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With Hardware Verification being regarded as a time-consuming complex task. 
Moreover, new design applications Such as machine learning are posing new 
challenges to hardware verification engineers. Adding on top of the above challenges 
the fact that the Universal Verification Methodology (UVM) has a class library that can 
be considered bloated. Python was suggested as an alternative to SystemVerilog, which 
is currently the main Hardware Verification language (HVL), used for building modern 
testbenches. Firstly, Cocotb was introduced almost ten years ago, then Pyuvm under 
two years ago. Python verification initiatives promise it is easier to learn( than 
traditional SystemVerilog), faster, and more productive to write. In this paper we 
explore the process of writing Python-based testbench, through writing DDR3 SDRAM 
Controller testbench. The testbench is implemented using the Pyuvm methodology 
running on top of Cocotb that’s used to interact with the Design under test (DUT). The 
motivation of this paper is to explore the capabilities of Python based verification, and 
how much of similarity or difference it does bear compared to traditional 
SystemVerilog and UVM. 
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1. Introduction 
 

The majority of modern electronic devices are built using the System on Chip (SoC) design 
paradigm, where the goal is to create a system by integrating pre-designed hardware and software 
blocks, which are frequently referred to as design intellectual properties (IPs). Given the increasing 
complexity of SoC design, Hardware Verification is experiencing new problems, such as shorter time 
to market [1]. This explains why hardware functional verification is currently viewed as a time-
consuming task, taking roughly 40-50% of project time, with Application Specific Integrated Circuit 
(ASIC) ICs suffering from 18% re-spin and Field Programmable Gate Array (FPGA) projects suffering 
from 40% serious bug escape [1,2]. Python is being proposed as the software language used for 
hardware functional verification in order to boost hardware verification productivity and lower the 
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entrance barrier to hardware verification activities [4,5]. The verification life cycle of a SoC is typically 
composed of the following activities [1]: 

 
i. Verification Planning 

ii. Architecture Verification 
iii. Pre-Silicon Verification 
iv. Emulation FPGA Prototyping 
v. Post-Silicon Verification 

 
This paper includes the following sections, Section 2 introduces the origins of SystemVerilog and 

UVM. Section 3 introduces Python verification(Cocotb and Pyuvm). Section 4 introduces a 
comparison between important features in SystemVerilog and Python. Section 5 introduces the DUT 
(LiteDRAM) [6], and the testbench. Section 6 is the conclusion. 

 
2. Origins of SystemVerilog and UVM  

 
In the late 90s Verilog was widely used in the industry as Hardware Description Language (HDL) 

for simulation and synthesis, but due to growing complexity in designs VHDL and Verilog have shown 
to be inadequate for verification of those complex designs, their lack of—or poor—support for high 
level data types, object oriented programming, assertions, functional coverage and declarative 
constraints has prompted the need for creation of specialized languages for each or all of these areas 
[7-10] commercial efforts including “OpenVera” and “e” surfaced trying to fill this need. Due to those 
efforts being commercial they were not widely adopted by companies. Accordingly, “OpenVera” was 
donated to Accellera, and SV was born [8,10-12]. A reader of the SystemVerilog standard might be 
compelled to consider it as a single language, however, SystemVerilog actually is composed of three 
orthogonal languages [2]: 

 
i. SystemVerilog Object-Oriented language for functional verification 

ii. SystemVerilog Assertions (SVA) language 
iii. SystemVerilog Functional Coverage (FC) language 

 
Worth mentioning that an HVL is not the same or equivalent to a verification methodology, A 

Verification Methodology helps minimize the time necessary to meet the verification requirements, 
defines standards that will enable the creation of inter-operable verification environments and 
components. Using inter-operable environments and components is essential in reducing the effort 
required to verify a complete product [13-15]. After various commercial trials to create verification 
methodologies including Verification Methodology Manual (VMM) and Open Verification 
Methodology (OVM), The UVM standard from Accellera, a SystemVerilog class-based library emerged 
as a first representation of an alignment on verification methodology across the industry, from the 
major EDA suppliers and their ecosystems to many leading-edge users [13-16]. To enable design 
reuse UVM uses Transaction-Level Modelling (TLM) APIs to facilitate transaction level communication 
between verification components written in SystemVerilog as well as between components written 
in other languages such as e and SystemC, also TLM enables for the use of verification IPs. 
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3. Cocotb and Pyuvm Introduction 
 
A key concept for any modern verification methodology is the layered testbench [7,8]. 

