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The work focuses on the analysis of the impact of loss functions on the effectiveness of 
a model for dehazing images. Dehazing, the process of removing haze or atmospheric 
scattering from images, plays a crucial role in various computer vision applications. To 
enhance the performance of dehazing models, it is essential to examine different loss 
functions and their variations. In this study, we employ a Generative Adversarial 
Network (GAN) as our model and evaluate the performance of various loss functions. 
The primary objective is to assess how well each loss function is capable of dehazing an 
image, while specifically investigating the influence of various structural similarity index 
(SSIM) loss variations on the dehazing effectiveness. Our experimental results reveal a 
notable discrepancy between qualitative and quantitative outcomes. Contradicting the 
traditional interpretation in literature, our qualitative analysis reveals that the SSIM IQA 
metric may not be a fully reliable indicator of dehazing effectiveness despite it being 
viewed to be correlated to human visual perception unlike Mean Square Error and Peak 
Signal to Noise Ratio Metrics. Moreover, we demonstrate that relying solely on 
quantitative results may lead to the selection of an inappropriate loss function. This 
finding emphasizes the significance of qualitative analysis in evaluating the 
performance of dehazing models. The disparity between quantitative and qualitative 
results emphasizes the need for newer image assessment metrics in the domain that 
can effectively bridge this gap. Such metrics should be able to be better correlated with 
human perception. This research contributes to the field of image dehazing by shedding 
light on the importance of qualitative analysis in addition to quantitative evaluation. By 
comprehensively analyzing the impact of variations of SSIM loss functions and their 
combination with Mean Absolute Error (MAE) loss, we provide valuable insights into 
enhancing the effectiveness of dehazing models. 
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1. Introduction 
 

Contaminants in the air, such as haze, fog, and smoke, can have a significant impact on the quality 
of images captured by cameras. These airborne particles scatter light, leading to a loss of contrast, 
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color saturation, and sharpness in the image. According to [1] this effect is especially pronounced at 
longer ranges, where the scattered light becomes dominant. Haze, fog, or smoke in images 
detrimentally affect computer vision applications like object detection and recognition as shown by 
[2]. In Literature, the process of removing or minimizing the effects of these contaminants is generally 
referred to as ‘Dehazing’. Dehazing techniques aim to remove these effects, improve image quality, 
and restore lost details, benefiting object detection and recognition systems. This has benefits in 
tasks like discovery of Archeological structures where quality and quantity of datasets is a significant 
challenge as mentioned by [3], dehazing can improve datasets by removing clouds, haze, dust and et 
cetera from the images. 

The advent of Deep Learning and its superior ability to deal with images compared to traditional 
Machine Learning approaches have revolutionized the domain of Dehazing. While significant 
emphasis has been placed on the development of diverse deep learning models for image dehazing, 
relatively less attention has been directed towards the loss layer within these models. The choice of 
loss functions in deep learning is of paramount importance as they play a crucial role in training 
neural networks and optimizing their performance. Furthermore, the careful selection of an 
appropriate loss function can significantly enhance the performance of a deep learning model, 
thereby maximizing its effectiveness. By optimizing the loss function, it becomes possible to achieve 
improved results without the necessity of constructing an entirely new model to attain a similar level 
of performance. 

One of the most commonly used loss is Mean Square Error Loss or L2 Loss which has been 

extensively utilized in dehazing techniques like the works by [4-8]. MSE loss places higher emphasis 
on larger differences between pixel values, penalizing larger errors more heavily. Since it magnifies 
the impact of outliers or large error it can lead to over smoothing  and blurry reconstruction as shown 
by [9]. Mean Absolute Error or L1 Loss performs better than L2 Loss since it is less sensitive to outliers 

and hence produces sharper images and better edge preservation. This loss too has been widely used 
too like in the works of [10,11]. Furthermore work by [11] shows that both L1 and L2  loss prevent 

artifacting. 
To overcome the limitations of these losses they are often combined with other losses to improve 

the performance of a model. One such loss is Structural Similarity Index Measure (SSIM) Loss based 
on SSIM IQA metric proposed by [12]. Diverging from traditional metrics that primarily account for 
pixel-level disparities, SSIM is widely regarded as a metric that captures the human visual system's 
sensitivity to structural distortions. It assesses image quality based on three components: luminance 
comparison, contrast comparison, and structural comparison. SSIM has become a popular choice for 
image quality assessment in various image processing applications and is one of the main 
benchmarks for Hazy Images. Research by  [13,14] utilized this loss for Dehazing purposed and 
demonstrated it preserved details related to Brightness, Contrast and Structure. 

