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In this paper, Micropolar-Maxwell unsteady fluid flow prior an expanding sheet is 
asymptotically investigated using an efficient Legendre-Galerkin technique in the 
existence of magnetic field. By employing fitting similarity mapping to the controlling 
partial differential equations, a system of nonlinear ordinary differential equations is 
obtained. In comparison to the prior studies, the suggested asymptotic outcomes are 
guaranteed. The impacts of elasticity/material parameters on velocity/micro-rotation 
profiles are shown and explored with the help of tables and figures to enhance the 
mechanical properties of the sheet. 
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1. Introduction 
 

It is common practice to use non-Newtonian fluid cooling fluids like polymeric melts and solutions 
in the production of adhesive tapes, hot winding processes, glass blasting, and plastic surfaces. Figure 
1 depicts the flow of melting fluid through a quiescent fluid at a constant speed after it is extruded 
from a die. An electromagnetic field is used to perform the procedure. Using a wind-up roll, the sheet 
is rolled into the desired shape after it has cooled. Many high-cost metallurgical applications, polymer 
extrusion processes, and chemical manufacturing processes make use of this technique. The primary 
purpose of this technique is to enhance the mechanical characteristics of the ultimate product. This 
may be accomplished by adjusting the cooling rate, the natural parameters of the cooling 
surrounding, like heat conduction, affecting the cooling rate, and the viscosity of the liquid. This 
determines the amount of drag necessary to pull the sheet. The depth of the boundary layer and the 
coefficient of friction of the skin across the stretched sheet are governed by the velocity of the 
stretched web and the physical characteristics of the cooling medium [1]. 
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Using electrically conductive fluids and a magnetic field, the MHD flow has recently been 
employed in petroleum and metallurgical processes to manage the qualities of the product. The 
magnetic field has been utilized to pacificate non-metallic contaminants from molten metals [2]. 
Many researchers have lately studied that sort of flow to forecast the force needed to draw these 
surfaces. Starting with the Cauchy equations of motion, Maxwell fluid defines the hard impacts of 
viscidity, elasticity, and diverse features on the boundary layer of a viscoelastic fluid [3-9]. The 
chemical reaction on the Maxwell fluid takes place in conjunction with the magnetic field [10,11]. As 
an alternative, micro-polar fluids theory depicts fluids with microscopic features. Suspended particles 
(at most spherical in shape) may be found in viscous media if deformation is not considered. Complex 
fluids may now be modelled in a few applications by the modified Navier-Stokes equation [12-16]. 
Advances in the research of fluid flow/heat transfer are made by a lot of researchers [17-19]. 

When a surface in a transverse magnetic field is being stretched, an asymptotic study of the 
micropolar effect and elasticity parameter effect is presented in this dissertation. To provide an 
asymptotic evaluation of the problem, the Legendre-Galerkin technique is used. There are graphs 
showing the impacts of varying the magnetic, elasticity, and micro-polar on the skin friction and 
micro-rotation profiles, as well as tables listing the results. 

 
2. Mathematical Formulation 

 
In a Maxwell fluid, consider an unsteady laminar boundary layer flow of micro-polar fluid across 

an expanding surface in of two-dimensional space. The exterior is stretched by the velocity 𝑈𝑤 = 𝑏𝑥 
and is accepted to be impermeable, 𝑉𝑤 = 0. The 𝑥-axis is selected parallel to the expanding exterior 
in the motion’s course and the 𝑦-axis is chosen perpendicular to it. Figure 1 illustrates the flow layout. 
Also, the stretching surface is subjected to a normal uniform magnetic field 𝐵𝑜. The induced magnetic 
field is ignored since the magnetic Reynolds number is negligible. The stream is governed by [12]: 
 
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0,               (1) 

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝜆 [𝑢2 (

𝜕2𝑢

𝜕𝑥2
) + 𝑣2 (

𝜕2𝑢

𝜕𝑦2
) + 2𝑢𝑣 (

𝜕2𝑢

𝜕𝑥𝜕𝑦
)]  = (𝜈 +

𝑠

𝜌
)
𝜕2𝑢

𝜕𝑦2
+
𝑠

𝜌

𝜕𝑁

𝜕𝑦
−
𝜎𝐵𝑜

2

𝜌
𝑢,     (2) 

