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1. Introduction

Weakly singular Volterra integral equations of the second has many applications in various areas.
For instance, mathematical physics, chemistry, electrochemistry, semi-conductors, scattering theory,
seismology, heat conduction, metallurgy, fluid flow, chemical reactions, and population dynamics.
Volterra integral equations are models of evolutionary problems arising in many applications such as
electromagnetic scattering, demography, viscoelastic materials. et al., [1,2].

Numerous publications describing contemporary strategies and techniques for solving Volterra
integral equations with weakly singular kernels have been published et al., [3-9]. Numerous
publications for solving Fredholm integral equations of the first kind with singular logarithmic kernel
and singular unknown functions have been published by Shoukralla et al., [10-21]. Besides, based on
a certain enhanced formula of the barycentric Lagrange interpolation, numerous methods et al., [22-
24] are established to solve regular and weakly singular Volterra and Fredholm integral equations.
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All of these approaches are applicable in this situation, but we wanted to propose something new.
The aim of this research is to find the approximate solution to the Volterra integral equations of the
second kind with weakly singular kernels and. However, we would like to present a new method
based on shifted Legendre polynomials of the first kind. In this method, both the unknown function
and the data function are approximated through three matrices, one of which is a square matrix
whose elements contain the coefficients of Legendre polynomials listed in ascending order. The
singularity of the kernel is treated analytically, so we get a double approximation of the kernel
through five matrices. The idea of substituting the approximate unknown function on both sides of
the integral equation enabled us to obtain an equivalent algebraic system for the solution without
using the collocation method. Two examples were solved numerically, and the results were strongly
converging to the exact solutions.

2. Methodology

Consider the Volterra integral equation of the second kind with weakly singular kernel.
ulx) = f(x) + fox(x —t) %p(x, Hu(t)dt @e222,t €N =[0,T],a € (0,1) (1)

Here, f(x) is defined on€2, and ¢(x,?) is defined on D:={(x,1)<0<x<¢<T such that
o(x,t) # 0 for x € Q. The well-posedness of the solution u(x) has attracted much attention [1,2]. Eq.

(1) has a unique solution u(x)€C"]0,{]N[0,7] with |u'(x)|< Cx™ provided f(x)€C"(Q), and

@(x,t) € c” (D) for some m>1 [3]. Now, we begin the process of initiating the implementation for

solving Eg. (1). The suggested approach will rely on shifting first-kind Legendre polynomials to
approximate both the unknown function and the known function. Regarding its two variables, the
kernel will be approximated twice.

2.1 Definition

The set of shifted Legendre polynomials of the first kind {Pl(x)}g are orthogonal on [O,l] and
given by

1d"
X)=—
P, (x) T

n=0:m (2)

(o =x)"; j P, (¥)p, (¥)dv =

Suppose u(x) is a piecewise continuous and has a finite number of maxima and minima in [O,l]
1
o0
then the series 3" ¢; P (x), where ci=(2i+1)ju(x)}’i(x)dx converges to u(x) if and only if « is not
i=0 0
a point of discontinuity.
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2.2 Definition

The square matrix created by extracting the coefficients of Legendre polynomials {P, (x)}g such
that the first row is the coefficents of PO(X) in ascending power of «, the second row is the coefficents

of Pl(X),and so on is said to be the Legendre coefficients matrix and is denoted by Pn,n-
Based on definitions 2.1 and 2.2, we find the approximate unknown function of degree »,
denoted by u,, (x) in the form

1, (x)=X ()P U G

Here Uz[ui]?zo is the unknown coefficients column matrix to be determined, Pn’n can be

calculated by definition 2.2, and X(x):[x’}n is @ row matrix of the monomial basis functions.
i=0

Similarly, the given data function can be approximated in the form.
I (x) = X(X)PZz:nF (4)

where F= [fl-]?zo is the known coefficients column matrix such that {fi}?zo can be found by

1 _
[=Qi+ D] f (x) Py (x)dx, i =0,n (5)
0

The kennel & (x,t) = will be approximated by the same way as well as U, (x) but with

(x=1)"

the consideration of the two variables X and . Approximating k(X, I) subjected to ¥ , gives kn (x,t)

via the (n+1)><1 column matrix N(f) in the form

1
k,(x,t)= X(x)P,inN (1);N(t)=[n;(1)] z"l:O ,n;(1) =(2i+l)jk(x,t)Pi (x)dx (6)
0

To remove the singularity of n,-(t) we consider [ as a singular point and subdivide the domain of
integration around this point, so we get.