Accordingly, writing a testbench is considered a software task [4,8] then it would make sense to write 
a testbench in a software dedicated language [4,5]. The reason why Python was suggested as the 
new HVL [4,5] Writing Python is a fast, Python is a productive programming language, with the 
capacity to interface with other languages like MATLAB and C/C++. Python has a massive ecosystem 
represented in a large library of existing code, and a significant number of engineers who happen to 
be familiar with Python [4,5]. As mentioned earlier this paper uses Cocotb and Pyuvm for building 
the testbench. Cocotb stands for COroutine based COsimulation TestBench. In a Cocotb based 
verification environment, only the DUT runs in the Simulator, while the testbench is written in Python 
and interacts with the simulator through a VPI. Please refer to Figure1 and Figure 2, where Figure1 
shows a traditional testbench while Figure 2 explains the interaction between a Python based 
testbench interacting with DUT. 
 

 
Fig. 1. UVM Testbench Architecture 

 

 
Fig. 2. Pyuvm Testbench Architecture 

 
Pyuvm is a re-implementation of the UVM class library; this re-implementation uses Python 

instead of SystemVerilog. Pyuvm relies on Cocotb to gain handle to the DUT and to communicate 
with the simulator and schedule simulation events. The most frequently used UVM components are 
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implemented in Pyuvm by taking advantage of the fact that Python is not strongly typed and does 
not call for parameterized classes [4]. 

 
4. SystemVerilog vs. Python and Cocotb 
 

In order to carry out first level assessment for the suitability of Python (or any other Software 
language) for hardware verification, we need to revisit a fact that we mentioned earlier in this paper: 
Verilog and VHDL were deemed inadequate for hardware verification due to lack of support of high-
level data types, randomization and assertions. Secondly, we need to revisit the structure of the 
layered testbench mentioned in [8].The proposed architecture shows the need for OOP to allow for 
building the testbench components in a maintainable way, also the need for concurrency, and data 
exchange between testbench components. With this being said, we introduce a comparison between 
SystemVerilog [17] and Python(represented in Python language itself, combined with the added 
features and data types provided by the Cocotb package) [4,18] covering the above aspects. 
 
4.1 Built-in Data Types 
 

Software-like data types are important for building modern testbenches, yet hardware data types 
like: bit, and bit arrays are nice to have in an HVL; various protocols access data on bit basis. 
 
Table 1 
Built-in Data Types 

SystemVerilog Python and Cocotb 
• SystemVerilog includes bit- addressable data types like: 
- reg, wire, and logic which happen to be 4-state 
unsigned. 
- bit which happens to be 2-state unsigned. 
• SystemVerilog includes: 
Software-like data types like: 
- integer which is signed 32 bit wide and happens to be 4 
state. 
- byte which is signed 8 bit-wide and happens to be 2-
state. 
- shortint which is signed 16 bit-wide and happens to be 
2-state. 
- int which is signed 32 bit-wide and happens to be 2-
state. 
- longint  is signed 64 bit-wide and happens to be 2-state 

• Python has built-in numeric types which are: integers, 
floating point numbers, complex numbers. In addition, 
Booleans are a subtype of integers. As we can Python 
does not have built-in Bit data types. However, there are 
more than one library independently developed for bit 
data types ex: Bit Vector. 
• Cocotb Introduces more data types which are Logic 
which is 4 state data type, Bit which is 2 state data type 
similar to SystemVerilog. 
• Cocotb also Supports Logic Array, which is equivalent 
to wire vector or a bit vector in SystemVerilog. 