 
𝜕𝑁

𝜕𝑡
+ 𝑢

𝜕𝑁

𝜕𝑥
+ 𝑣

𝜕𝑁

𝜕𝑦
= (

𝛾

𝜌𝑗
)
𝜕2𝑁

𝜕𝑦2
−

𝑠

𝜌𝑗
(2𝑁 +

𝜕𝑢

𝜕𝑦
),          (3) 

 
given that 𝑢 and 𝑣 are the components of velocity along 𝑥 and 𝑦, respectively. 
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Fig. 1. Schematic for flow above stretching surface 

 
Microrotation is denoted by 𝑁, the magnetic field by 𝐵𝑜, the relaxation time by 𝜆, the vortex by 

𝑠, and the electrical conductivity by 𝜎. The fluid parameters are symbolized by 𝜌 for density, 𝜈 for 
dynamic viscosity, 𝑗 for micro-inertia per unit mass, 𝛾 for spin gradient, and 𝑡 for time. For 𝑡 > 0, the 
governing equations are subjected to: 
 

𝑢 = 𝑈𝑤,      𝑣 = 0,      𝑁 = −𝑛
𝜕𝑢

𝜕𝑦
      if     𝑦 = 0     and    lim

𝑦→∞
𝑢 = lim

𝑦→∞
𝑁 = 0,      (4) 

 
3. Transformation Based on Similarity 

 
To satisfy the equation of continuity, it must be possible to choose an appropriate stream function 

𝜓 such that 𝑢 = 𝜕𝜓/𝜕𝑦 and 𝑣 = −𝜕𝜓/𝜕𝑥. Dimensionless similarity variables 
 

𝜂 = √
𝑏

𝜈𝜁
𝑦, 𝜁 = 1 − 𝑒−𝑏𝑡, 𝜓 = 𝑥√𝑏𝜈𝜁 𝑓(𝜂, 𝜁), 𝑁 = 𝑏𝑥√

𝑏

𝜈𝜁
𝑔(𝜂, 𝜁),       (5) 

 

𝑢 = 𝑥𝑏𝑓′(𝜂, 𝜁), 𝑣 = −√𝑏𝑣𝜁𝑓(𝜂, 𝜁).           (6) 

 
and the linear transformation 𝜂 = 𝜂∞(𝜉 + 1)/2 are used to simplify the system Eq. 
Error! Reference source not found. to Eq. Error! Reference source not found. and to convert the 
solution domain from [0, 𝜂∞] to [−1, 1]. The new system format of the system Eq. 
Error! Reference source not found.to Eq. Error! Reference source not found. is: 
 
8

𝜂∞
3 (1 + 𝐾) 𝑓

′′′ +
1

𝜂∞
(1 − 𝜁)(𝜉 + 1)𝑓′′ +

4

𝜂∞
2 𝜁 (𝑓𝑓

′′ − 𝑓′2 −
𝜂∞

2
 𝑀𝑓′) +

2

𝜂∞
𝐾𝑔′ +

8

𝜂∞
3 𝜁𝛽(2𝑓𝑓

′𝑓′′ − 𝑓2𝑓′′′) = 0,           (7) 

 
1

𝜂∞
2 (4 + 2𝐾)𝑔

′′ + (𝜉 + 1)(𝑔 + (1 − 𝜁)𝑔′) +
2

𝜂∞
𝜁(𝑓𝑔′ − 𝑓′𝑔) − 2𝐾𝜁𝑔 −

4

𝜂∞
2 𝐾𝜁𝑓′′ = 0,    (8) 

 

with the following conditions: 
 

𝑓(−1) = 0,    𝑓′(−1) =
𝜂∞

2
,    𝑔(−1) = −

4𝑛

𝜂∞
2 𝑓

′′(−1),    𝑓′(1) = 0,    𝑔(1) = 0.      (9) 

y

x



wT

MagneticField

The Stretching Surface

Stationary Maxwell Fluid

Die

wU

Wind-up Roll
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where 𝛽 = 𝜆𝑏 is the elasticity number, 𝑀 = 𝜎𝐵𝑜