t 1
n; (£)=Qit D[ k (x,1) Py (x) dx + 2i+1)[ k (x,£) P, (x) dx (7)
0 t
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Moreover, each entry 7; ( ) Vi= O n will be approximated with respect to the variable  so

that we get kn n(x t via (n+1) ( ) square known kernel’s coefficients matrix , say, Kn,n in
the form

1
b (50) = X (3) P K P X (0K = [k 7oy D] m 0Py
Furthermore, we get. !
e (5,10, (1) = X (x) P K P XA P U s X0) =X (1) X (1) (©)
Substituting &, , (x,¢)u, () of Eq. (9) into Eq. (1), we get
.
u, (x)=f (x)+X(x)PT K, P, x)PT U ; ¥(x)= (j)%(t)dt (10)

Substituting u,, (x) given by Eqg. (10) in the left side of Eq. (1), kn,n (x,t) given by Eq. (8), and
u, (t) in the right side, we get

£ (x)+X(x)PL K, P, M(x)P] U= (x)
+({ X (5)P oK P X (1 ){f(r>+x<z>P£,n N EOLA

Simplifying Eq. (11) and replace f(t) with fn (t) given by Eq. (4), we get.

X(x)PnTnKn,nPn,nX({)PrZ:nU = _X(x)Pg:nKn,nPn,nX(x)Pg:nKn,nPn,nX(x)PanU (12)
= X(x)PnT:nKn,nPn,nX(x)Pn’ljnF

Consequently, we get the algebraic linear system

%x)Pg,nU—%x)PinKnn nn%x)P U:%x)Pg’nF (13)

Hence, we get the unknown coefficients matrix U by

U:( n nPn n% ) (14)
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Finally, we find the approximate solution u,, (x) by

un(x):X(x)Pg,n(In nn nn%( ) F (15)

3. Results

In this section, we consider two test problems corresponding to the Eqg. (1) to demonstrate the
efficiency of the proposed method. The computations associated with the experiments discussed
above were performed in MATLAB2019a. We solved these problems for x=0.1,0.2,0.4,0.6, and

n=2,3,5. The exact solution at X; =0.0:x/10:1.0 is denoted by u( ) the approximate solution
polynomial of degree 7 is denoted by u,f(xl-) for x=0.1,0.2,0.4,0.6, and the absolute error is

() (x,).

graphs of the exact solution and the approximate solutions and the related absolute errors. Figures
5,6,7, and 8 are related to example 2.
Example 1. Consider the problem.

denoted by mﬁ(x,-) = Figures 1,2,3, and 4 are related to example 1 to show the

216§x

u(x) 15 J.\/_ )dt , xe[O,l] (16)

whose exact solution (x)=x2 [5].

Table 1
”(xi)' uO.l (xi)' and 9‘1’2'1 (xi) of example 1 for n=2,3,5

n

xiooul) (%) W (x) Wwdl(x) wY'(x) wY'(x) wY(x)
0 0 0.019303 0.000559 -0.00068 0.019303 0.000559 0.000678
0.01 0.0001 0.016083 8.44E-05 -0.00091 0.015983 1.56E-05 0.001013
0.02 0.0004 0.013338 -6.1E-05 -0.00084 0.012938 0.000461 0.001237
0.03 0.0009 0.011066 0.000125 -0.00045 0.010166 0.000775 0.001347
0.04 0.0016 0.009267 0.000647 0.000262 0.007667 0.000953 0.001338
0.05 0.0025 0.007942 0.001507 0.001293 0.005442 0.000993 0.001207
0.06 0.0036 0.007091 0.002708 0.002649 0.003491 0.000892 0.000951
0.07 0.0049 0.006713 0.004254 0.004334 0.001813 0.000647 0.000566
0.08 0.0064 0.006808 0.006146 0.006351 0.000408 0.000254 4 .9E-05
0.09 0.0081 0.007377 0.008389 0.008704 0.000723 0.000288 0.000604
0.1 0.01 0.00842 0.010984 0.011397 0.00158 0.000984 0.001397
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Fig. 1. Graphs of the exact solution and the approximate solutions and the related absolute errors