 
4.2 Aggregate Data Types 
 

In the majority of hardware designs memories and FIFOs always exist, which creates a need to 
abstract those data structures properly in a testbench. Also, for the control path elements, a 
testbench needs to store expected transactions and compare them to received transactions, this also 
create a need for aggregate data types like arrays to store transactions in them. 
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Table 2 
Aggregate data types 

SystemVerilog Python and Cocotb 
• SystemVerilog offers various 
kinds of arrays [Data structure that 
all of its elements are homogeneous 
and of the same kind]: 
- fixed size arrays, packed and 
unpacked both are supported 
- Dynamic Arrays. 
- Associative Arrays. 
- Queues. 
• SystemVerilog supports packed 
and unpacked structs 

• Python Supports lists which can be used to implement 2d and multi-
dimensional arrays, list can contain elements of same or different data types. 
• Python support dequeues, even though from functionality perspective a list 
can act as a queue, dequeues act  as an efficient way to implement a queue 
structure where can you pop elements in front and pop from back more 
effectively as a list. 
• Python Supports dictionaries which can be used to implement associative 
arrays. 
• Python has a module called arrays, that defines an object type which can 
compactly represent an array of basic values: characters, integers, floating 
point numbers. 
• Python’s library Numpy also supports arrays of fixed size 
and basic types 
• Cocotb also supports array type, arrays in Cocotb are of fixed size, can store 
any data types, elements of the array can be of the same type or of different 
types, arrays in Cocotb can’t change size. 
• Python contains a struct module which converts between Python values 
and C structs represented 

 
The list in Python covers the majority of the features of the following structures of SystemVerilog 

combined: Static Arrays, Dynamic Arrays Queues and some functionality of the struct. 
 

4.3 Parallel Execution 
 

Components in the testbench always need to be able to execute concurrently, for example a 
driver and monitor need to be operating simultaneously. 
 

Table 3 
Parallel execution 

SystemVerilog Python and Cocotb 
• SystemVerilog provides multi-threading techniques through: 
- fork ,join: Finishes when all children threads are over 
- fork, join any: Finishes when any child thread gets over 
- fork, join none: Finishes soon after child threads are spawned 

• Cocotb Provides us with: 
- start(), 
- start soon(),  
- combine() to enable concurrent execution. 

 
4.4 Interprocess Synchronization and Communication 

 
Components of the testbench always need to exchange data with each other, to synchronize 

operation and to pass data between different layers of the testbench, an example of that could be 
an exchange of a transaction between a monitor and a scoreboard. All of this data exchange and 
control synchronization is called interprocess communication (IPC). 
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Table 4 
Interprocess synchronization and communication 

SystemVerilog Python and Cocotb 
• SystemVerilog supports: 
- Events 
- Semaphores 
- Mailboxes 
Note: UVM uses TLM for data exchange between 
testbench components like sequencers and drivers 

• Cocotb Supports: 
- Events 
- Locks 
- Queues (equivalent in behaviour to SV mailboxes) 
Note: Pyuvm uses TLM for data exchange between 
testbench components like sequencers and drivers 

 
4.5 OOP Concepts and Language Basics 
 
Table 5 
OOP Concepts and Language Basics 

SystemVerilog Python and Cocotb 

• SystemVerilog is compiled. 
• SystemVerilog move data bits between variables, 
accordingly they need to match in size. 
• SystemVerilog does not support multiple inheritance 
• SystemVerilog supports parameterized classes, which uvm 
uses for example, sequencers drivers are both parameterized 
by the req and resp (seqitem they are expected to exchange) 

• Python is interpreted. 
• Python moves object handles between variables; 
in Python everything is an object --A variable of 
integer value is an instance of Class(integer) . 
• Python is dynamically typed. 
• Python supports multiple inheritance. 
• Python does not support parameterized classes 
 

 
4.6 Constrained Randomization 
 

In modern complex designs, constrained randomization plays an important role in the verification 
process. Constrained randomization, allows the verification engineer to find bugs that harder to find, 
compared to bugs found using directed testing [7,8]. 
 