2/𝜌 is the magnetic parameter, 𝐾 = 𝑠/𝜌𝑣 = 𝑠/𝜇 is 
the material parameter and 𝑗 = 𝑣/𝑏 is micro-inertia per unit mass. Skin friction coefficient 
 

𝐶𝑓 =
2𝜏𝑤

𝜌𝑈𝑤
= [(𝜇 + 𝜆𝑏 + 𝑠)

𝜕𝑢

𝜕𝑦 
+ 𝑠𝑁]

𝑦=0
  

 

is transformed to be 𝐶𝑓√Re𝑥 = −𝜁
−0.5(1 + 𝛽 + (1 − 𝑛)𝐾)𝑓′′(0), where 𝜏𝑤 is the shear stress and 

Re𝑥 = 𝜌𝑈𝑤𝑥/𝜇 is the local Reynold number. 
 

4. Solution Proceeding 
 
Combining Eq. Error! Reference source not found. to Eq. Error! Reference source not found., the 

problem is solved asymptotically using Legendre-Galerkin Method. The asymptotic solutions, 𝑓(𝜉) 
and 𝑔(𝜉), are assumed as series in the Legendre polynomials 𝑃𝑖(𝑥), i.e., 𝑓(𝜉) ≈ ∑ 𝑐𝑖  𝑃𝑖(𝜉)

𝑚
𝑖=0  and 

𝑔(𝜉) ≈ ∑ 𝑑𝑖  𝑃𝑖(𝜉).
𝑚
𝑖=0  When they are substituted into the Eq. (12) and Eq. (15) and the Galerkin 

technique is used, the result is 
 

∑𝑐𝑗 [〈
8

𝜂∞
3
(1 + 𝐾)𝑃𝑗

′′′(𝜉) +
1

𝜂∞
(1 − 𝜁)𝑃𝑗

′′ (𝜉) −
1

𝜂∞
(1 − 𝜁)𝜉𝑃𝑗

′′ (𝜉) −
2𝑀

𝜂∞
𝑃𝑗
′ (𝜉), 𝑃𝑟(𝜉)〉 ]

𝑚

𝑗=0

 

+
2𝐾

𝜂∞
∑𝑑𝑖〈𝑃𝑗

′(𝜉), 𝑃𝑟(𝜉)〉

𝑚

𝑖=0

+
4𝜁

𝜂∞2
∑∑𝑐𝑗𝑐𝑖[〈𝑃𝑖(𝜉) 𝑃𝑗

′′ (𝜉) − 𝑃𝑖
′(𝜉)𝑃𝑗

′(𝜉), 𝑃𝑟(𝜉)〉]

𝑚

𝑖=0

𝑚

𝑗=0

 

+
8𝜁𝛽

𝜂∞
3
∑∑∑𝑐𝑗𝑐𝑖𝑐𝑘[2〈𝑃𝑖(𝜉)𝑃𝑗

′′ (𝜉)𝑃𝑗
′ (𝜉), 𝑃𝑟(𝜉)〉 − 〈𝑃𝑖(𝜉)𝑃𝑗(𝜉)𝑃𝑗

′′′(𝜉), 𝑃𝑟(𝜉)〉] = 0

𝑚

𝑘=0

𝑚

𝑖=0

𝑚

𝑗=0

, 

∑ 𝑑𝑗 [〈
1

𝜂∞
2 (4 + 2𝐾)𝑃𝑗

″(𝜉) + 𝑃𝑗(𝜉) + 𝜉𝑃𝑗(𝜉) + (1 − 𝜁) (𝑃𝑗
′(𝜉) + 𝜉𝑃𝑗

′(𝜉))+2𝐾𝜁𝑃𝑗(𝜉), 𝑃𝑟(𝜉)〉]
𝑚
𝑗=0   (10) 

 

