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In this research, we presented a simple approach to approximate the second type of 
linear weakly singular and non-singular Fredholm integral. Shifted Legendre 
polynomials of the first kind in matrix-vector forms were used to construct the 
approach. The singularity of the kernel was removed analytically. Theorems regarding 
the convergence of the estimations of the error norm and the mean were proved. The 
numerical examples demonstrated the method's uniqueness and precision. Keywords: 

Fredholm integral equations; weakly 
singular kernels; Legendre polynomials; 
approximation; computational method 

 
1. Introduction 
 

One of the most crucial foundations for resolving initial, boundary, and mixed value issues is the 
branch on integral equations. This is due to its ability to transform each of these issues into an 
identical boundary integral equation. In addition to having the ability to get around the solution's 
singularity at specific points in the integration domain, this decreases the amount of computation 
time needed to solve boundary problems using conventional techniques. Numerous scientific fields, 
including nanotechnology, radar theory, scattering, artificial intelligence, heat equations, heat flux, 
and other crucial areas, have advanced along with the methods for solving singular and non-singular 
integral equations. In this study, we investigate a novel approach for solving the second kind 
Fredholm integral equations whose kernels are weakly singular, and smooth kernels. Of course, there 
are numerous published techniques for finding the solution of such problems. However, we will 
introduce a new approach based on the approximation using Legendre polynomials of the first kind. 
In the other hand there are numerous published methods to solve this type of equation, however 
the majority of them are difficult to understand and contain numerous theories and lemmas, making 
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it challenging to pinpoint the mechanism and stages for the solution. Yin Yang et al., [1] applied the 
spectral collocation method for finding the solution of second kind Fredholm integral equations 
whose kernels are weakly singular. The approach was depended on the Jacobi-Gauss quadrature 
formula. Bijaya Laxmi Panigrahi et al., [2] solved second kind Fredholm integral equations whose 
kernels are weakly singular. The approach was based on the Legendre multi-Galerkin technique and 
the corresponding eigenvalue problem. Numerical solutions for second kind Fredholm integral 
equations whose kernels are weakly singular were provided by Tomoaki Okayama et al., [3]. Reza 
Behzadi et al., [4] generalized the summation formula of Euler-Maclaurin to be used in second kind 
Fredholm integral equations whose kernels are weakly singular solution. This concept allowed them 
to convert the basic equations into the relevant algebraic equations system. For second kind 
Fredholm integral equations whose kernels are weakly singular and non-singular solution, Min Wang. 
et al., [5] presented the Multistep Collocation method, which is applied to equations with smooth 
kernels under the uniform mesh, and the kernel which is weakly singular using a graded mesh. X. Y. 
Li et al., [6] solved the linear second-kind integral equations which type is Fredholm using a globally 
super convergent numerical technique that makes use of the kernel functions in piecewise 
polynomials form in the reproducing Sobolev kernel Hilbert spaces. 

Numerous publications for solving first kind Fredholm integral which contains kernel in the form 
of singular logarithmic and singular unknown functions have been published by Shoukralla and 
Shoukralla et al., [7-18]. Besides, based on the enhanced formulas of the barycentric Lagrange 
interpolation, numerous methods et al., [19-22] are established to solve weakly singular besides 
regular Volterra and Fredholm integral equations. All these approaches are applicable in this 
situation, but we wanted to propose something new. The objective of this study is to discover an 
approximated solution for second-type Fredholm integral equations, where the kernel is 
characterized by weakly singular and smooth kernel forms. The procedures for obtaining the solution 
are summarized in three steps, which distinguishes this method from other methods. Initially, the 
process involves approximating both the provided data function and the unknown function by 
utilizing shifted Legendre polynomials of the first kind. Thus, we create a square matrix of the 
Legendre polynomials that ensures that there are no imaginary values in the functional values of the 
given data function and the kernels. Hence, each of the unknown function and given data function is 
expressed in the form of the product of three matrices. The first matrix is the monomial basis 
functions row matrix. The second matrix is Legendre polynomials coefficients square matrix, 
arranged in ascending order. The third matrix is the functional values column matrix. The second 
stage is to approximate the kernel based on the shifted orthogonal Legendre polynomials. so that 
the kernel is expressed as the product of five matrices. Thus, we have obtained single approximate 
functions for each of the given the data and unknown functions, and a double approximate function 
for the kernel. The third step is to substitute the approximate unknown function in both sides of the 
considered integral equation simultaneously with the substitution of the double approximate kernel 
in the wright side. Finally, we achieve a linear algebraic system without necessitating the application 
of the collocation method. The solution to this system yields real values for the unknown coefficients, 
thereby facilitating the computation of the solution. 
 