Table 6 
Constrained Randomization 

SystemVerilog Python and Cocotb 
• SystemVerilog randomization is a built-in 
feature, randomization includes both local 
variables of a module (scope randomization) 
and class properties. 
• SystemVerilog supports randomization of 
various data types including: Integer Fields, 
Enum Fileds, Fixed size arrays, Variable size 
arrays. 
• SysytemVerilog supports various types of 
constraints including: dist constraints, soft 
constraints, inside constraint, unique and 
foreach constraint. 

• Randomization can be implemented in Python using the module 
”Random” which supports integers, distributions, weighted 
distributions, and choices from a sequence. 
• Randomization can also be implemented using Cocotb coverage 
library which supports basic randomization, and constructs like 
randomize with(), rand mode(), and allows for overriding of the 
methods pre randomize(), and post randomize(). 

 
4.7 Assertions 
 

An assertion is simply a check against the specification of your design that you want to make sure 
never violates [20]. 
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Table 7 
Assertions 

SystemVerilog Python and Cocotb 
• SysytemVerilog Provides various types of assertions that happen to be 
one in language yet used differently in the verification life cycle [2]: 
• assert for design check and for formal verification 
• assume for design constraint for formal verification 
• restrict for design constraint for formal verification 
SytemVerilog assertions are immediate, concurrent and deferred 
immediate assertions. SystemVerilog assertion can also be added by the 
RTL designer in the DUT to ensure correct operations in the DUT. 

• Cocotb coverage provides assertion as 
part of code coverage checks. 
• Cocotb coverage assertion can assert a 
property or sequence, they behave like 
assert in SytemVerilog. 
 

 
5. LiteDram the DUT 
 

LiteDRAM is a lightweight DRAM Controller written in Migen, and implemented and verified in 
various FPGA projects [6]. LiteDRAM supports various DRAM devices including DDR3, DDR4, RPC, in 
this paper we used LiteDRAM core targeting DDR3 [21] devices. Lite DRAM is composed of front-end, 
Core, and PHY. For the front-end the core supports multiple interfaces, including AXI4, Wishbone, 
Native, and DMA. The Front-end can also include ECC port. The core is fully pipe-lined and supports 
multiple bank-machines, the core also issues periodic refresh and manages command scheduling 
accordingly. 
 

 
Fig. 3. LiteDram the DUT 

 
6. Testbench Architecture 
 

In this section we introduce Pyuvm to the reader and even offer the reader a comparison between 
traditional UVM and Pyuvm, we use our developed DDR3 Controller testbench to perform that 
introduction and comparison.  
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6.1 Connection to the DUT 
 
Connecting the testbench to the DUT is achieved through setting the “TOPLEVEL” and “MODULE” 

Variables in the Cocotb Makefile. 
 
Code Listing 1: Cocotb Makefile important variables 
SIM ?= questa  
TOPLEVEL_LANG ?= verilog  
VERILOG_SOURCES=$(CWD)/../verilog/litedram_core.v  
TOPLEVEL_LANG=$(TOPLEVEL_LANG) 
MODULE := testbench #The file or the director that contains the test cases. 
TOPLEVEL = litedram_core#The RTL top level module 

 

 
Fig. 4. Connection to the DUT 

 
6.2 Pyuvm Tests 
 

For each test case we use the decorator “@Pyuvm.test()” and we inherit from the class “uvm 
test”. The decorator “@Pyuvm.test()” allows Cocotb to discover the test case on its own and run it, 
without the need for the testbench developer to create or specify a regression script. please refer to 
code snippet below as it shows a simple example of running Pyuvm test case, the famous ”Hello, 
World” example. 