−
4𝐾𝜁

𝜂∞
2 ∑ 𝑐𝑗

𝑚
𝑗=0 〈𝑃𝑗

′′ (𝜉), 𝑃𝑟(𝜉)〉 +
2𝜁

𝜂∞
 ∑ ∑ 𝑑𝑗𝑐𝑖

𝑚
𝑖=0 〈𝑃𝑖(𝜉)𝑃𝑗

′ (𝜉) − 𝑃𝑗(𝜉)𝑃𝑖
′ (𝜉), 𝑃𝑟(𝜉)〉

𝑚
𝑗=0 = 0,             (11) 

 
with boundary conditions: 
 

∑(−1)𝑗 𝑐𝑖

𝑚

𝑖=0

= 0,    ∑(−1)𝑗
𝑗(𝑗 + 1)

2
𝑐𝑖

𝑚

𝑖=0

=
𝜂∞
2
,    ∑

𝑗(𝑗 + 1)

2
𝑐𝑖

𝑚

𝑖=0

= 0,    ∑𝑑𝑗

𝑛

𝑖=0

= 0, 

∑ (−1)𝑗 [𝑑𝑗 +
𝑛

2𝜂∞
2 𝑐𝑖∏ (𝑖 + 𝑜)

2

𝑜=−1
]𝑚

𝑖=0 = 0                     (12) 

 

where the inner product is determined by 〈Υ (𝜉),  𝜒 (𝜉)〉 = ∫ Υ (𝜉)  𝜒 (𝜉) 
1

−1
𝑑𝜉. The nonlinear system 

Eq. Error! Reference source not found. to Eq. Error! Reference source not found. can be represented 
in matrix form 
 
𝚲𝐜 +𝚽𝐜̃ + 𝚯𝐜̅  +  𝚪𝐜̌ = 𝐛,                       (13) 
 
where: 
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𝚲 =    (
𝚲11 𝚲12
𝚲21 𝚲22

) ,           𝚽 = (
𝚽𝐟
𝐎
) ,            𝚯 = (

𝚯𝐟
𝐎
)  ,           𝚪 = (

𝐎
𝚪𝐟
) ,             𝐛 = (

𝐛𝟏
𝐛𝟐
),  

𝚲11 =

(

 
 
 
 

𝜔0,0 𝜔0,1 ⋯ 𝜔0,𝑚−1 𝜔0,𝑚
𝜔1,0 𝜔1,1 ⋯ 𝜔1,𝑚−1 𝜔1,𝑚
⋮ ⋮ ⋮ ⋮ ⋮

𝜔𝑚−3,0 𝜔𝑚−3,1 ⋯ 𝜔𝑚−3,𝑚−1 𝜔𝑚−3,𝑚
1 −1 ⋯ (−1)𝑚−1 (−1)𝑚

0 1 ⋯ (−1)𝑚𝑚(𝑚 − 1) (−1)𝑚+1𝑚(𝑚 + 1)
0 1 ⋯ 𝑚(𝑚 − 1) 𝑚(𝑚 + 1) )

 
 
 
 

, 

𝚲12 =

(

 
 
 
 

𝜖0,0 𝜖0,1 ⋯ 𝜖0,𝑚
𝜖1,0 𝜖1,1 ⋯ 𝜖1,𝑚
⋮ ⋮ ⋮ ⋮

𝜖𝑚−3,0 𝜖𝑚−3,1 ⋯ 𝜖𝑚−3,𝑚
0 0 ⋯ 0
0 0 ⋯ 0
0 0 ⋯ 0 )

 
 
 
 

, 𝚲21 =

(

 
 
 

𝜀0,0 𝜀0,1 ⋯ 𝜀0,𝑚−1 𝜀0,𝑚
𝜀1,0 𝜀1,1 ⋯ 𝜀1,𝑚−1 𝜀1,𝑚
⋮ ⋮ ⋯ ⋮ ⋮

𝜀𝑚−2,0 𝜀𝑚−2,1 ⋯ 𝜀𝑚−2,𝑚−1 𝜀𝑚−2,𝑚
0 0 ⋯ 0 0
−1 1 ⋯ (−1)𝑚−1 (−1)𝑚)

 
 
 
, 

𝚲22 =

(

 
 