2.Methodology  
2.1 Legendre-Interpolation Method 

 
Considering the following second kind Fredholm integral equation: 
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        (1) 

where ,  and the kernel  are given, the unknown function  is to be 

determined. The kernel    is defined on the square . For , Eq. (1) is called 
non-singular Fredholm second kind integral equation. For  Eq. (1), is called weakly singular 
Fredholm second kind integral equation. Now, consider the shifted Legendre polynomials with 
orthogonal property. 
 

        (2) 
 

The function is approximated based on , we get it in the form. 
 

            (3) 
 
where we get the known coefficients square matrix  by the coefficients extracting of all 

polynomials  and fulfilled the rows of . Here  is the unknown coefficients 

column matrix to be determined, and  is a row matrix of the monomial basis functions. 

Similarly, the given data function can be approximated in the form.  
 

            (4) 
 
where  is the known coefficients column matrix such that   can be determined by 
 

             (5) 
 

The kennel  will be approximated by the same way as well as  but with the 

consideration of the two variables  and  . Approximating  subjected to  , gives  

via the  column  matrix  in the form 
 

       (6) 
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Moreover, each entry  will be approximated with respect to the variable  so that we 

get  via the  square known coefficients matrix  in the form: 
 

           (7) 

 
Furthermore, we get. 

 

        (8) 
 
Substituting   of Eq. (8) into Eq. (1), we get 
 

          (9) 

Substituting  in the left side of Eq. (1),  and  in the wright side, we get 
 

                (10) 
 
Simplifying Eq. (10), yields the approximated solution  in the form. 

 

                     (11) 

 
Furthermore, we can get the matrix of the unknown coefficient  by solving the algebraic linear 

system Eq. (10) and thereby computed the approximate solution Eq. (3). 
 

2.2 Convergence in the Mean and Error Norm Estimation 
 
In this section, we examine the convergence in the mean of the interpolated unknown function, 

as defined by formula Eq. (11), towards the precise solution. Additionally, we analyse error norm 
estimation and establish two theorems as part of this investigation. 

Theorem 3.1. Assume that  and  where   is a positive 

real number. Suppose that  and  belong to  with . Let  be 

the approximated solution of degree    that approximate  such that ;  

are positive real numbers. Then   . et al., [23] 
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Theorem 3.2. Rewrite Eq. (1) in the form , where the operator  is defined by 

 is the Fredholm operator. Sample the error norm of the Legendre approximation 

by  such that  where  denotes the Euclidean norm in  and 

. Then .. et al., [23] 

 
3. Computational Results and Discussions 

 
Based on MATLAB2019a, we designed a MATLAB code for finding the solution of Fredholm 

second kind integral equations which has the kernel in the form of weakly singular or non-singular. 
We solved six cases, three for non-singular and the other three for weakly singular. The approximate 
solutions were obtained for different values of . The solutions are found equal to the exact ones or 
strongly convergent. Table 1 shows the exact solution , the approximate solutions , the 

absolute errors  for  at .  

 
Table 1 

The exact solution , the 

approximate solutions , the 

absolute errors  

    

0 1 0.99906 0.00094 
0.1 1.1052 1.1054 0.0002 
0.2 1.2214 1.2218 0.0004 
0.3 1.3499 1.35 1E-04 
0.4 1.4918 1.4916 0.0002 
0.5 1.6487 1.6483 0.0004 
0.6 1.8221 1.8219 0.0002 
0.7 2.0138 2.0138 0 
0.8 2.2255 2.226 0.0005 
0.9 2.4596 2.4599 0.0003 
1 2.7183 2.7172 0.0011 

 
The amount of CPU calculated time for example 1 for  was 3.855 s, and 11.099 s 

respectively. Figure 1 shows the graphs of the exact solution and the approximate solution for 
. 
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Fig. 1. Graphs of the exact solution and the approximate solution 

 
Table 2 shows the exact solution , the approximate solutions , the absolute errors 

 for  at . The amount of CPU calculated time for example 2 for  
was 3.989 s, and 4.133 s respectively.  
 