Table 2
u(xi), u0'2 (xi)' and 9{2'2 (xi) of example 1 for n=2,3,5

n

Yiouln) wd?(x) W?(n) u8?(w) WEP(x) W2 (x) N3 (x)
0 0 0.01419 -0.00274 0.001978  0.01419 0.002735 0.001978
0.02 0.0004 0.008233 -0.00436 -0.00203 0.007833 0.004761 0.002427
0.04 0.0016 0.004175 -0.00454 -0.00399 0.002575 0.006143 0.005586
0.06 0.0036 0.002014  -0.00326 -0.00397 0.001586 0.006864 0.007567
0.08 0.0064 0.001751 -0.0005 -0.00203 0.004649 0.006904 0.008433
0.1 0.01 0.003386  0.003758  0.001764  0.006614 0.006243 0.008236
0.12 0.0144 0.006918  0.009539 0.007376  0.007482 0.004861 0.007025
0.14 0.0196 0.012349 0.016859  0.014761  0.007251 0.002741 0.004839
0.16 0.0256 0.019678  0.025739  0.023886  0.005922 0.000139 0.001714
0.18 0.0324 0.028904  0.036197  0.034721  0.003496 0.003797 0.002321

0.2 0.04 0.040028 0.048253 0.047245 2.8E-05 0.008253 0.007245
0.06 5 0.01 _
0.008 o
0.04 o
0.006
0.02 0.004 .
0 > 0002 |&-¢ o
S EFEELER 0 >
002 sSSs3sss8s° °cg8TEEz2Texd
o O O O

, S3S3SS
—Exact Solution

—o— Absolute Error for n=3
—o— Approximate Solution for n=3 soie Brrororh

@ Absolute Error for n=5
—+— Approximate Solution for n=5 soie brororh

Fig. 2. Graphs of the exact solution and the approximate solutions and the related absolute errors
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Table 3
u(xl-), u2'4 (xi)' and 9{2'4 (xi) of example 1 for n=2,3,5
Yiouly) Wdt(m) ut(x) wdt(x) R(x) RI(w) RH(x)
0 0 0.008536 0.014123 -0.02237 0.008536 0.014123 0.022367
0.04 0.0016 -0.00939 -0.00698 -0.01031 0.010987 0.008582 0.011911
0.08 0.0064 -0.01902 -0.01905 -0.00664 0.025415 0.025449 0.013036
0.12 0.0144 -0.02035 -0.02215 -0.00568 0.034749 0.036547 0.020081
0.16 0.0256 -0.01339 -0.01634 -0.00291 0.038987 0.041941 0.028511
0.2 0.04 0.001869 -0.0017 0.005182 0.038131 0.041698 0.034818
0.24 0.0576 0.025419 0.021715 0.021189 0.032181 0.035885 0.036411
0.28 0.0784 0.057265 0.053832 0.046886 0.021135 0.024568 0.031514
0.32 0.1024 0.097405 0.094586 0.083337 0.004995 0.007814 0.019063
0.36 0.1296 0.14584 0.14391 0.131 0.01624 0.01431 0.0014
04 0.16 0.20257 0.20174 0.18984 0.04257 0.04174 0.02984
0.3 A 0.05 A
0.2 0.04
0.1 0.03
0.02
0 > 0.01
S ¥ ® N O A T 0 A O <
-0.1 SO = = o O AN on o g 0 >
e e e o e < © S ® N O N T © Ao <
. S Qe T T ag
—Exact Solution S S S S S oo o

—o— Approximate Solution for n=2
—— Approximate Solution for n=3

—— Approximate Solution for n=5

Fig. 3. Graphs of the exact solution and the approximate solutions and the related absolute errors