 

mailto:
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Code Listing 2: Hello World example in Pyuvm 
import Cocotb  
from Cocotb import *  
import Pyuvm  
from Pyuvm import * 
#add the "@Pyuvm decartor to make the test case discoverable"  
@Pyuvm.test()  
class DDRCtrlTest(uvm_test):  
def build_phase(self):  
ddr_ctrl_env = Env.create("ddr_ctrl_env",self)  
ddr_ctrl_env_cfg = DDRCtrlEnvCfg.create("ddr_ctrl_env_cfg",self)  
ConfigDB().set(self, "ddr_ctrl_env","DDRCtrlEnvCfg",ddr_ctrl_env_cfg)  
async def run_phase(self):  
self.raise_objection()  
self.logger.info ("HelloWorld!")  
self.drop_objection() 

 
Table 8 
Pyuvm tests 

Traditional UVM  Pyuvm  
• Test writer connects the DUT to the testbench through 
a virtual interface instance passed to the DUT 
(environment) by using the UVM configuration database. 
• The test writer imports uvm pkg then imports all 
classes from UVM library through using ::*. 
• traditional UVM relies on “run test();” accompanied by 
passing the test name to the command line through 
“+UVM TESTNAME=…..”. 
• The test writer uses “uvm component utils” macro to 
register a component within the factory. 
• Traditional UVM uses underscore naming style The 
ConfigDB() is parameterized. 
• UVM phases have been regarded as adding complexity 
[22] to UVM testbench writing process. 
• The “uvm factory.print()” an argument which is an 
integer value between 0, 1, 2 for type and instances 
override 0, for all user defined types plus types and 
instances overrides 1, for UVM types starting with uvm * 
are printed plus all of the previous mentioned types. 

• Pyuvm relies on Cocotb to gain handle to the DUT. 
Cocotb ”Bus” can be used to group the signals neatly, 
the bus name can be passed to the driver and monitor 
through the configuration database. 
• The test writer imports uvm pkg, and Cocotb package 
and imports all classes from both packages through using 
::*. 
• Pyuvm we use the “@Pyuvm.test()” decorator to mark 
a test case and make it discover-able to Cocotb to run it. 
Cocotb discovers all of the test cases in the testbench 
directory and runs them all. 
• Components utility macros are not supported. 
• Pyuvm uses underscore naming style, for the sake of 
compatibility. The ConfigDB() is not parameterized. 
Python doesn’t support parameterized classes. 
• Pyuvm phasing support is a simplification for the 
phases implemented in UVM. Currently, Pyuvm only 
supports:  ”uvm build phase”, “uvm connect phase”, 
“uvm end of elaboration phase”, “uvm start of 
simulation phase”, “uvm run phase” (the only time-
consuming phase), “uvm extract phase”, ”uvm check 
phase”, “uvm report phase”, “uvm final phase”. 
• Pyuvm supports the same factory behaviour as 
traditional UVM, additionally, Pyuvm supports the 
conversion of the logging of factory state by creating a 
string “str(uvm factory.print())” 

 
From the above Code listings, we would like to highlight some difference between UVM and 

Pyuvm. 
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6.3 Environment and Sub-Components 
 
The environment (env) is the top-level component of the verification component. The env 

contains agents, Wish- bone agent, AXI4 agent[3:0], all of them are active agents, and one more 
passive agent which is the DFI agent, as it only listens to the DFI Bus and does not need to drive any 
transactions to the memory: 

 
i. Scoreboard: 

The Scoreboard keeps track of predicted transactions and received transactions, while 
allowing out of order comparison. 

ii. Drivers and Monitors: 
The Drivers were created by extending the class “uvm driver” and Monitors were 
implemented by extending the (uvm component) class. Please refer to Code Listing3: 
showing Pyuvm driver. 

iii. The Cocotb Bus: 
 

