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This paper explores the use of space-time coding in beam steering, using 1-bit, 2-bit, 
and 3-bit reconfigurable coded meta-surfaces. By periodically changing the code 
arrangement in the time domain, a metasurface with code order in space and time is 
achieved. Selected codes are used to steer the beam in different directions for radar 
sensing systems applications.  The phase of the harmonic signal is changed by 
controlling the position of different bits in each code sequence. The construction of 8×8 
unit-cell elements (120×120×3.2 mm3) involves the use of a grounded dielectric 
container filled with inert-argon gas. The metasurface logic-state is controlled via the 
ionization degree of inert-gas with time-switching controlling the harmonic 
frequencies. Different time-switching sequences are investigated for beam steering. 
The proposed coding metasurface is analysed using CST Microwave Studio and the 
results are compared with the analytical solution using MATLAB. 
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1. Introduction 
 

Recently, reconfigurable intelligent surfaces (RISs) are widely recognized as a promising 
technology for wireless 6G communication. The concept of digital meta-surfaces was put in 2014 [1-
4]. Several reconfigurable antennas are employed to enable various functionalities that are used in 
the different applications [5,6]. Metasurface can configure the characteristics of EM-wave in 
microwave range.  An RIS is a planar surface that consists of many elements, each of which can be 
reconfigurable and scattered [7-10]. The RIS gain is proportional to the square of the number of the 
unit-cell elements. In reconfigurable coding metasurface reconfigurable elements using diodes as 
active elements such as electronic switches, or using reconfigurable material such as plasma material 
or graphene are introduced. Field-programmable gate array (FPGA) is used to make programmable 
metasurface platform [2].  In space-coding, the code order is fixed with time, however, in space-time 
coding meta-surfaces is characterized by spatially and temporally variant properties. Digital 
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metasurface using the space-time coding is illustrated in [7,8]. The switching waveform affects the 
scattering patterns from RIS [9-12]. In time coding modulation, each switching order is a train of 
periodically repeating bits controlled via time-pulses applied to the control switch [2,13,14]. Plasma 
material has many advantages like stealth coupling off-on rapid switch mode, and repaid 
reconstruction [15-23]. Plasma reflectarray [17], transmitarray [18], frequency selective surfaces [19], 
and artificial magnetic conductors [20]. Reconfigurable time-modulated plasma arrays applied in 
beam-shaping and beam-steering were investigated in [11,24].     

In this paper, the beam-steering is performed by controlling the different bits of each code. 
Comparisons between the full wave analysis using CST Microwave Studio and the analytical solution 
using MATLAB are investigated. The plasma construction has simple structure and low coupling. The 
plasma makes the structure to be reconfigurable with respect to its shape, working frequency and 
signal bandwidth on millisecond to microsecond timescales [25,26]. The radiation characteristics of 
the unit-cell are investigated. The time coding is used to feed an 8x8 elements. Beam scanning using 
1-bit, 2-bit, and 3-bit is performed.  

 
2. The Design of Coded Metasurface   

 
In this section, the coding metasurface performance is evaluated both numerically and 

analytically. To verify the numerical results, isotropic elements are considered. MATLAB is used to 
calculate and plot the scattering pattern.   The coding metasurface is constructed from NxN unit-cell 
elements with the same size in which each element is occupied by “0” or “1” element in 1-bit coding 
metasurfaces. The codes are extended to 2-bit and 3-bit cases. The reflection phases of 0o, 90o, 180o, 
and 270o degrees are used for 2-bit case and 0o, 45o, 90o, 135o, 180 o, 225o, 270o, and 310o degrees 
are used for 3-bit case. The scattered pattern from the planar array illuminated by plane wave can 
be written as:  

 
                                         (1) 
 
 

 

where   𝛹 = 𝑥𝑖  𝑢 + 𝑦 𝑖 𝑣,   𝑢 = 𝑠𝑖𝑛Ɵ𝑐𝑜𝑠𝜑,  𝑣 = 𝑠𝑖𝑛Ɵ𝑠𝑖𝑛𝜑, (xi, yi) is the position of the ith element.  

