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The advection-diffusion equation has a wide range of applications as it governs energy 
and mass transport in a moving medium. Analytical solutions of the advection-diffusion 
equation for classes of boundary conditions amounts to finding exact expressions of 
the Green’s function of the advection-diffusion operator. In this work, the Green’s 
function of the steady-state advection-diffusion operator is obtained for an 
axisymmetric cylindrical problem with uniform velocity along the axis of the cylinder. 
The solution is exact, as axial diffusion (or conduction) is not neglected. The method of 
solution utilizes a formalism relating the Green’s function of the diffusion operator to 
that of the steady-state advection-diffusion operator with uniform velocity. The 
Green’s function obtained is applied to a Dirichlet boundary value problem. The 
distribution, (either particle concentration, or temperature), is plotted for various 
values of Péclet numbers. This work demonstrates how to invert the steady-state 
advection-diffusion operator with uniform velocity in a non-trivial geometry, namely 
the cylinder. 
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1. Introduction 
 

In this paper, the Green’s function of the steady-state advection-diffusion, (known also as 
convection-diffusion), operator is obtained for an axisymmetric cylindrical problem with uniform 
velocity along the axis of the cylinder. The advection-diffusion equation is the field equation for the 
energy and concentration scalar fields in the presence of a velocity field. These scalar fields follow 
the diffusive transport principle of transfer occurring from higher to lower concentration, with the 
current density being proportional to the negative of the field gradient. The constitutive diffusion 
relations are Fick’s law for particle concentration and Fourier’s law for energy density. In the presence 
of a velocity field, the total flux is the sum of the diffusive flux and the advective flux associated with 
the velocity field. 
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As the advection-diffusion equation governs mass and energy transport phenomena, it has a wide 
range of applications. Examples of these are the study of smoke propagation in the atmosphere [1], 
dispersal of seeds and pollen [2], mass transfer across boundaries in blood flow [3], electron 
temperature in plasma [4], dendritic formation in flowing melts [5], and the use of nano fluids in 
various heat exchanging systems [6]. In view of its importance, it has been a subject of mathematics 
research, see e.g., Bazant [7] and references within. 

Finding Green’s functions of operators amounts to finding exact solutions to classes of boundary 
value problems [8,9]. The Green’s function of the diffusion (conduction) operator has been 
extensively studied by Cole et al., [10]. Analytical solutions to the advection-diffusion operator are in 
a majority of cases limited to one-dimensional problems [11,12]. In this work, the domain of solution 
is a three-dimensional volume, namely a cylinder. 

The problem studied in this paper has its origin in the Graetz problem [13,14]. The Graetz problem 
is that of a fluid at a temperature 𝑇!, entering a pipe with wall temperature 𝑇". The flow is laminar. 
The steady-state temperature is obtained in the case where conduction in the axial direction is 
neglected. This approximation has been widely adopted in thermal advection-diffusion studies [15]. 
In this work, Green’s function for the steady-state advection-diffusion operator is obtained for an 
axisymmetric boundary-value problem (BVP), using the result by Mitchell et al., [16]. In [16], physical 
arguments are given to relate Green’s function of the steady-state advection-diffusion operator with 
uniform velocity to that of the time-dependent diffusion operator. This relation is applied to obtain 
Green’s function for a uniform channel flow with mixed boundary conditions, namely Neumann-
Dirichlet. In this work, the main result in [16] is reworked. The Green’s function obtained is applied 
to a cylindrical axisymmetric Dirichlet boundary value problem. The assumption of axisymmetric is 
widely used in various engineering applications due to its geometric and theoretical simplicity [17]. 

The assumption that the flow is uniform implies that the results obtained are exact for an inviscid 
fluid, or a moving solid. Studying heat propagation in moving solids is of practical applications to 
grinding and welding processes (see [16] and references therein). A procedure for working with a 
fluid with sheer in a cylinder, not from a Green’s function perspective, but for a particular Dirichlet 
boundary condition, – the same application considered in this work, see Section 3.2 below –, is given 
by Papoutsakis et al., [18]. 