Multi-Scale Structural Similarity Index or MS-SSIM proposed by [15] is an extension of SSIM 
operating on multiple scales to capture both global and local information from an image. By 
considering multiple scales, MS-SSIM is traditionally thought to better account for the perceptual 
characteristics of human vision, capturing both fine details and global structural information. It has 
been used in various image reconstruction/enhancement tasks like [16] denoising, super-resolution 
and artifact removal which demonstrated superiority of MS-SSIM over SSIM in these domains. Work 
by [17] further demonstrated that MS-SSIM encouraged the network to learn low to mid-level 
structures within the image & it was the loss that generated the most pleasing results as perceived 
by a human. However, when it comes to dehazing, MS-SSIM loss has not been experimented in any 
other literature. While there has been development of newer loss related in the visual domain over 
recent years, they tend to be complex, computationally expensive since they often rely on neural 
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networks and lack interpretability. Meanwhile, the work by [18] demonstrated that MS-SSIM 
performed almost as well as these newer losses while not having the drawbacks related to them. 

IW-SSIM (Information Weighted Structural Similarity Index) proposed by [19] is an advanced 
variant of the SSIM metric that incorporates information theory principles. By assigning different 
weights to image regions based on their perceptual importance, IW-SSIM provides a more refined 
assessment of image quality. This approach enhances the sensitivity of the metric to structural 
details, leading to a more accurate evaluation of image similarity and perceptual fidelity. It too has 
not been utilized as a loss function in the domain of dehazing. 

Our research will evaluate the performance of different loss functions in the context of dehazing 
by employing three metrics: L1 Loss, SSIM-Loss, MS-SSIM Loss, IW-SSIM loss L1 Loss combined with 

SSIM, L1 Loss combined with MS-SSIM, and L1 Loss combined with IW-SSIM. We will perform 

quantitative and qualitative analysis on the results of these losses to measure the effectiveness of 
each approach in improving dehazing outcomes. Furthermore, we will investigate if quantitative 
analysis correlates with qualitative analysis, something which has been inadequately investigated in 
the literature. By comparing the results obtained from these configurations of loss function, we aim 
to gain insights into the impact of incorporating what are traditionally thought to be perceptual 
similarity metrics, SSIM, MS-SSIM and IW-SSIM, alongside the traditional L1 Loss in deep learning-

based dehazing models.  
 

2. Methodology  
 
The primary objective of our study is to investigate the influence of the L1, SSIM, MS-SSIM & IW-

SSIM loss functions on the performance of a Deep Learning Model. Specifically, we have selected the 
Pix2Pix GAN [9] shown in Figure 1 as the Deep Learning Model for our analysis. The Pix2Pix Model in 
literature uses Adversarial Loss and L1 Loss. 

 

 
Fig. 1. Pix2Pix GAN Architecture 

 
The model will be trained on O–Haze [20] Database consisting of real world pair of Hazy and 

Ground Truth Images. Considering the limited availability of images for our study, Data Augmentation 
by extracting patches of size 256x256 from the images will be employed to expand the dataset for 
training. Of the original pair of images, 3 will be kept for validation, 5 for testing and the remaining 
for training. Validation dataset too will have patches extracted from it to augment its size. 