𝑓(𝜃, 𝜑) is the scattered pattern of the unit-cell at fc, and 𝛽 =
2𝜋

𝜆𝑐
 is the wave-number. For the 

modulation period, To larger than Tc (𝑇𝑜 ≫ 𝑇𝑐), the reflection coefficient can be expressed as   
 

𝛤𝑖(𝑡) =  ∑ Γ𝑖
(𝑙)𝐿

𝑙=1  𝑈𝑙𝑖 (𝑡)                                                                            (2) 
 

𝛤𝑖(𝑡) is the time-modulated reflection coefficient and 𝑈𝑙𝑖 (𝑡) is a periodic pulse function defined 
as: 

 
          (3) 
 

 

Represents a rectangular pulse of width denotes on one of the possible 
reflection-coefficient states (at the excitation frequency, fc) of the coding element. For 1-bit case 

associated with the bits {0,1}, for a 2-bit case, whereas for  
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a 3-bit case,  Thus, the far-field scattering  
 
pattern of the coding metasurface at he mth harmonic frequency is given by,  
 

           (4) 
 

 
            (5) 
 

 

Throughout the paper,  is assumed. By controlling the time-coding sequences of the 

individual elements, a set of complex reflection coefficients  are synthesized to control their 
scattering properties 
 
3. Design of Plasma Metasurface Unit-Cell 
 

The dispersive electrical properties of the plasma are modelled by Drude model given by [21], 
 
              (6) 
 

 
where εr is the relative permittivity, fc is the operating frequency, fv is the collision frequency, and fp 
is the plasma frequency which is related to the electron density ne as 

 
              (7) 
 
 

where e and me are the electron charge and mass. The electron density of the ionized plasma medium 
is controlled by the applied DC voltage as given by [21] 

 
                                                                                                                                     (8) 
 
 

where K is Boltzmann constant, and Te is the electron temperature. By increasing the plasma 
frequency, the electron density and then the plasma conductivity is increased at fixed operating 
frequency. It is found that plasma conductivity is affected by the electron density at a fixed collision 
frequency.  
 
4. Results and Discussion 

 
The dielectric cover of the unit cell has a thickness of Hc and a relative dielectric constant of εrc=3.4 

as shown in Figure 1. It is connected to a central cylinder with two arms of thickness tc and placed on 
a dielectric grounded dielectric (FR4, εrd =4.6, tanδ=0.036) with a thickness of Hs. The gas is ionized 
using DC voltage at a height of Hp. The reflection coefficient is calculated using the CST Microwave 
Studio, with the unit cell boundaries set to simulate an infinite array and consider mutual coupling 
between adjacent elements.  
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Fig. 1. Schematic of plasma unit-cell element 

 
Figure 2(a) displays the phase variation of the reflection coefficient at 9 GHz with plasma 

frequency ranging from 4.5×1011 rad/sec to 16×1011 rad/sec, resulting in a phase variation of 0 to 
309o degrees. Figure 2(b) shows the phase of the reflection coefficient of the unit cell element at 
different values of ωp1=4.5×1011 rad/sec, ωp2=6.52×1011 rad/sec, ωp3=7.8×1011 rad/sec, and 
ωp4=10.8×1011 rad/sec, with ωp1=4.5×1011 rad/sec representing bit “0” and ωp2=10.8×1011 rad/sec 
representing bit “1”.  
 

 

 

 
(a)  (b) 

Fig. 2. Unit-cell performance characteristics 

 
The dimensions of the unit-cell are illustrated in Table 1, while Table 2 lists the required plasma 

frequencies for 2-bit and 3-bit coding states of the unit cell element. 
 

Table 1 
The unit-cell dimensions (in 
millimetre) 
Lc 1.5 R1 4.0 Wc 1.0 

W 0.5 R0 3.0 HC 1.2 

tc 0.2 Ri 0.25 Hs 2.0 

Hp 1.0 εrc 3.4 εrd 4.6 

 
Table 2 
The required plasma frequencies for 2-bit and 3-bit coding states of the unit cell 

Coding Bits Plasma Frequency (rad/sec) 