 
2. Methodology 
2.1 Preliminary: Constitutive Diffusion Relations 

 
References for the background material in this section are [19,20]. Let 𝜓 be particle concentration 

(number per unit volume), with unit 𝐿#$. The current density, 𝐉, with unit 𝐿#%𝑇#&, is given by Fick’s 
law, as 
 
𝐉 = −𝐷∇𝜓 ,    (1) 
 
where 𝐷 is the diffusion constant, with unit 𝐿%𝑇#&. The diffusion equation arises from the 
conservation law, 
 
'(
')
= −∇ ⋅ 𝐉 + 𝜌 , (2) 

 
where 𝜌 represents particle source (or sink) per unit volume per unit time, with unit 𝐿#$𝑇#&. Hence, 
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'(
')
− ∇ ⋅ (𝐷∇𝜓) = 𝜌 . (3) 
 
In the presence of a velocity field, 𝐯, the advective current, 

 
𝐉adv = 𝐯𝜓 , (4) 
 
is added to the diffusive one, Eq. (1); and the diffusion equation Eq. (3) becomes, 
 
'(
')
− ∇ ⋅ (𝐷∇𝜓) + ∇ ⋅ (𝐯𝜓) = 𝜌 , (5) 

 
which is the advection-diffusion equation. 

In the case of heat conduction, 𝜓 is the temperature; and the current density, 𝐉, with unit 
𝐸𝐿#%𝑇#&, is given by Fourier’s law, 
 
𝐉 = −𝑘∇𝜓 , (6) 
 
with 𝑘 being the thermal conductivity. The diffusion equation arises from the conservation law, 
 
'(+!,()

')
= −∇ ⋅ 𝐉 + 𝜌. = ∇ ⋅ (𝑘∇𝜓) + 𝜌.  , (7) 

 
where 𝜌/ is the mass density, and 𝑐 is the specific heat. The unit of (𝜌/𝑐𝜓) is 𝐸𝐿#$, of the power 
density, 𝜌., is 𝐸𝐿#$𝑇#&, and of (𝑘𝜓) is 𝐸𝐿#&𝑇#&. In the presence of a velocity field, the convective 
current, 
 
𝐉conv = 𝐯𝜌/𝑐𝜓 , (8) 
 
is added to the conduction one, Eq. (6); and the conduction equation Eq. (7), becomes, 
 
'(+!,()

')
− ∇ ⋅ (𝑘∇𝜓) + ∇ ⋅ (𝐯𝜌/𝑐𝜓) = 𝜌.  , (9) 

 
which is the convection-diffusion equation. 

Taking all physical properties as constant, the advection-diffusion equation, Eq. (5), reads, 
 
'(
')
− 𝐷∇%𝜓 + ∇ ⋅ (𝐯𝜓) = 𝜌  (10) 

 
or, in terms of the diffusion operator, 𝐿 := '

')
− 𝐷∇% , 

 
𝐿𝜓 + ∇ ⋅ (𝐯𝜓) = 𝜌  (11) 

 
The above equation applies also with 𝜓 being the temperature. In this case, 𝐷 := 0

+!,
 . 

 
2.2 Diffusion Equation in a Volume 𝑉  

 
A reference for the background material in this section is Barton [20]. 
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The following boundary value problem with the diffusion operator, Eq. (11), in a volume 𝑉 
bounded by a surface 𝑆, is considered, 
 
𝐿𝜓(𝑥, 𝑡) = 𝜌(𝑥, 𝑡) , 𝑡 > 𝑡! ,
𝜓(𝑥, 𝑡!) = 𝜌′(𝑥) ,
𝑥 ∈ 𝑆 :  	𝜓(𝑥, 𝑡) = 𝑑(𝑥, 𝑡) , or ∂1𝜓(𝑥, 𝑡) = 𝑛(𝑥, 𝑡) , 𝑡 ≥ 𝑡! .

      (12) 

 
In Eq. (12), 𝑥 is the position vector. The Green’s function method provides the means of solving 

Eq. (12). The Green’s function associated with Eq. (12), i.e., the Green’s function with the same 
boundary conditions as 𝜓 albeit homogeneous, is defined by, 

 
𝐿𝐺(𝑥, 𝑡; 𝑥′, 𝑡′) = 𝛿(𝑥 − 𝑥′)𝛿(𝑡 − 𝑡′) 
𝐺(𝑥, 𝑡; 𝑥′, 𝑡′) = 0 , for 𝑡 < 𝑡′ ,
𝐺(𝑥, 𝑡; 𝑥′, 𝑡′) = 0 , or ∂1𝐺(𝑥, 𝑡; 𝑥′, 𝑡′) = 0 , 𝑥 ∈ 𝑆 

  (13) 

  
Once Eq. (13) is solved, the solution to Eq. (12) is expressed as, 

 
𝜓(𝑥, 𝑡) = ∫ 𝑑))" 𝑡′ ∫ 𝑑2 𝑉′𝐺(𝑥, 𝑡; 𝑥′, 𝑡′)𝜌(𝑥′, 𝑡′)

+𝐷 ∫ 𝑑))" 𝑡′ ∫ 𝑑3 𝑆′[𝐺(𝑥, 𝑡; 𝑥′, 𝑡′) ∂14 𝜓3(𝑥′, 𝑡′) − ∂14 𝐺(𝑥, 𝑡; 𝑥′, 𝑡′)𝜓3(𝑥′, 𝑡′)]

+ ∫ 𝑑2 𝑉′𝐺(𝑥, 𝑡; 𝑥′, 𝑡!)𝜓(𝑥′, 𝑡!)