In the Pix2Pix Paper the L1 loss functions were multiplied with λ of value 100. Since we will be 

using SSIM, MS-SSIM and IW-SSIM Loss as well we will need to assign them with a λ value too, in 
which we chose it to be 100. So, the loss functions we will be investigating are: 
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𝐺∗ = arg min max 𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) +  𝛌𝟏L𝐿1(𝐺) 
    𝐺       𝐷                                                

                                                                                             (1) 

𝐺∗ = arg min max 𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) +  𝛌𝟏𝐿𝑆𝑆𝐼𝑀(𝐺) 
    𝐺       𝐷                                                

                                                                                         (2) 

𝐺∗ = arg min max 𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) +  𝛌𝟏𝐿𝑀𝑆−𝑆𝑆𝐼𝑀(𝐺) 
    𝐺       𝐷                                                

                                                                                  (3) 

𝐺∗ = arg min max 𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) +  𝛌𝟏𝐿𝐼𝑊−𝑆𝑆𝐼𝑀(𝐺)
    𝐺       𝐷                                                

                                                                                    (4) 

𝐺∗ = arg min max 𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) +  𝛌𝟏L𝐿1(𝐺) 
    𝐺       𝐷                                                

+  𝛌2𝐿𝑆𝑆𝐼𝑀(𝐺)                                                                  (5) 

𝐺∗ = arg min max 𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) +  𝛌𝟏L𝐿1(𝐺) 
    𝐺       𝐷                                                

+  𝛌2𝐿𝑀𝑆−𝑆𝑆𝐼𝑀(𝐺)                                                           (6) 

𝐺∗ = arg min max 𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) +  𝛌𝟏L𝐿1(𝐺) 
    𝐺       𝐷                                                

+  𝛌𝟐𝐿𝐼𝑊−𝑆𝑆𝐼𝑀(𝐺)                                                           (7) 

 
Where G* is our final objective. G represents Generator, D represents Discriminator, LcGAN is 

Adversarial Loss, LL1 is L1 Loss, LSSIM is SSIM Loss, LMS-SSIM is MS-SSIM Loss, 𝛌1 and 𝛌2 are Loss 

coefficient which value is set to 100. Mean of each LL1, LSSIM,  LMS-SSIM and LIW-SSIM values will be taken 
for each batch. 

Each model will be trained for 25 epochs using Adam Optimizer with Learning Rate of 0.0001, β1 

= 0.5, β2 = 0.999. Batch size of training set is 8 and validation set is 48. Shuffle for training set is set 
to True, while for validation set, it is False. Our training device is Intel Core i7-8700 CPU @ 3.20GHz, 
16GB RAM, NVIDIA GeForce RTX 3070 (GPU Memory 8.0GB). 

The model is created using PyTorch deep learning framework and SSIM and MS-SSIM losses 
calculated using the PyTorch Image Quality (PIQ) Library [21,22]. To ensure result consistency and 
comparability, we minimize inherent randomness by setting a fixed random seed (29) for Python, the 
deep learning architecture (e.g., PyTorch), CUDA, and the data loader. Additionally, deterministic 
convolutional algorithms are employed within the PyTorch framework, guaranteeing consistent 
outputs for a given input and eliminating randomness associated with non-deterministic 
implementations. 

To comprehensively evaluate the dehazing performance of our model, we acknowledge the 
necessity of a dual-pronged approach that incorporates both quantitative and qualitative analyses. 
While quantitative analysis relies on established Image Quality Assessment (IQA) metrics from the 
literature, it is important to recognize their limitations in fully capturing human visual perception. 
Therefore, qualitative analysis assumes a vital role in our evaluation process, allowing us to consider 
subjective factors such as the effectiveness of dehazing, visual clarity, naturalness, and realism of the 
dehazed images. By combining objective and subjective aspects, our evaluation aims to provide a 
holistic assessment of dehazing performance. 

 
3. Results 

 
Considering the inherently subjective nature of data, a need for a comprehensive approach to 

evaluate dehazing performance of our model is recognized. This entails employing both quantitative 
and qualitative analysis. For Quantitative analysis Image Quality Assessment (IQA) metrics 
established in literature will be utilized. However, IQA metrics may not fully capture the nuances and 
subtleties of human visual perception. Therefore, qualitative analysis will also play a crucial role in 
our evaluation process. This approach allows us to consider factors that are difficult to quantify, such 
as how well dehazing was performed, the overall visual clarity and realism of the dehazed images. 
Our goal is to ensure that our evaluation process captures both objective and subjective aspects. 
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3.1 Quantitative Analysis 
 
In dehazing research, commonly employed IQA metrics include MSE, PSNR, and SSIM. Our 

analysis involved resizing five test images to 2048x2048 and extracting 16 patches from each. IQA 
metrics were computed for each patch, and their average and standard deviation were calculated for 
the entire set. The results are summarized in Table 1. The MSE score measures pixel-level dissimilarity 
rather than perceptual differences, PSNR assesses detail preservation, and SSIM evaluates structural 
preservation. In literature, SSIM is generally regarded as an indicator of dehazing effectiveness. 