—— Absolute Error for n=2

—o— Absolute Error for n=3

—o— Absolute Error for n=5

Table 4
u(xl-), u2'6 (xi)' and 9{2'6 (xi) of example 1 for n=2,3,5

5o u(n) §0n) 800n) W00 RIO(x) WEO(x) WEO(x)
0 0 0.052921 0.010538 -0.0565 0.052921 0.010538 0.056497
0.06 0.0036 -0.00717 -0.02222 -0.02743 0.010773 0.025815 0.031029
0.12 0.0144 -0.04455 -0.04119 -0.01396 0.058947 0.055585 0.028363
0.18 0.0324 -0.0592 -0.04511 -0.00862 0.091599 0.07751 0.041024
0.24 0.0576 -0.05113 -0.03273 -0.00338 0.10873 0.090329 0.060978
0.3 0.09 -0.02034 -0.00278 0.009932 0.110341 0.092782 0.080068
0.36 0.1296 0.03317 0.045992 0.039143 0.09643 0.083608 0.090457
0.42 0.1764 0.1094 0.11485 0.091336 0.067 0.06155 0.085064
0.48 0.2304 0.20835 0.20506 0.17239 0.02205 0.02534 0.05801
0.54 0.2916 0.33003 0.31788 0.28655 0.03843 0.02628 0.00505
0.6 0.36 0.47442 0.45457 0.43599 0.11442 0.09457 0.07599
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Fig. 4. Graphs of the exact solution and the approximate solutions and the related absolute errors

Example 2. Consider the problem.

1

x—t

u(x)=2 xX-— u(t)dt , xe[O,Z] (17)

S — =

whose exact solution u(x)=1_e”xerfc(«/ﬂx) which is the complementary error function [Karimi].

Table 5

u(xl.), ug'l(xl.),and 922'1(xi) of example 2 for n=2,3,5

X; u(xl-) ug'l(xi) ug'l(xl-) ug'l(xi) ‘Rg'l(xl-) ‘J{g'l(xl-) ER(s)'l(xl-)

0 0 0.11945 0.03337 -0.00257 0.11945 0.03337 0.00257
0.01 0.17233 0.15266 0.079671  0.051348  0.01967 0.092659 0.120982
0.02 0.23015 0.18556 0.12497 0.1036 0.04459 0.10518 0.12655
0.03 0.27019 0.21815 0.16927 0.15422 0.05204 0.10092 0.11597
0.04 0.30136 0.25042 0.2126 0.20326 0.05094 0.08876 0.0981
0.05 0.32704 0.28238 0.25496 0.25076 0.04466 0.07208 0.07628
0.06 0.34893 0.31402 0.29637 0.29675 0.03491 0.05256 0.05218
0.07 0.36804 0.34536 0.33686 0.34129 0.02268 0.03118 0.02675
0.08 0.38499 0.37637 0.37642 0.3844 0.00862 0.00857 0.00059
0.09 0.40023 0.40708 0.41507 0.42614 0.00685 0.01484 0.02591
0.1 0.41406 0.43747 0.45284 0.46653 0.02341 0.03878 0.05247
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Fig. 5. Graphs of the exact solution and the approximate solutions and the related absolute errors

Table 6
u(xl.), u2'2 (xi)' and 9{2'2 (xi) of example 2 for n=2,3,5
. . 0.2 0.2 0.2 0.2 0.2 0.2
ioou(x)  W(x) u(x) uwd?(x) ®IF(x) WI(x) %I (x)
0 0 0.11945 0.03337 -0.00257 0.11945 0.03337 0.00257
0.01 0.17233 0.15266 0.079671 0.051348 0.01967 0.092659 0.120982
0.02 0.23015 0.18556 0.12497 0.1036 0.04459 0.10518 0.12655
0.03 0.27019 0.21815 0.16927 0.15422 0.05204 0.10092 0.11597
0.04 0.30136 0.25042 0.2126 0.20326 0.05094 0.08876 0.0981
0.05 0.32704 0.28238 0.25496 0.25076 0.04466 0.07208 0.07628
0.06 0.34893 0.31402 0.29637 0.29675 0.03491 0.05256 0.05218
0.07 0.36804 0.34536 0.33686 0.34129 0.02268 0.03118 0.02675
0.08 0.38499 0.37637 0.37642 0.3844 0.00862 0.00857 0.00059
0.09 0.40023 0.40708 0.41507 0.42614 0.00685 0.01484 0.02591
0.1 0.41406 0.43747 0.45284 0.46653 0.02341 0.03878 0.05247
I A 025 4
0.2
0.5 0.15
0l
0 >
S AN T O 00—~ N F O 0 N 0.05
E33&3====3 0 S
-0.5 c o oo R R =) >
O A T O W~ N F O o N
) S = e =
—Exact Solution S S oo S S oS o

—o— Approximate Solution for n=2
—o— Approximate Solution for n=3

—— Approximate Solution for n=5

—o— Absolute Error for n=2
—o— Absolute Error for n=3

—— Absolute Error for n=5

Fig. 6. Graphs of the exact solution and the approximate solutions and the related absolute errors