Table 2 

The exact solution , the approximate solutions 

, the absolute errors 

      

0 0 -2.31E-14 -2.31E-14 2.3093E-14 2.3093E-14 
0.1 0.4 0.4 0.4 0 0 
0.2 0.8 0.8 0.8 0 0 
0.3 1.2 1.2 1.2 0 0 
0.4 1.6 1.6 1.6 0 0 
0.5 2 2 2 0 0 
0.6 2.4 2.4 2.4 0 0 
0.7 2.8 2.8 2.8 0 0 
0.8 3.2 3.2 3.2 0 0 
0.9 3.6 3.6 3.6 0 0 
1 4 4 4 0 0 

 
Table 3 shows the exact solution , the approximate solutions , the absolute errors 

 for  at . The amount of CPU calculated time for example 3 for  
was 3.320 s, and 18.288 s respectively.  
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Table 3 

The exact solution , the approximate solutions 

, the absolute errors  

  
 

   

0 1 1.013 0.99906 0.013 0.00094 
0.1 1.1052 1.1065 1.1054 0.0013 0.0002 
0.2 1.2214 1.2168 1.2218 0.0046 0.0004 
0.3 1.3499 1.3439 1.35 0.006 1E-04 
0.4 1.4918 1.4877 1.4916 0.0041 0.0002 
0.5 1.6487 1.6483 1.6483 0.0004 0.0004 
0.6 1.8221 1.8258 1.8219 0.0037 0.0002 
0.7 2.0138 2.02 2.0138 0.0062 0 
0.8 2.2255 2.231 2.226 0.0055 0.0005 
0.9 2.4596 2.4587 2.4599 0.0009 0.0003 
1 2.7183 2.7033 2.7172 0.015 0.0011 

                                                     
Figure 2 shows the graphs of the exact solution and the approximate solutions for .  

 

 
Fig. 2. the graphs of the exact solution and the approximate solutions for . 

 
Table 4 shows the exact solution , the approximate solutions , the absolute errors 

 for  at . The amount of CPU calculated time for example 4 for 
 was 4.738 s, 5.993 s and 9.012 s respectively.  
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Table 4 

The exact solution , the approximate solutions , the absolute errors 

 

        

0 0 0.12318 0.082773  0.045736  0.12318 0.082773     0.045736  
0.1 0.31623 0.29549 0.31104   0.31698  0.02074 0.00519   0.00074913  
0.2 0.44721 0.43505 0.45092   0.44713  0.01216 0.00371  0.000084856  
0.3 0.54772 0.54718 0.54815   0.54855  0.00054 0.00043    0.0008303  
0.4 0.63246 0.63721 0.62859   0.63186  0.00475 0.00387   0.00059335  
0.5 0.70711 0.71048 0.7034   0.70773  0.00337 0.00371   0.00062106  
0.6 0.7746 0.77232 0.77421   0.77493  0.00228 0.00039   0.00033343  
0.7 0.83666 0.82807 0.83829   0.83632  0.00859 0.00163   0.00034471  
0.8 0.89443 0.88305 0.8937   0.89523  0.01138 0.00073   0.00080541  
0.9 0.94868 0.94261 0.94449    0.9482  0.00607 0.00419   0.00048686  
1 1 1.0121 1.0059   0.99812  0.0121 0.0059    0.0018833  

 
Figure 3 shows the graphs of the exact solution and the approximate solutions for .  

 

 
Fig. 3. the graphs of the exact solution and the approximate solutions for . 

 
Figure 4 shows the graphs of the absolute errors for .  