  (14) 

 
To solve Eq. (13), an auxiliary function, 𝐾(𝑥, 𝑡; 𝑥′, 𝑡′), called the propagator, is introduced through 

the definition, 
 
𝐿𝐾(𝑥, 𝑡; 𝑥4, 𝑡4) = 0,
𝐾|)5)4 = 𝛿(𝑥 − 𝑥′)
𝐾(𝑥, 𝑡; 𝑥′, 𝑡′) = 0 , or ∂1𝐾(𝑥, 𝑡; 𝑥′, 𝑡′) = 0 , 𝑥 ∈ 𝑆

 (15) 

 
The Green’s function, 𝐺, and the propagator, 𝐾, are related by, 

 
𝐺(𝑥, 𝑡; 𝑥′, 𝑡′) = 𝜃(𝑡 − 𝑡′)𝐾(𝑥, 𝑡; 𝑥′, 𝑡′) . (16) 

 
The solution to Eq. (15) is given by 

 
𝐾(𝑥, 𝑡; 𝑥′, 𝑡′) = ∑ 𝜙6⋆6 (𝑥′)𝜙6(𝑥)exp S−𝜆6𝐷(𝑡 − 𝑡′)U , (17) 
 
where 𝜆6 and 𝜙6 are the eigenvalues and normalized eigenfunctions of the −∇% operator under the 
given homogeneous Dirichlet or Neumann boundary conditions: 
 
∇%𝜙6(𝑥) = −𝜆6𝜙6(𝑥) ,
𝜙6(𝑥) = 0 , or ∂1𝜙6(𝑥) = 0 , 𝑥 ∈ 𝑆 . 
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2.3 Green’s Function of the Steady-State Advection-Diffusion Operator 
 
The steady-state advection-diffusion equation Eq. (10) is considered with a steady velocity in the 

𝑧-direction, 𝐯 = 𝑣𝐳Y, 
 
−𝐷∇%𝜓 + 𝑣 ∂8𝜓 = 𝜌 (18) 

 
The Green’s function associated with Eq. (18) in a volume 𝑉 with boundary 𝑆 is defined as, 
 

−𝐷∇%𝐺9(𝐫; 𝛇) + 𝑣 ∂8𝐺9(𝐫; 𝛇) = 𝛿(𝐫 − 𝛇) ,
𝐺9(𝐫; 𝛇) = 0 , or ∂1𝐺9(𝐫; 𝛇) = 0 , 𝐫 ∈ 𝑆  (19)

  
In Eq. (19), 𝐫 and 𝛇 are position vectors, field and source points respectively. In [16], in the case 

of constant speed 𝑣, a physical argument is given to express the solution of Eq. (19) in terms of that 
of Eq. (13). In the following, the result obtained in [16], namely Eq. (21) below, is derived analytically. 

 
2.3.1 Proposition 

 
Consider a constant velocity vector in the 𝑧-direction, 𝐯 = 𝑣𝐳Y. Then, the solution of Eq. (19) is 

related to the solution of, 
 
−𝐷∇%𝐺(𝐫, 𝑡; 𝛇, 𝜏) + ∂)𝐺(𝐫, 𝑡; 𝛇, 𝜏) = 𝛿(𝐫 − 𝛇)𝛿(𝑡 − 𝜏) ,
𝐺|):; = 0 ,
𝐺(𝐫, 𝑡; 𝛇, 𝜏) = 0 , or ∂1𝐺(𝐫, 𝑡; 𝛇, 𝜏) = 0 , 𝐫 ∈ 𝑆 ,

 (20) 

 
by 
 
𝐺9(𝐫, 𝛇) = ∫ 𝑑!

#< 𝜏 𝐺(𝐫, 0; 𝛇 − 𝐯𝜏, 𝜏) . (21) 
 
Proof.   
Let 𝐫′ = 𝐫 − 𝐯𝑡, and define a function of (𝐫′, 𝑡; 𝛇) by,  𝐺](𝐫′, 𝑡; 𝛇) : = 𝐺9(𝐫(𝐫′); 𝛇) . 