From Table 1 it can be seen that LcGAN+ LL1 outperforms all metrics based on MSE score. However, 
it ranks low when it comes to PSNR and SSIM score. In fact, it is the worst by some margin when it 
comes to SSIM indicating it does not preserve structures well. LcGAN+ LL1 + LSSIM however is ranked the 
highest by SSIM and PSNR metrics, while it is very narrowly beaten by LcGAN+ LL1 for the first position 
in the MSE metric.  Another trend that can be seen is that without L1 LSSIM, LMS-SSIM and LIW-SSIM 
perform the worst in the metrics but combining them with L1 loss boosts their performance 
significantly so much so that they outperform the individual losses. Interestingly MS-SSIM is 
outperformed by SSIM both individually and when they are combined with L1 loss. A reason for that 
might be that its added complexity leads to a higher number of parameters to calibrate. So, there is 
a possibility that finetuning MS-SSIM’s parameters might improve its performance over SSIM as has 
been proven by research in other domains. IW-SSIM’s performance is only improved one rank in each 
of the metrics by the addition of L1 loss, unlike SSIM & MS-SSIM Loss which were amongst the worst 
performers when alone but became the highest performers when combined with L1. 

 
Table 1 
MSE, PSNR SSIM average values and standard deviation for each loss function. Ranking performed 
based on average values 
Losses MSE Std Dev Rank PSNR Std Dev Ranking SSIM Std Dev Rank 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑳𝟏 0.0062 0.0118 1 21.52 3.91 4 0.7275 0.0984 7 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑺𝑺𝑰𝑴 0.0082 0.1723 7 20.95 4.09 6 0.7441 0.1020 5 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑴𝑺−𝑺𝑺𝑰𝑴 0.0082 0.0152 7 20.62 3.96 7 0.7350 0.1009 6 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑰𝑾−𝑺𝑺𝑰𝑴 0.0072 0.0127 5 21.30 3.95 5 0.7472 0.0939 4 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑳𝟏 +  𝑳𝑺𝑺𝑰𝑴 0.0063 0.0146 2 21.98 3.93 1 0.7716 0.0949 1 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑳𝟏 +  𝑳𝑴𝑺−𝑺𝑺𝑰𝑴 0.0064 0.0123 3 21.76 4.21 2 0.7521 0.0993 2 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑳𝟏 +  𝑳𝑰𝑾−𝑺𝑺𝑰𝑴 0.0066 0.0130 4 21.62 4.09 3 0.7457 0.0983 3 

 
A comparison between IQA metrics of whole test images (resized to 256x256) is made in Table 2. 

The results largely follow the trend from Table 1 with various SSIM related losses being the best 
performers when combined with L1 Loss. The only new significant finding is that MS-SSIM drops 
down to being the 4th best performer when it comes to SSIM score. However, the difference is 
marginal between it and the ones above it. Figure 2 shows cumulative ranking by combining rankings 
from Table 1 and Table 2 for easier interpretability. 

 
Table 2 
MSE, PSNR SSIM values for each loss function across 5 images. Ranking performed based on 
average values 

Comparing MSE Values 

Losses Image 1 Image 2 Image 3 Image 4 Image 5 Average Value Rank 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑳𝟏 0.0025 0.0133 0.0024 0.0036 0.0126 0.0069 5 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑺𝑺𝑰𝑴 0.0057 0.0131 0.0027 0.0042 0.0069 0.0065 4 
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𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑴𝑺−𝑺𝑺𝑰𝑴 0.0379 0.0176 0.0023 0.0054 0.0050 0.0136 7 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑰𝑾−𝑺𝑺𝑰𝑴 0.0227 0.0046 0.0023 0.0052 0.0047 0.0079 6 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑳𝟏 + 𝑳𝑺𝑺𝑰𝑴 0.0020 0.0134 0.0037 0.0042 0.0059 0.0058 3 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑳𝟏 + 𝑳𝑴𝑺−𝑺𝑺𝑰𝑴 0.0021 0.0090 0.0023 0.0031 0.0043 0.0042 1 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑳𝟏 + 𝑳𝑰𝑾−𝑺𝑺𝑰𝑴 0.0029 0.0088 0.0027 0.0032 0.0049 0.0045 2 