 
 
 

𝛼0,0 𝛼0,1 ⋯ 𝛼0,𝑚−1 𝛼0,𝑚
𝛼1,0 𝛼1,1 ⋯ 𝛼1,𝑚−1 𝛼1,𝑚
⋮ ⋮ ⋮ ⋮ ⋮

𝛼𝑚−2,0 𝛼𝑚−2,1 ⋯ 𝛼𝑚−2,𝑚−1 𝛼𝑚−2,𝑚
1 1 ⋯ 1 1

0 0 ⋯
𝑛

2𝜂∞2
𝑐𝑖 ∏(𝑚+ 𝑜 − 1)

2

𝑜=−1

𝑛

2𝜂∞2
𝑐𝑖 ∏(𝑚+ 𝑜)

2

𝑜=−1 )

 
 
 
 
 

, 

𝐛𝟏 = ( 0    0    0    0    0    0     ⋯    0    
𝜂∞
2

   0 )
𝑇

,                  𝐛𝟐 = ( 0    0    0    0    0    0     ⋯    0    0    0 )𝑇 , 

𝐜 = {span{𝑐𝑗}},                   𝐜̃ = {span{𝑐𝑖  𝑐𝑗}, span{𝑑𝑖  𝑑𝑗}},       𝐜̅ = {span{𝑐𝑖  𝑐𝑗 𝑐𝑘}, span{𝑑𝑖  𝑑𝑗 𝑑𝑘}}, 

𝐜̌ = {span{𝑐𝑖  𝑑𝑗}},              𝚽𝐟 = { Ω𝑖, 𝑗, 𝑟},              𝚯𝐟 = {𝜅𝑖, 𝑗,  𝑘,  𝑟},              𝚪𝐟 = {𝑒𝑖, 𝑗, 𝑟}, 

 

𝜔𝑗,𝑟 =
1

𝜂∞
〈
8

𝜂∞
2 (1 + 𝐾)𝑃𝑗

′′′(𝜉) + (1 − 𝜁)𝑃𝑗
′′ (𝜉) − (1 − 𝜁)𝜉𝑃𝑗

′′ (𝜉) − 2𝑀𝑃𝑗
′ (𝜉), 𝑃𝑟(𝜉)〉                  (14) 

 

𝜖𝑗,𝑟 =
2𝐾

𝜂∞
〈𝑃𝑗
′(𝜉), 𝑃𝑟(𝜉)〉,    𝜀𝑗,𝑟 = −

4𝐾𝜁

𝜂∞
2 〈𝑃𝑗

′′ (𝜉), 𝑃𝑟(𝜉)〉,                   (15) 

 

𝛼𝑖,𝑗 = 〈
1

𝜂∞
2 (4 + 2𝐾)𝑃𝑗

″(𝜉) + (1 − 𝜁) (𝑃𝑗
′(𝜉) + 𝜉𝑃𝑗

′(𝜉)) + (2𝐾𝜁 + 𝜉 + 1)𝑃𝑗(𝜉), 𝑃𝑟(𝜉)〉,               (16) 

 

Ω𝑖, 𝑗, 𝑟 =
4𝜁

𝜂∞
2 [〈𝑃𝑖(𝜉) 𝑃𝑗

′′ (𝜉) − 𝑃𝑖
′(𝜉)𝑃𝑗

′(𝜉), 𝑃𝑟(𝜉)〉],                    (17) 

 

𝜅𝑖, 𝑗,  𝑘,  𝑟 =
8𝜁𝛽

𝜂∞
3 [2〈𝑃𝑖(𝜉)𝑃𝑗

′′ (𝜉)𝑃𝑗
′ (𝜉), 𝑃𝑟(𝜉)〉 − 〈𝑃𝑖(𝜉)𝑃𝑗(𝜉)𝑃𝑗

′′′(𝜉), 𝑃𝑟(𝜉)〉],                (18) 

 

𝑒𝑖, 𝑗, 𝑟 =
2𝜁

𝜂∞
 〈𝑃𝑖(𝜉)𝑃𝑗

′ (𝜉) − 𝑃𝑗(𝜉)𝑃𝑖
′ (𝜉), 𝑃𝑟(𝜉)〉.                    (19) 

 
Fathy et al., [20-24] developed theorems and lemmas to compute the terms in Eq. 