40



Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 53, Issue 1(2025) 32-43

Table 7

u(xl-), u2'4 (xi)' and 9?2'4 (xi) of example 2 for n=2,3,5

. . 0.4 0.4 0.4 0.4 0.4 0.4
Yioouly)  udt(w) u3t(n) wdt(xn) REA(w) WEH(x) WEH(w)
0 0 -0.08487 0.043977 -0.06952 0.084869 0.043977 0.069515
0.04 0.30136 0.003143 0.070079 0.064294 0.298217 0.231281 0.237066
0.08 0.38499 0.090536 0.10942 0.15029 0.294454 0.27557 0.2347
0.12 0.43839 0.17731 0.16075 0.20898 0.26108 0.27764 0.22941
0.16 0.47757 0.26346 0.22281 0.25626 0.21411 0.25476 0.22131
0.2 0.50835 0.34899 0.29436 0.30387 0.15936 0.21399 0.20448
0.24 0.53357 0.4339 0.37412 0.35989 0.09967 0.15945 0.17368
0.28 0.55483 0.51819 0.46086 0.42913 0.03664 0.09397 0.1257
0.32 0.57314 0.60186 0.55332 0.51362 0.02872 0.01982 0.05952
0.36 0.58916 0.68492 0.65024 0.61306 0.09576 0.06108 0.0239
0.4 0.60335 0.76735 0.75037 0.72526 0.164 0.14702 0.12191
0.4 A
0.3
0.2
0.1
0 >
S X ® AN O AN T ® A O T
. ST T odAd g
—Exact Solution S S 3 S S oSS
—o— Approximate Solution for n=2 —o— Absolute Error for n=2
—o— Approximate Solution for n=3 —o— Absolute Error for n=3
—— Approximate Solution for n=5 —o— Absolute Error for n=5

Fig. 7. Graphs of the exact solution and the approximate solutions and the related absolute errors

Table 8

u(xl-), u2'6 (xi)' and 9{2'6 (xi) of example 2 for n=2,3,5

5u(y) adn) Wdn) Wx) WEO(n) WO(y) REO(x)
0 0 0.020048 0.048035 -0.17684 0.020048 0.048035 0.17684
0.06 0.34893 0.061829 0.06891 0.068084 0.287101 0.28002 0.280846
0.12 0.43839 0.11243 0.10568 0.19551 0.32596 0.33271 0.24288
0.18 0.49379 0.17184 0.15734 0.25423 0.32195 0.33645 0.23956
0.24 0.53357 0.24006 0.22293 0.28242 0.29351 0.31064 0.25115
0.3 0.56431 0.3171 0.30145 0.30856 0.24721 0.26286 0.25575
0.36 0.58916 0.40296 0.39191 0.35234 0.1862 0.19725 0.23682
0.42 0.60987 0.49763 0.49333 0.42562 0.11224 0.11654 0.18425
0.48 0.62753 0.60112 0.60472 0.53334 0.02641 0.02281 0.09419
0.54 0.64285 0.71342 0.72509 0.67445 0.07057 0.08224 0.0316

0.6 0.65632 0.83454 0.85346 0.84284 0.17822 0.19714 0.18652




Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 53, Issue 1(2025) 32-43

L A 0.4 A
0.5 0.3
0.2
0 > 0.1
O AN &0 F on O AN 0 T O
S - =~ A S AT v S 0 S
-0.5 S o o o S S o S >
S O AN 0 I on O Al O < O
] S — = A SN N g
—Exact Solution S S 3 S S o 3 S
—o— Approximate Solution for n=2 —o— Absolute Error for n=2
—o— Approximate Solution for n=3 —o— Absolute Error for n=3
—— Approximate Solution for n=5 —— Absolute Error for n=5

Fig. 8. Graphs of the exact solution and the approximate solutions and the related absolute errors
4. Conclusions

In this work, we investigated numerical solutions of Volterra integral equations of the second kind
with weakly singular kernels using traditional Legendre polynomials. The created procedure is based
on operational matrices. The main difficulty in approximating these equations is that the kernels have
singularities which result in low-order convergence for any methods using traditional polynomials.
To overcome this difficulty, we proposed an analytical treatment of the singularity and reduce the
solution to an equivalent linear algebraic system without applying the collocation method. Two
numerical examples were carried out to verify the efficiency of the proposed method.
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