 

 
Fig. 4. The graphs of the absolute errors for . 
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Table 5 shows the exact solution , the approximate solutions , the absolute errors 

 for  at . The amount of CPU calculated time for example 5 for  
was 3.262 s, and 4.681 s respectively.  
 

Table 5 

The exact solution , the approximate solutions 

, the absolute errors  

      

0 0 2.27E-14 2.27E-14 2.2737E-14 2.2737E-14 
0.1 0.01 0.01 0.01 0 0 
0.2 0.04 0.04 0.04 0 0 
0.3 0.09 0.09 0.09 0 0 
0.4 0.16 0.16 0.16 0 0 
0.5 0.25 0.25 0.25 0 0 
0.6 0.36 0.36 0.36 0 0 
0.7 0.49 0.49 0.49 0 0 
0.8 0.64 0.64 0.64 0 0 
0.9 0.81 0.81 0.81 0 0 
1 1 1 1 0 0 

 
Figure 5 shows the graphs of the exact solution and the approximate solutions for . 

 

 
Fig. 5. The graphs of the exact solution and the approximate solutions for . 

 
Figure 6 shows the graphs of the absolute errors for . 
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Fig. 6. The graphs of the absolute errors for . 

 
Table 6 shows the exact solution , the approximate solutions , the absolute errors 

 for  at . The amount of CPU calculated time for example 6 for  
was 3.280 s, 3.987 s, and 5.285 s respectively.  
 

Table 6 

The exact solution , the approximate solutions , the absolute errors 

 

        

0 1 1.0172 1 0.99975 0.0172 0 0.00025 
0.1 1.1052 1.1108 1.1052 1.1052 0.0056 0 0 
0.2 1.2214 1.221 1.2214 1.2215 0.0004 0 1E-04 
0.3 1.3499 1.3481 1.3499 1.3501 0.0018 0 0.0002 
0.4 1.4918 1.492 1.4919 1.4918 0.0002 1E-04 0 
0.5 1.6487 1.6526 1.6488 1.6487 0.0039 1E-04 0 
0.6 1.8221 1.83 1.8222 1.8221 0.0079 1E-04 0 
0.7 2.0138 2.0242 2.0138 2.0133 0.0104 0 0.0005 
0.8 2.2255 2.2352 2.2256 2.2257 0.0097 0.0001 0.0002 
0.9 2.4596 2.463 2.4596 2.4596 0.0034 0 0 
1 2.7183 2.7076 2.7183 2.7185 0.0107 0 0.0002 

 
Figure 7 shows the graphs of the exact solution and the approximate solutions for .  
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Fig. 7. the graphs of the exact solution and the approximate solutions for . 

 
Figure 8 shows the graphs of the absolute errors for  

 

 
Fig. 8. The graphs of the absolute errors for  

 
 Example 1. For the following integral equation 

 

                 (12) 
 
which has exact solution in the form  [6].  

 
Example 2. For the following integral equation 

 

                  (13) 
 
which has exact solution in the form  [6].  
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Example 3. For the following integral equation 
 

                     (14) 
 
which has exact solution in the form  for [5]. 

 
Example 4. For the following integral equation 

 

                      (15) 
 
which has exact solution in the form  [4]. 

 
Example 5. For the following integral equation 

 

                      (16) 
 
which has exact solution in the form  [4]. 

 
Example 6. For the following integral equation 

 

                     (17) 
 
which has exact solution in the form  [4] 
 
4. Conclusions 

 
The shifted Legendre polynomials of the first kind have been applied for solving the second kind 

Fredholm integral equations which contain kernel in the form of weakly singular. The most significant 
contribution of this work is the idea of extracting the coefficients of Legendre polynomials to form a 
square matrix which contributed significantly to the abbreviations of the solution’s procedures. This 
resulted in the solution steps being reduced to a handful of seconds. The more important 
contribution of this work is the idea of substituting the double approximate kernel in the right side 
of the integral equation simultaneously with the substituting of the single approximate unknown 
function in both sides. By following this process, a linear system of algebraic equations was obtained 
without the need for the collocation method. The six cases' solutions, as mentioned in the figures 
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and tables, were either exact or significantly converging towards them. This supports the assertion 
that this approach is novel and extremely precise. 
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