Comparing PSNR Values 

Losses Image 1 Image 2 Image 3 Image 4 Image 5 Average Value Rank 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑳𝟏 25.42 16.13 24.75 23.90 17.58 21.56 6 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑺𝑺𝑰𝑴 21.79 17.42 24.50 23.08 19.15 21.19 7 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑴𝑺−𝑺𝑺𝑰𝑴 23.46 16.05 25.33 22.09 21.10 21.61 4 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑰𝑾−𝑺𝑺𝑰𝑴 25.91 12.42 25.63 22.59 21.49 21.61 4 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑳𝟏 + 𝑳𝑺𝑺𝑰𝑴 26.40 17.29 23.30 23.04 20.66 22.14 3 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑳𝟏 + 𝑳𝑴𝑺−𝑺𝑺𝑰𝑴 26.23 18.54 25.82 24.57 21.80 23.39 1 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑳𝟏 + 𝑳𝑰𝑾−𝑺𝑺𝑰𝑴 24.79 19.36 24.70 24.53 21.85 23.05 2 

Comparing SSIM Values 

Losses Image 1 Image 2 Image 3 Image 4 Image 5 Average Value Rank 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑳𝟏 0.8310 0.6099 0.8485 0.8172 0.5987 0.7411 7 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑺𝑺𝑰𝑴 0.8234 0.7897 0.8877 0.8490 0.6829 0.8065 2 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑴𝑺−𝑺𝑺𝑰𝑴 0.8404 0.7191 0.8524 0.8221 0.6552 0.7778 5 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑰𝑾−𝑺𝑺𝑰𝑴 0.8566 0.6135 0.8663 0.8373 0.6803 0.7708 6 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑳𝟏 + 𝑳𝑺𝑺𝑰𝑴 0.8746 0.7637 0.8797 0.8516 0.6770 0.8093 1 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑳𝟏 + 𝑳𝑴𝑺−𝑺𝑺𝑰𝑴 0.8576 0.7049 0.8718 0.8460 0.6762 0.7913 4 

𝑳𝒄𝑮𝑨𝑵 + 𝑳𝑳𝟏 + 𝑳𝑰𝑾−𝑺𝑺𝑰𝑴 0.8517 0.7283 0.8617 0.8504 0.6686 0.7921 3 

 

 
Fig. 2. Cumulative ranking of the loss functions. Lower is better 

 
3.2 Qualitative Analysis 

 
Qualitative analysis is essential alongside quantitative analysis when evaluating dehazing 

performance. Unlike quantitative measures, qualitative analysis provides insights that quantitative 
measures cannot capture. It enables visual perception assessment, artifact detection, and facilitates 
comparative analysis between algorithms. Additionally, research has demonstrated that IQA metrics 
often fail to accurately predict human perception, sometimes resulting in seemingly good results 
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despite lingering haze. Therefore, conducting qualitative analysis is vital to fully understand the 
effectiveness of dehazing. 

Figure 3 displays a list of Hazy Images, Ground Truth Images and their dehazed versions generated 
via different loss functions. The first 5 images are patches extracted from the test set while the last 
two images are whole images from test set (Images 1 and 5 from Table 2). 

After evaluating the patches, the dehazing performance reveals a favorable outcome, wherein all 
loss combinations demonstrate good results with no significant variations among them. Notably, the 
preservation of intricate details remains prominent across the tested methods. However, in terms of 
color fidelity, IW-SSIM and MS-SSIM (with and without L1) exhibit a closer resemblance to the Ground 
Truth images, while the remaining methods exhibit a subtly warmer color representation. 