Error! Reference source not found. to Eq. Error! Reference source not found.. There are (2n+2) 
unknowns in the nonlinear system (20). This system was approached using the Newton method. The 
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unknowns {𝑐𝑗}𝑗=0
𝑛

 and {𝑑𝑗}𝑗=0
𝑛

 may be determined once the system was solved. Finally, the inverse 

transformation 𝜉 = 2𝜂/𝜂∞ − 1 is employed to find the problem's solutions. Some of the obtained 
solutions are listed in Table 1. 

Table 1 
Certain gained asymptotic results at 𝑛 = 15 

 Solutions 

𝑀
=
1

,  
𝜁
=
1
,𝛽
=
0
.2

 
𝐾
=
1
,  

 𝑛
 =
0
.5

 

𝑓(𝜂) = 𝜂 − 0.369𝜂2 + 0.061650203743773724𝜂3 − 0.00174𝜂4 − 0.0010578𝜂5 + 0.000211𝜂6

− 0.000032𝜂7 + 0.0000034𝜂8 + 0.000001076𝜂9 − 5.98 × 10−7𝜂10

+ 1.3 × 10−7𝜂11 − 1.6 × 10−8𝜂12 + 1.27 × 10−9𝜂13 − 5.57 × 10−11𝜂14

+ 1.07 × 10−12𝜂15

 𝑔(𝜂) = 0.369004  − 0.1398𝜂 − 0.00615 + 0.0048057021433229935𝜂3 + 0.001905𝜂4

− 0.000634𝜂5 − 0.000041750858994811274𝜂6 + 0.000031007𝜂7

− 2.53 × 10−7𝜂8 − 0.000001382444355488106𝜂9 + 2.43 × 10−7𝜂10

− 8.36 × 10−9𝜂11 − 2.423 × 10−9𝜂12 + 3.73 × 10−10𝜂13 − 2.24 × 10−11𝜂14

+ 5.28 × 10−13𝜂15 

𝑀
=
1

,  
𝜁
=
1
,𝛽
=
0
.1

 
𝐾
=
4
,  

 𝑛
 =
0
.5

 𝑓(𝜂) = 𝜂 − 0.259𝜂2 + 0.0303𝜂3 − 0.000678𝜂4 − 0.00018771779037577118𝜂5 + 0.0000108𝜂6

+ 5.648 × 10−7𝜂7 + 8.288 × 10−8𝜂8 − 1.15 × 10−8𝜂9 − 5.17 × 10−9𝜂10

+ 1.3 × 10−9𝜂11 − 1.31 × 10−10𝜂12 + 6.84 × 10−12𝜂13 − 1.611 × 10−13𝜂14

+ 7.5 × 10−16𝜂15

 𝑔(𝜂) =  0.25972  − 0.0779𝜂 − 0.002164𝜂2 + 0.0025474132308497123𝜂3 + 0.000031𝜂4

− 0.0000853𝜂5 + 0.0000059𝜂6 + 0.000001056𝜂7 − 1.4 × 10−7𝜂8

− 1.426027240013162 × 10−9𝜂9 + 3.6 × 10−10𝜂10 + 2.3 × 10−10𝜂11

− 4.5 × 10−11𝜂12 + 3.6 × 10−12𝜂13 − 1.3 × 10−13𝜂14 + 2.1 × 10−15𝜂15

  
5. Results and Discussion 

 
The flow horizontal velocity and micro-rotation velocity are graphically displayed for varied 

valuation of the magnetic parameter 𝑀, elasticity number 𝛽 and material parameter 𝐾, as well as 
the skin friction for various non-Newtonian components. Tables 2, 3 and 4 show good agreement 
with prior published results for skin friction in the lack of a magnetic field, ensuring accuracy of our 
work. 