It is noted that, 
∇4 %𝐺] = ∇%𝐺9  ,
∂)𝐺] = 𝑣 ∂8𝐺9  .

 

 
Then, 
 

−𝐷∇4 %𝐺](𝐫′, 𝑡; 𝛇) + ∂)𝐺](𝐫′, 𝑡; 𝛇)
= −𝐷∇%𝐺9(𝐫; 𝛇) + 𝑣 ∂8𝐺9(𝐫; 𝛇) = 𝛿(𝐫 − 𝛇) = 𝛿(𝐫′ + 𝐯𝑡 − 𝛇) .

 (22) 

 
Consider the equation, 

−𝐷∇%𝐺(𝐫, 𝑡; 𝛇 − 𝐯𝜏, 𝜏) + ∂)𝐺(𝐫, 𝑡; 𝛇 − 𝐯𝜏, 𝜏) = 𝛿^𝐫 − (𝛇 − 𝐯𝜏)_𝛿(𝑡 − 𝜏) ,
𝐺|):; = 0 .

 

 

Upon integration, 
−𝐷∇% ∫ 𝑑<

#< 𝜏 𝐺(𝐫, 𝑡; 𝛇 − 𝐯𝜏, 𝜏) + ∂) ∫ 𝑑<
#< 𝜏 𝐺(𝐫, 𝑡; 𝛇 − 𝐯𝜏, 𝜏)

= ∫ 𝛿<
#< ^𝐫 − (𝛇 − 𝐯𝜏)_𝛿(𝑡 − 𝜏)𝑑𝜏 ,
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and taking account of the causality condition Eq. (20), 
−𝐷∇% ∫ 𝑑)

#< 𝜏 𝐺(𝐫, 𝑡; 𝛇 − 𝐯𝜏, 𝜏) + ∂) ∫ 𝑑)
#< 𝜏 𝐺(𝐫, 𝑡; 𝛇 − 𝐯𝜏, 𝜏)

= 𝛿^𝐫 − (𝛇 − 𝐯𝑡)_ .
 

 
The above equation is the same as Eq. (22). Hence, 𝐺](𝐫, 𝑡; 𝛇) = ∫ 𝑑)

#< 𝜏 𝐺(𝐫, 𝑡; 𝛇 − 𝐯𝜏, 𝜏) . 
 
But, 𝐺9(𝐫; 𝛇) = 𝐺(𝐫, 0; 𝛇). Thus, 𝐺9(𝐫, 𝛇) = ∫ 𝑑!

#< 𝜏 𝐺(𝐫, 0; 𝛇 − 𝐯𝜏, 𝜏) . 
 

2.4  Axisymmetric Cylindrical BVP 
2.4.1 Green’s function for an axisymmetric cylindrical problem 

 
A cylinder of unit radius is considered. This means that the unit of length is taken as the radius of 

the cylinder. In the case of an axisymmetric problem, the Green’s function is a function of the axial 
coordinate, 𝑧, and radial coordinate, 𝑟, and not of the azimuthal angle, 𝐺 = 𝐺(𝑟, 𝑧, 𝑡; 𝑟′, 𝑧′, 𝑡′). The 3-
delta function in cylindrical coordinates is 𝛿(𝑥 − 𝑥4) = &

>
𝛿(𝑟 − 𝑟4)𝛿(𝜃 − 𝜃4)𝛿(𝑧 − 𝑧4) . 

 
Using the form of the Laplacian in cylindrical coordinates 

 

∇%𝑢 = &
>
'
'>
S𝑟 '?

'>
U + &

>#
'#?
'@#

+ '#?
'8#
 ,  (23) 

 
the BVP for the axisymmetric Green’s function Eq. (13) reads 
 

∂)𝐺 − 𝐷 c
&
>
'
'>
S𝑟 'A

'>
U + '#A

'8#
d = &

%B>
𝛿(𝑟 − 𝑟′)𝛿(𝑧 − 𝑧′)𝛿(𝑡 − 𝑡′) ,

𝐺|):)4 = 0 ,
𝐺(𝑟 = 1, 𝑧, 𝑡; 𝑟′, 𝑧′, 𝑡′) = 0 , or ∂>𝐺(𝑟, 𝑧, 𝑡; 𝑟′, 𝑧′, 𝑡′)|>5& = 0 
𝐺(𝑟, ±∞, 𝑡; 𝑟′, 𝑧′, 𝑡′) = 0 .