1-bit 4.5×1011 7.62×1011 
2-bit 4.5×1011 6.52×1011 7.62×1011 10.8×1011 
3-bit 4.5×1011 6.19×1011 6.52×1011 6.98×1011 7.62×1011 9.03×1011 10.8×1011 16.82×1011 
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The proposed coding metasurface is depicted in Figure 3. The scattering patterns of the array, 
which is comprised of 8×8 ring plasma metamaterial elements, are simulated using CST Microwave 
Studio. The total size of the metasurface is 120×120×3.2 mm3, with Lc=λc/2. Each column has the 
same ionization voltage. For 1-bit, the reflection coefficient phase is either 0o or 180o degrees, for 2-
bit it is 0o or 90o or 180o or 270o degrees, and for 3-bit it is 0o or 45o or 90o or 135o, 180o or 225o or 
270o or 315o degrees.  
 

 

 

 

(a) Top view  (b) Side view 

Fig. 3. The proposed coding metasurface 

 
Figure 4 displays the scattered field for the 1-bit beam steering case. The sequence for the first 

time slot is 001000110111 (L=12), followed by 2-bit shifting for the next time slots, 4-bit shifting and 
six-bit shifting. The centre frequency is 9 GHz. The scattering patterns in the x-z plane at 9 GHz for 
each bit shift are compared with the analytical solution using Eq. (4). Due to the coupling between 
the elements, high sidelobe levels are obtained. 
 

 

 

 

 

 
(a) 2-bit space shift 

 
(b) 4-bit space shift 

y 

x 

y 
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 Analytical array 

Plasma RIS 

 Analytical array 

Plasma RIS 
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(c) 6-bit space shift 

Fig. 4. The scattering patterns at 9 GHz for 1-bit coding case for different space shifts 

 
The coding metasurface for 2-bit beam steering is made up of four coding elements, namely "00", 

"01", "10", and "11", each exhibiting a phase response of 0o, 90o, 180o, or 270o degrees, respectively. 
The number of time slots (L) is fixed at 4 for all elements in the array. Figure 5 shows the scattered 
patterns for the 1st harmonic frequency, with good agreement between the analytical and plasma 
RIS results. The scattering patterns for the subsequent time slots are also shown, with no-bit shifting, 
one-bit shifting, two-bit shifting, and three-bit shifting backward. The maximum direction of the 
beam varies depending on the harmonic frequency. 
 

 
(a) 1-bit space shift 

 
(b) 2-bit space shift 

 Analytical array 

Plasma RIS 
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(c) 3-bit space shift 

Fig. 5. The scattering patterns at 9 GHz for 2-bit coding case for different space shifts 
 

In the case of 3-bit beam steering, the value of L is 8, which corresponds to the elements of the 
array (0, 1, 2, 3, 4, 5, 6, 7). Each element exhibits phase responses of 0o, 45o, 90o, 135o, 180o, 225o, 
270o, or 315o degrees. The scattered patterns of the 1st harmonic component can be seen in Figure 
6. The field patterns are shown for different bit shifting scenarios, 1-bit shifting, 3-bit shifting and 5-
bit shifting. 

 

 
(a) 1-bit space shift 

 
(b) 3-bit space shift 

 
(c) 5-bit space shift 

Fig. 6. The scattering patterns at 9 GHz for 3-bit coding case for different space shifts 
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4. Conclusion 
 

The investigation focuses on the utilization of space-time coding metasurface for beam steering. 
The metasurface is composed of a 2-D array consisting of 8x8 elements with dimensions of 
120x120x3.2 mm3. Each element is filled with gas, and the scattering from each unit cell is controlled 
using the plasma frequency. The radiation at harmonic frequencies is regulated through plasma 
ionization. Various time-switching sequences are examined to achieve beam steering. The results are 
obtained through both analytical solution and CST Microwave Studio simulator, and they exhibit good 
agreement. The space-time coding is demonstrated using different sequences, including 1-bit, 2-bit, 
and 3-bit reconfigurable coding metasurfaces. The scattered patterns are achieved by employing 
plasma ionization. The beam steering of the coding metasurface is showcased by electronically 
shifting the bits of the selected code. Additionally, a faster switching scheme utilizing plasma 
ionization gas is explored for phase modulation, which can be employed to steer the beam of the 
structure. This technique holds potential applications in radar sensing and multipoint 
communications.  
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