 
Table 2 
The skin friction coefficient at 𝛽 = 0, 𝜁 = 1,𝑀 = 0 and 𝑛 = 0 for 
distinct values of 𝐾 

 𝐒𝐤𝐢𝐧 𝐅𝐫𝐢𝐜𝐭𝐢𝐨𝐧 = − 𝜻−𝟎.𝟓[𝟏 + (𝟏 − 𝒏)𝑲] 𝒇′′(𝟎) 
𝑲 Ishak et al., [25] D.A. Aldawody [13] M. Qasim [26] Present results 
𝟎 1 1 1 1 
𝟏 1.3679 1.3679 1.367872 1.36799 
𝟐 1.6213 1.6213 1.621225 1.62158 
𝟒 2.0042 2.0043 2.004133 2.00544 

 
Table 3 
The skin friction coefficient at 𝛽 = 0, 𝜁 = 1,𝑀 = 0 and 𝑛 = 0.5 
for distinct values of 𝐾 
 𝐒𝐤𝐢𝐧 𝐅𝐫𝐢𝐜𝐭𝐢𝐨𝐧 =  −𝜻−𝟎.𝟓[𝟏 + (𝟏 − 𝒏)𝑲] 𝒇′′(𝟎) 
𝑲 Ishak [25] D.A. Aldawody [13] M. Qasim [26] Present results 
𝟎 1 1 1 1 
𝟏 1.2247 1.2247 1.224741 1.22481 
𝟐 1.4142 1.4142 1.414218 1.41447 
𝟒 1.7343 1.7343 1.732052 1.73329 
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Table 4 

Comparison of −𝜁−0.5[1 + (1 − 𝑛)𝐾] 𝑓′′(0) at 𝐾 = 0, 𝜁 =
1,𝑀 = 0 and 𝑛 = 0 for different values of 𝛽. 
𝜷 Sadeghy et al., [27] Subahs [2] Swati [10] Present results 

𝟎 1 0.999962 0.999963 1.000007 
𝟎. 𝟐 1.0549 1.051948 1.051949 1.053371 
𝟎. 𝟒 1.10084 1.101850 1.101851 1.100163 
𝟎. 𝟔 1.15016 1.150163 1.150162 1.147450 
𝟎. 𝟖 1.19872 1.196692 1.196693 1.176135 

 
According to Figures 2(a) and 2(b), when the magnetic field 𝑀 is raised, increasing the peak value 

of angular velocity while dropping in horizontal velocity occurs. The Lorentz force is a drag force that 
causes the flow velocity to shrink and the thickness of boundary layer to decrease owing to the 
applicable transverse magnetic field. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2. (a) The impact of 𝑀 on the velocity and (b) The effect of 𝑀 on the microrotation 

 
As soon as the micro-rotation viscosity is diminished, the conservation equation of linear 

momentum no longer depends on microstructures. The micro-rotation 𝑠 is the material parameter 
𝐾 in its dimensionless formulation. The microstructure's viscosity governs its angular rotation. To 
illustrate this, the maximum angular velocity lowers, the boundary layer depth and the horizontal 
velocity field increase, as seen in Figures 3(a) and 3(b), when the material parameter 𝐾 rises apart 
from the surface but the reverse happens close to the surface. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3. The impact of 𝐾 on (a) the velocity and (b) Micro-rotation profile at different 𝐾 
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The elasticity number 𝛽 is calculated by dividing the time it takes for a material to relax after 

being subjected to stress or distortion by normal time scale of a trial.  In Figure 4(a), the velocity 
decreases as the elasticity amplifies. Naturally, with rich elasticity values, material nigh a solid state 
where elasticity is dominant, slowing the flow rate down. A raise in the highest angular velocity may 
be seen in Figure 4(b). 
 

 

 

 
(a)  (b) 

Fig. 4. The impact of 𝛽 on (a) the velocity and (b) Micro-rotation profile at different 𝛽 

 
There is a drop in the horizontal velocity at 𝜁 =1 when the flow enters steady state as observed 

in Figure 5(a) while Figure 5(b) shows a rise in maximum angular velocity as time goes on. 
 