 (24) 

 
The solution to Eq. (24) is derived from a propagator function Eq. (16), 𝐺(𝑟, 𝑧, 𝑡; 𝑟′, 𝑧′, 𝑡′) =

𝜃(𝑡 − 𝑡′)𝐾(𝑟, 𝑧, 𝑡; 𝑟′, 𝑧′, 𝑡′) , 
 
where: 
 

∂)𝐾 − 𝐷 c
&
>
'
'>
S𝑟 'C

'>
U + '#C

'8#
d = 0 

𝐾|)5)4 =
&
%B>

𝛿(𝑟 − 𝑟′)𝛿(𝑧 − 𝑧′)
𝐾(𝑟 = 1, 𝑧, 𝑡; 𝑟′, 𝑧′, 𝑡′) = 0 , or ∂>𝐾(𝑟, 𝑧, 𝑡; 𝑟′, 𝑧′, 𝑡′)|>5& = 0 ,
𝐾(𝑟, ±∞, 𝑡; 𝑟′, 𝑧′, 𝑡′) = 0 .

 (25) 

 
The propagator Eq. (25) is separated into a radial and an axial function, 𝐾(𝑟, 𝑧, 𝑡; 𝑟′, 𝑧′, 𝑡′) =

𝐾rad(𝑟, 𝑡; 𝑟′, 𝑡′)𝐾ax(𝑧, 𝑡; 𝑧′, 𝑡′) , satisfying, 
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∂)𝐾rad −
D
>
'
'>
S𝑟 'Crad

'>
U = 0 ,

𝐾rad|)5)4 =
&
%B>

𝛿(𝑟 − 𝑟′) ,
𝐾rad(𝑟 = 1, 𝑡; 𝑟′, 𝑡′) = 0 , or ∂>𝐾rad(𝑟, 𝑡; 𝑟′, 𝑡′)|>5& = 0 ,

 (26) 

 
and 
 

∂)𝐾ax − 𝐷
'#

'8#
𝐾ax = 0 ,

𝐾ax|)5)4 = 𝛿(𝑧 − 𝑧′),
𝐾ax(±∞, 𝑡; 𝑧′, 𝑡′) = 0 .

 (27) 

 
The solution of the axial propagator Eq. (25) is given by Barton [20], 

 

𝐾ax(𝑧, 𝑡; 𝑧′, 𝑡′) =
&

EFBD()#)4)
exp S− (8#84)#

FD()#)4)
U . (28) 

 
The solution of the radial propagator Eq. (26) is given by Eq. (17), 

 
𝐾rad(𝑟, 𝑡; 𝑟′, 𝑡′) =

&
%B
∑ 𝑒1⋆1 (𝑟′)𝑒1(𝑟)exp^−𝜆1%𝐷(𝑡 − 𝑡′)_ . (29) 

 
In the above equation, the factor 1/(2𝜋) is carried over from the equal time relation in Eq. (26); 

and the functions, 𝑒1, are normalized eigenfunctions with eigenvalues −𝜆1% , of the radial part of the 
Laplacian operator Eq. (23) subject to the relevant Dirichlet or Neumann homogeneous radial 
boundary conditions: 
 
&
>
G
G>
S𝑟 G.$

G>
U = −𝜆1%𝑒1  . (30) 

 
With Eq. (28) and Eq. (29), the axisymmetric Green’s function Eq. (24) is given by 

 

𝐺(𝑟, 𝑧, 𝑡; 𝑟′, 𝑧′, 𝑡′) = H()#)4)
E&IB%D()#)4)

exp S− (8#84)#

FD()#)4)
U × ∑ 𝑒1<

15& (𝑟′)𝑒1(𝑟)exp^−𝜆1%𝐷(𝑡 − 𝑡′)_
 

 (31) 

 
2.4.2 Moving medium 

 
As an application of the Proposition in section 2.3.1, the axisymmetric cylindrical problem in 

Section 2.4.1 is considered. With Eq. (31), the integrand in Eq. (21) is, 

𝐺(𝑟, 𝑧, 0; 𝑟′, 𝑧′ − 𝑣𝑡′, 𝑡′) = 𝜃(−𝑡′)∑ 𝑒1<
15& (𝑟′)𝑒1(𝑟) ×

&
E&IB%D(#)4)

exp m𝜆1%𝐷𝑡′ +
J8#(84#9)4)K#

FD)4
n  

 
Hence Eq. (21) assumes the form, 

 

𝐺9(𝑟, 𝑧; 𝑟′, 𝑧′) =
&

√&IB%D
∑ 𝑒1<
15& (𝑟′)𝑒1(𝑟) × ∫

&
√#)4

!
#< exp S𝜆1%𝐷𝑡′ +

(8#84M9)4)#

FD)4
U 𝑑𝑡′ . (32) 

 
The above expression evaluates to 
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𝐺9(𝑟, 𝑧; 𝑟′, 𝑧′) =
&

FB√D
∑ 𝑒1<
15& (𝑟′)𝑒1(𝑟)exp S

9(8#84)
%D

U × &

NO$#DM
&#
'(

exp o−|𝑧 − 𝑧′|p𝜆1% +
9#

FD#
q .

