (c) 𝑒+/(𝑥, 𝑡) and (d) 
�̂�+/(𝑥, 𝑡) of Example 1 
 
Example 2: Let the telegraph equation be 
 
𝜕!𝑢
𝜕𝑡! +

𝜕𝑢
𝜕𝑡 −

𝜕!𝑢
𝜕𝑥! + 𝑢 =

(0.91 + 4𝜋!)e(#.$% sin(2𝜋𝑥) ,    
 
susceptible to 
 
𝑢(0,  𝑡) = 	𝑢(1,  𝑡) = 0, 𝑢(𝑥,  0) = sin(2𝜋𝑥) , 𝑢%(𝑥,   0) = −0.1 sin(2𝜋𝑥). 

 
This equation is generated from Eq. (1) by putting 𝜇 = 0	and 	𝜌 = 𝜐 = −𝛼 = 𝛽 = 1 and is satisfied 
by 𝑢(𝑥, 𝑡) = e(#.$% sin(2𝜋𝑥). The precise and approximate solution, as well as the error and estimate 
error, for the suggested technique are shown in Figure 2. Table 2 displays the highest absolute 
exact/estimate error for a range of 𝑁 values. 
 

Table 2 
Highest absolute error/absolute estimate error of Example 2 
𝑁 ‖𝑒"(𝑥, 𝑡)‖ ‖�̂�"(𝑥, 𝑡)‖ 
3 2.83393 × 10#& 5.23667 × 10#' 
5 3.77052 × 10#$ 5.79841 × 10#' 
7 9.71648 × 10#' 1.02844 × 10#% 
9 1.55989 × 10#% 6.28411 × 10#( 
11 2.61997 × 10#( 1.57665 × 10#) 
13 9.92631 × 10#* 2.26356 × 10#&+ 

  
(a) (b) 

  
(c) (d) 
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Fig. 2. The exact/approximate functions (a) the 𝑢(𝑥, 𝑡) and (b) 𝑢+0(𝑥, 𝑡) and the errors (c) 𝑒+0(𝑥, 𝑡) and (d) 
�̂�+0(𝑥, 𝑡) of Example 2 
 
Example 3: Consider the following Poisson equation 
 
𝜕!𝑢
𝜕𝑡! +

𝜕!𝑢
𝜕𝑥! = (−18𝑥𝑡 + 6𝑥!𝑡 + 6𝑥𝑡! + 6𝑥!𝑡!)𝑒/'% ,    

 
susceptible to 
 
𝑢(0,  𝑡) = 	𝑢(1,  𝑡) = 𝑢(𝑥, 0) = 𝑢(𝑥, 1) = 0. 

 
This equation is generated from Eq. (1) by putting 𝜇 = 𝜐 = 𝛽 = 0	and	𝜌 = 𝛼 = 1	 and is satisfied by 
𝑢(𝑥, 𝑡) = 3𝑥𝑡e/'%(1 − 𝑥)(1 − 𝑡). Figure 3 depicts the closed form and approximate solution, as well 
as the error, for the proposed method for 𝑁 = 12. Table 3 displays the maximum absolute error and 
CPU time taken to generate the approximate solution for a range of 𝑁 values and compares it by two 
other methods used in [34, 35]. It is observed that the proposed method attains less CPU processing 
time than existing approaches for solving this problem. As a result, the suggested approach is more 
useful than other methods. 

  
(a) (b) 

  
(c) (d) 
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(a) (b) 

  
(c) (d) 

Fig. 3. The exact/approximate functions (a) the 𝑢(𝑥, 𝑡) and (b) 𝑢+((𝑥, 𝑡) and the errors (c) 𝑒+((𝑥, 𝑡) and (d) 
�̂�+((𝑥, 𝑡) of Example 3 
 

Table 3 
Highest absolute errors of Example 3 

𝑁 
Presented Method Ali Davari Method [34] Liu-Lin Method [35] 
‖𝑒"(𝑥, 𝑡)‖ CPU time(s) ‖𝑒"(𝑥, 𝑡)‖ CPU time(s) ‖𝑒"(𝑥, 𝑡)‖ CPU time(s) 

3 4.80 × 10#$ 0.9164 4.02 × 10#$ 2.2544 4.02 × 10#$ 12.5089 
4 3.76 × 10#, 0.4297 7.10 × 10#, 3.2077 7.10 × 10#, 24.9837 
5 1.85 × 10#' 0.4797 2.00 × 10#' 10.9164 2.00 × 10#' 97.7510 
6 9.55 × 10#% 0.5369 9.49 × 10#% 16.7807 9.49 × 10#% 244.1086 
7 4.27 × 10#- 0.7471 5.50 × 10#- 54.9082 5.50 × 10#- 410.3025 

 
Example 4: Let Helmholtz equation be in the form 
𝜕!𝑢
𝜕𝑡! +

𝜕!𝑢
𝜕𝑥! + 900	𝑢 = e/%!(900 + 𝑡A + 2𝑥 + 4𝑥!𝑡!), 0 ≤ 𝑥, 𝑡 ≤ 1    

 
susceptible to 
 
𝑢(0,  𝑡) = 	𝑢(𝑥,  0) = 1, 𝑢(1,  𝑡) = e%! , 𝑢(𝑥,   1) = e/. 

 
This equation is generated from Eq. (1) by putting 𝜌 = 𝛼 = 𝛽 = 1	and 𝜐 = 𝜇 = 0 and is satisfied 

by 𝑢(𝑥, 𝑡) = e/%!. The precise, approximate solution and absolute exact/estimate errors, for the 
suggested technique are shown in Figure 4. Table 4 displays the highest absolute error for a range of 
𝑁 values in comparison with Legendre collocation method and Liu-Lin method used in [35]. Table 4 
demonstrate the highest absolute error for a range of 𝑁 values. 
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Table 4 
Absolute error of proposed approach, Legendre collocation method and Liu-Lin method 
𝑁 ‖𝑒.(𝑥, 𝑡)‖ Legendre Collocation Method [35] Liu-Lin Method [35] 
9 2.11589 × 10#( 5.92 × 10#% 8.67 × 10#% 
16 5.96 × 10#&& 2.53 × 10#% 3.98 × 10#% 

 

  
(a) (b) 

  
(c) (d) 

Fig. 4. The exact/approximate functions (a) the 𝑢(𝑥, 𝑡) and (b) 𝑢+/(𝑥, 𝑡) and the errors (c) 𝑒+/(𝑥, 𝑡) and (d) 
�̂�+/(𝑥, 𝑡) of Example 4 
 
6. Conclusions 
 

The major aspiration of this research is to promote a numerical solution using Legendre 
collocation approach to reduce a partial differential equation into a group of algebraic equations. 
Examples of second order linear partial differential equations are demonstrated to highlight the 
reliability and ability of the suggested approach. An analysis of the Legendre-collocation approach is 
introduced to approximate their solutions. The presented method displays a good approximation in 
contrast with closed form solution/other approaches carried using other articles over a range of 𝑁 
values. The main benefit of the approach is the ease with which computer programs can determine 
the solution of Legendre coefficients. 
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