 

 

 
(a)  (b) 

Fig. 5. (a) The impact of 𝜁 on the velocity and (b) Micro-rotation profile at different 𝜁 

 
Table 5 shows numerical data for skin friction for weak and strong fluids in the existence of a 

magnetic field at different levels of elasticity number 𝛽. The table displays the results when the 
micro-polar effect is absent (𝐾 = 0) and when it is present (𝐾 = 1). The info confesses that as 
elasticity 𝛽 raises, skin friction increases in all circumstances. In the absence of material parameter 
(𝐾 = 0), skin friction is same for weak and strong fluids. 
 

Table 5 
The impact of 𝛽 on −  𝑓′′(0) at 𝜁 = 1,𝑀 = 1 
 𝑲 = 𝟎 𝑲 = 𝟏 

𝜷 𝑛 = 0 𝑛 = 0.5 𝑛 = 0 𝑛 = 0.5 
0 1.414216 1.414216 0.971142 1.1376808 
0.2 1.450241 1.450241 0.996688 1.1662131 
0.4 1.485725 1.485725 1.021871 1.1942605 
0.8 1.555044 1.555044 1.071112 1.2489034 
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The skin friction of the weak fluid is made lower than that of the strong fluid when the material 
parameter is present (𝐾 = 1). In practice, skin friction is crucial in several manufacturing processes, 
such as cooling operations. Low friction indicates less drag force is needed to pull a moving surface, 
or less power is required to accomplish the specified drag velocity. 

Table 6 demonstrates the impression of the magnetic parameter 𝑀 on Micropolar fluid in both 
lack and presence of the elasticity. When the elasticity parameter 𝛽 = 0.2 is present than when 
elasticity parameter 𝛽 = 0 is present, skin friction is greater. When magnetic 𝑀 rises, skin friction 
also enhances. Due to Lorentz drag caused by the magnetic field, the shift from a laminar to a 
turbulent flow was delayed. 

 
Table 6 
The impact of 𝑀 on − 𝑓′′(0) at 𝜁 = 1,𝐾 = 1 

 𝜷 = 𝟎 𝜷 = 𝟎. 𝟐 

𝑴 𝑛 = 0 𝑛 = 0.5 𝑛 = 0 𝑛 = 0.5 
0 0.68520322 0.81800377 0.72140338 0.85931319 
1 0.97114272 1.13768086 0.99668815 1.16621319 
2 1.19394809 1.37859799 1.21469879 1.40147034 
4 1.54945586 1.75457035 1.56545806 1.77192531 

 
Table 7 depicts the echo of material parameter on skin friction in existence/absence of magnetic 

field. Magnetic field influences skin friction, although not as much as it does without one (explained 
before physically). As material parameter rises, skin friction lessens. Vortex expansion leads to a 
growth in velocity and a loss in skin friction as the material parameter rises. 

 
Table 7 
The impact of 𝐾 on −𝑓′′(0) at 𝜁 = 1, 𝛽 = 0.1 
 𝑴 = 𝟎 𝑴 = 𝟏 

𝑲 𝑛 = 0 𝑛 = 0.5 𝑛 = 0 𝑛 = 0.5 
0 1.02653621 1.02653621 1.43229609 1.43229609 
1 0.70342601 0.83882087 0.98395958 1.15200734 
2 0.55701139 0.72772090 0.78017038 0.99726838 
4 0.41530962 0.59716787 0.58080459 0.81615734 

 
6. Conclusions 

 
The Legendre-Galerkin method is used in this study to inspect the impact of magnetic field on 

boundary layer flow in Maxwell fluid over an unsteady stretched surface. A comparison was made 
with earlier released studies, and the info is very similar. It is investigated the impacts of the 
preceding factors on flow, skin friction and micro-rotation. The following points are discovered: 

 
i. When magnetic field is increased, Lorentz force is produced, which lessens flow velocity. 

Hence, depth of the boundary layer is lessened. It also raises angular velocity's maximum 
value. 

ii. The velocity and the highest angular velocity rise when the material and the elasticity 
parameters are increased. 

 
When the elasticity number and the magnetic field are increased, or when the material 

parameter is decreased, the skin friction increases. 
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