 (33) 

 
With the definition, 

 

𝛾9,1 : = p4𝜆1% +
9#

D#
 , (34) 

 
the Green’s function Eq. (33) assumes the form, 
 
𝐺9(𝑟, 𝑧; 𝑟′, 𝑧′) =

&
%BD

∑ 𝑒1<
15& (𝑟′)𝑒1(𝑟)exp S

9(8#84)
%D

U × &
Q&,$

exp S−|𝑧 − 𝑧′| Q&,$
%
U (35) 

 
Eq. (35) is the exact expression, that we found, for the Green's function of the steady-state 

advection-diffusion operator, when applied to an axisymmetric cylindrical problem with uniform 
velocity along the axis, without neglection of axial diffusive or conductive current. 
 
3. Results  
3.1 Green’s Function Solution Equation 

 
In order to derive the Green’s function solution equation in Proposition 3.1.1 below, the 

reciprocal problem to Eq. (19) is first obtained. Inspection of 𝐺9 Eq. (35) reveals that 
𝐺9(𝐫; 𝐫′) = 𝐺#9(𝐫′; 𝐫). 

The above relation is used to rewrite the BVP Eq. (19) as 
 
−𝐷∇%𝐺#9(𝐫′; 𝐫) + 𝑣 ∂8𝐺#9(𝐫′; 𝐫) = 𝛿(𝐫 − 𝐫′) ,
𝐺#9(𝐫′; 𝐫) = 0 ,or ∂1𝐺#9(𝐫′; 𝐫) = 0 , 𝐫 ∈ 𝑆   (36) 

 
Performing the change of variables, 𝐫 ↔ 𝐫′, 𝑣 ↔ −𝑣, in Eq. (36), yields the problem reciprocal to 

Eq.(19), 
 
−𝐷∇′%𝐺9(𝐫; 𝐫′) − 𝑣 ∂84𝐺9(𝐫; 𝐫′) = 𝛿(𝐫 − 𝐫′) ,
𝐺9(𝐫; 𝐫′) = 0 ,or ∂14𝐺9(𝐫; 𝐫′) = 0 , 𝐫′ ∈ 𝑆   (37) 

 
3.1.1 Proposition  

 
The solution of the PDE 

 
−𝐷∇%𝜓(𝑟, 𝑧) + 𝑣 ∂8𝜓(𝑟, 𝑧) = 𝜌(𝑟, 𝑧) , (38) 
 
subject to boundary conditions on the cylinder surface is given in terms of the Green’s function 𝐺9 as 
 
𝜓(𝐫) = ∫ 𝑑2 𝑉′𝐺9(𝐫; 𝐫′)𝜌(𝐫′)
+𝐷 ∫ 𝑑3 𝑆′[𝐺9(𝐫; 𝐫′) ∂14𝜓(𝐫′) − 𝜓(𝐫′) ∂14𝐺9(𝐫; 𝐫′)] .

 (39) 

 
Proof. The reciprocal equation Eq. (37) is multiplied by 𝜓(𝐫′), 
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−𝐷𝜓(𝐫′)∇′%𝐺9(𝐫; 𝐫′) − 𝑣𝜓(𝐫′) ∂84𝐺9(𝐫; 𝐫′) = 𝜓(𝐫′)𝛿(𝐫 − 𝐫′) , (40) 
 
and the equation of 𝜓 Eq. (38), – with 𝐫 replaced by 𝐫′ –, is multiplied by 𝐺9(𝐫; 𝐫′), 
 
−𝐷𝐺9(𝐫; 𝐫′)∇′%𝜓(𝐫′) + 𝑣𝐺9(𝐫; 𝐫′) ∂84𝜓(𝐫′) = 𝐺9(𝐫; 𝐫′)𝜌(𝐫′) . (41) 

 
Subtracting Eq. (40) from Eq. (41), and integrating over the cylinder volume, yields, 

u𝑑
2
𝑉′{−𝐷[𝐺9(𝐫; 𝐫′)∇′%𝜓(𝐫′) − 𝜓(𝐫′)∇′%𝐺9(𝐫; 𝐫′)]+𝑣[𝐺9(𝐫; 𝐫′) ∂84𝜓(𝐫′) + 𝜓(𝐫′) ∂84𝐺9(𝐫; 𝐫′)]}