The effectiveness of dehazing images is most evident in image (g), which initially received a low 
score. Notably, the most successful dehazing techniques were SSIM, IW-SSIM, and MS-SSIM, whereas 
the remaining images still retained some level of haze, particularly when L1 was used alone, resulting 
in the worst performance. This pattern suggests that L1 leads to inadequate dehazing performance 
when combined with SSIM-based loss functions or when alone, despite its demonstrated 
improvement in quantitative performance as indicated in Table 2. To further bolster our hypothesis, 
we examine image (f). Although the overall performance is superior in this image, the best dehazing 
outcomes are once again achieved by SSIM, IW-SSIM, and MS-SSIM when not combined with L1. 
Conversely, the L1 function proves to be the least effective once more. Consequently, our initial 
hypothesis drawn from image (g) is further reinforced, indicating that L1 loss results in inferior 
perceptual performance, despite its potential to enhance quantitative measurements. 

This observation emphasizes the significance of incorporating qualitative analysis alongside 
quantitative analysis in the field of dehazing since our analysis between the two has produced 
contradicting results. The images with higher SSIM scores had more haze than ones with lower SSIM 
scores. It becomes evident that relying solely on present quantitative measurements can be 
misleading and may not accurately reflect how humans perceive image quality. While several studies 
have suggested a correlation between SSIM and human perception in our study on dehazing these 
findings are challenged which validates the findings of [23] whose work suggested that SSIM was not 
closely related to human perception and in its essence was just a statistical measure. Therefore, it is 
crucial to develop or incorporate new full-reference IQA metrics specifically tailored for evaluating 
dehazing quality. The existing metrics demonstrate inadequacy in capturing the nuanced perceptual 
aspects of dehazing, highlighting the need for improved evaluation methods that better align with 
human perception. 
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a) Original 
Hazy Image 
 

 

 
b) Portion 
of Image to 
be Dehazed 

 
 
c) Ground 
Truth 

 
 
d) 𝑳𝒄𝑮𝑨𝑵 +
 𝑳𝑳𝟏 

 
 
e) 𝑳𝒄𝑮𝑨𝑵 +
 𝑳𝑺𝑺𝑰𝑴 

 

 
 
f) 𝑳𝒄𝑮𝑨𝑵 +
 𝑳𝑴𝑺−𝑺𝑺𝑰𝑴 
 

 
 

g) 𝑳𝒄𝑮𝑨𝑵 +
 𝑳𝑰𝑾−𝑺𝑺𝑰𝑴 
 

h) 𝑳𝒄𝑮𝑨𝑵 +
 𝑳𝑳𝟏 +
 𝑳𝑺𝑺𝑰𝑴 
 

𝒊) 𝑳𝒄𝑮𝑨𝑵

+  𝑳𝑳𝟏

+  𝑳𝑴𝑺−𝑺𝑺𝑰𝑴 
 
 
j) 𝑳𝒄𝑮𝑨𝑵 +
 𝑳𝑳𝟏 +
 𝑳𝑰𝑾−𝑺𝑺𝑰𝑴 

                                          (a)                (b)                 (c)                (d)                  (e)                 (f)                  (g)    

            Fig. 3. Dehazing results. Images (a) to (e) are extracted patches while (f) & (g) are whole images 

 
4. Conclusion 

 
In conclusion, our research examined the impact of loss function selection on dehazing 

performance. We found that there is a lack of correlation between quantitative and qualitative 
results in dehazing evaluation, cautioning against relying solely on quantitative measures. 
Specifically, our investigation revealed that utilizing L1 loss improves quantitative performance but 
leads to poorer qualitative outcomes. Furthermore, our findings indicate that SSIM scores do not 
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show a strong correlation with dehazing effectiveness as traditionally thought and relying on it can 
give misleading results. This highlights the need for the development or integration of new IQA 
metrics in the domain of Dehazing to bridge the gap between quantitative and qualitative 
assessments. Furthermore, our work emphasizes the importance of incorporating the need for a 
thorough qualitative analysis instead of solely relying on quantitative results to measure the 
performance of dehazing since quantitative results can lead to misleading results. However, it is 
important to note that our study was limited to a single dataset, and in the future, we plan to conduct 
further research to validate our findings. Overall, our research emphasizes the importance of the 
choice of loss functions, complexity of evaluating dehazing performance and the importance of 
considering qualitative aspects in assessment in addition to quantitative results. 
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