= u𝑑
2
𝑉′𝐺9(𝐫; 𝐫′)𝜌(𝐫′) − u𝑑

2
𝑉′𝜓(𝐫′)𝛿(𝐫 − 𝐫′) 

 

Hence, 
 
∫ 𝑑2 𝑉′{−𝐷[𝐺9(𝐫; 𝐫′)∇′%𝜓(𝐫′) − 𝜓(𝐫′)∇′%𝐺9(𝐫; 𝐫′)]
+𝑣 ∂84[𝐺9(𝐫; 𝐫′)𝜓(𝐫′)]} = ∫ 𝑑2 𝑉′𝐺9(𝐫; 𝐫′)𝜌(𝐫′) − 𝜓(𝐫) 

 (42) 

 
In the above equation, the integration over the ∂84 term is null: 

 
∫ ∂842 [𝐺9(𝐫; 𝐫′)𝜓(𝐫′)]2𝜋𝑟′𝑑𝑟′𝑑𝑧′ = ∫ x∫ ∂84

<
#< [𝐺9(𝑟, 𝑧; 𝑟′, 𝑧′)𝜓(𝑟′, 𝑧′)]𝑑𝑧′y2𝜋𝑟′𝑑𝑟′ .  

 
Since 𝐺9(𝑟, 𝑧; 𝑟′, ±∞) = 0, as can be seen in Eq. (35), and under the assumption that 𝜓(𝑟′, ±∞) is 
finite, the above integration vanishes. Equation Eq. (42), in conjunction with Green’s theorem1, yields 
the solution Eq. (39) to Eq. (38). 	Green’s theorem states that, for two scalar fields, 𝜓 and 𝜙, defined 
over a volume 𝑉, bounded by a closed surface 𝑆, the following identity holds, ∫ (𝜓∇%𝜙 −2
𝜙∇%𝜓) 𝑑𝑉 = ∫ (𝜓∇𝜙 − 𝜙∇𝜓)3 ⋅ 𝑑𝐒 . 

 
3.2 Application: Dirichlet BC 

 
The BVP in a cylinder with radius 𝑅, with Dirichlet boundary conditions, 

 
−𝐷∇%𝜓(𝑟, 𝑧) + 𝑣 ∂8𝜓(𝑟, 𝑧) = 0,
𝜓(𝑅, 𝑧) = 𝜓#𝜃(−𝑧) + 𝜓M𝜃(𝑧) ,

 (43) 

 
is considered. These are the same wall boundary conditions considered in [18]. Under the 
transformation, 𝜓	 → 	 (#(*

(+#(*
 , 

Eq. (43) assumes the form, 
 
−𝐷∇%𝜓(𝑟, 𝑧) + 𝑣 ∂8𝜓(𝑟, 𝑧) = 0,
𝜓(𝑅, 𝑧) = 𝜃(−𝑧),  (44) 

 
where now 𝜓 is dimensionless. In terms of the dimensionless quantity, known as the Péclet number, 
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Pe := R9
D
	, (45) 

 
the dimensionless form of Eq. (44) is 
 
−∇%𝜓(𝑟, 𝑧) + Pe	𝜕8𝜓(𝑟, 𝑧) = 0,
𝜓(1, 𝑧) = 𝜃(−𝑧)  (46) 

 
The Péclet number is a measure of the relative importance of advection and diffusion to the 

transport of the conserved scalars, where a large number indicates an advectively dominated 
distribution, and a small number indicates a diffuse flow [21]. The solution to Eq. (44) is given by Eq. 
(39) as,  𝜓(𝐫) = −𝐷 ∫ 𝜓3 (𝐫′) 'A&

'>4
(𝐫, 𝐫′)𝑑𝑆′ . 

The boundary conditions for Eq. (30) are, 𝑒1(1) = 0, with regularity at 𝑟 = 0. In this case, the 
orthonormal basis is given in terms of Bessel functions of the first kind [22,23] as, 
 

{𝑒1} = c√%S"(O$>)
S,(O$)

d
15&

<
 ,	where 𝐽!(𝜆1) = 0 . (47) 

 
Using Eq. (35) with the basis Eq. (47), the solution to Eq. (44) is then given by 

 

𝜓(𝑟, 𝑧) = −∑ .$4(&).$(>)
Q&,$

<
15& ∫ exp!

#< S9J8#8
-K

%D
U exp S−|𝑧 − 𝑧4| Q&,$

%
U 𝑑𝑧4

														= 𝜃(−𝑧) + ∑ &
O$

<
15&

S"(O$>)
S,(O$)

o 9
Q&,$D

− sgn(−𝑧)q exp S 9
%D
𝑧 − Q&,$

%
|𝑧|U

  (48) 

  
In the above expressions the definitions 𝜃(0) = 1 and sgn(0) = 1 are adopted. In terms of Péclet 

number, the distribution Eq. (48) is  
 

𝜓(𝑟, 𝑧) = 𝜃(−𝑧) + ∑<15&
&
O$

S"(O$>)
S,(O$)

m TU
Q./,$

− sgn(−𝑧)n exp STU
%
𝑧 − Q./,$

%
|𝑧|U (49) 

 
It is noted that, as 𝑧 → ±∞, 𝜓(𝑟, 𝑧) → 𝜃(−𝑧) for all 𝑟. This property of the distribution has been 

imposed as boundary condition in [18]. Eq. (49) is the steady-state distribution function, that we 
found, of the axisymmetric Dirichlet boundary value problem in a cylinder with a medium having 
uniform velocity. 

The graphs below are plots of Eq. (49) for various Péclet numbers. The range of 𝑧 in these plots 
satisfy,   &

%
^Pe + 𝛾TU,&_𝑧VWX = −3	,			 &

%
^Pe − 𝛾TU,&_𝑧VYZ = −3	 

It is noted that Pe = 0 corresponds to a static medium (𝑣 = 0), while a negative Péclet number 
refers to a flow in the negative 𝑧 direction. The plots demonstrate the progression of 𝜓(𝑟, 𝑧) towards 
the limit 𝜓(±∞, 𝑧) = 𝜃(−𝑧) in the case of no-flow as shown in Figure 3 and Figure 4, flow in the 
negative 𝑧 direction as shown in Figure 1 and Figure 2, and flow in the positive 𝑧 direction as shown 
in Figure 5 and Figure 6. Indeed, the range [zmin, zmax] for Pe = −9 is [−4.97, 0.31], for Pe = 0 is [−1.25, 
1.25], while for Pe = 9 is [−0.31, 4.97]. With Pe = 0, at z = 0, the distribution is independent of r with 
an average value of 0.5. These numbers confirm the expected effect of advection/convection on the 
distribution ψ. For example, when the flow is in the negative z-direction, zmax = 0.31 compared to 
1.25 in the no-flow case. This demonstrates the faster approach to ψ (r, ∞) = 0 due to 
advection/convection, i.e., the diminishing effect of the boundary values at z < 0 on z > 0. Also, zmin = 
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−4.97 compared to −1.25 in the no-flow case, i.e., advection/convection hampers the approach to ψ 
(r, −∞) = 1. This is in agreement with the expectation that the effect of z > 0 on z < 0 increases when 
the flow is in the negative z-direction. 
 

 

 

Fig. 1. Contour lines of 𝜓(𝑟, 𝑧)	at Pe = -9 Fig. 2. Graph of 𝜓(𝑟, 𝑧) at Pe = -9 
  

 

 

Fig. 3. Contour lines of 𝜓(𝑟, 𝑧) at Pe = 0 Fig. 4. Graph of 𝜓(𝑟, 𝑧) at Pe = 0 
  



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 53, Issue 1 (2025) 271-283 

282 
 

 

 

Fig. 5. Contour lines of 𝜓(𝑟, 𝑧) at Pe = 9 Fig. 6. Graph of 𝜓(𝑟, 𝑧) at Pe = 9 
 
4.  Conclusion 

 
The formalism presented in [16] has been applied to obtain the axisymmetric cylindrical Green's 

function for the steady-state advection-diffusion operator with uniform velocity as shown in Eq. (35). 
As the diffusive or conductive component of the current in the axial direction is not neglected, the 
Green's function obtained is the exact inverse of the advection-diffusion operator. Exact solutions 
are of value as they can be used to verify numerical solutions, and they emphasize the dependence 
of the solution on the various physical parameters. 

The Green’s function obtained is applied to a cylinder with Dirichlet boundary conditions to 
obtain the distribution function 𝜓(𝑟, 𝑧) as shown in Eq. (49). This function represents temperature 
distribution in the case of energy or heat transfer, or concentration distribution in the case of mass 
transfer. We plotted this function for different Péclet numbers and this clarifies the effect of 
convection / advection on the distribution 𝜓. 

The obtained results are applicable in the case of other boundary conditions, namely Neumann 
and Robin; and work is ongoing in this direction. 
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