Analogous to SystemVerilog’s Interface construct which is used to group signal together, Cocotb 
provides an extension library called “Cocotb bus” The class Bus allows a testbench developer to group 
signals of the same protocol together like SystemVerilog Interfaces, the BUS class accepts optional 
signals, allowing for future scalability as it contains a method for adding new signals to an existing 
Bus. An instance of Cocotb Bus was created for every protocol that the design supports, and passed 
to the corresponding driver and monitor. For the AXI4 Cocotb already provides an AXI4 Bus driver, 
which contains an API that drives write transactions to the AXI4 in the design, drive read transactions 
and collect read data. 

 
Code Listing 3: Wishbone Driver implemented in Pyuvm 
class WBDriver(uvm_driver):  
def build_phase(self):  
self.wb_bfm = WBfm("wb_bfm", self )  
async def run_phase(self):  
while True:  
cmd = await self.seq_item_port.get_next_item() “””start of Sequencer driver handshake””” 
logging.info("WB Driver Transcation got from WB Sequencer")  
logging.info(str(cmd)) 
 await ClockCycles(self.wb_bfm.dut.clk,cmd.wb_delay, rising=True)  
await FallingEdge(self.wb_bfm.dut.clk)  
self.wb_bfm.wishbone_bus.adr.value = cmd.wb_addr#Driving the Wishbone Address 
"""Rest of Wishbone Transaction driving logic"""  
logging.info("Driver Returned From WBFM Transcation driving") 
 self.seq_item_port.item_done()#End of Sequencer Driver Handshake”” 
 

 
The Env components and its components are reporting classes, extended from ”uvm report 

object” accordingly we want to introduce the audience to reporting in Pyuvm. 
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Table 9 
Environment and sub-components 

Traditional UVM  Pyuvm  
• UVM relies on reporting macro to report 
messages, ex ‘uvm error(string ID, string 
MSG). 
• UVM has six verbosity levels: UVM NONE, 
UVM LOW, UVM MEDIUM (Default), UVM 
HIGH, UVM FULL, UVM DEBUG. 

• Pyuvm relies on Python logging mechanism, the 
”uvm report object” creates an object named ”self.logger”, ex: 
self.logger.error(”string MSG”) 
• Python logging module has six levels: CRITICAL, ERROR, WARNING, 
INFO, DEBUG, NOTSET. In order to change the logging level of any 
component ”self.set logging level()” 
• Furthermore, Pyuvm enables the user to change logging format, 
logging handler. And sets an extra level for ”uvm tlm analysis fifo” 
which is 5. 

 
6.4 Sequences and Sequence Items 

 
Sequence Items known as transactions are a crucial part of any testbench, as they contain data 

fields required for generating the stimulus, and for creating sequences by randomizing sequence 
items. Worth mentioning that even though uvm and Pyuvm are almost the same just re 
interpretation of each other in different languages, the sequence item class object highlights some 
interesting features in both languages: 

 
i. Pyuvm does not support Field macros and Object utility macros, which should have been 

expected by the reader since Component utility macros are not supported.  
ii. Pyuvm relies on the fact that python by default support functions like str, and eq to return 

a string containing the class member values, or to compare an instance of a class object 
to another, and accordingly Pyuvm authors encourages the reader to implement the 
mentioned methods, accordingly the “do print” method is not implemented in the “uvm 
object” class which means it cannot be overridden by the user.  

iii. Pyuvm runs in the software side, not the simulator. Accordingly, “record()” and “do 
record()” methods are not implemented and cannot be overridden.  

iv. Pyuvm authors do not implement some of the methods related to data formatting like 
“do pack()”, and “do unpack()” as Python has libraries for doing this job in a more elegant 
way.  

v. Pyuvm is built on Python which means the randomization options in Python are different 
than that of SystemVerilog, accordingly it was a personal choice to do multiple inheritance 
from both “uvm sequence item” and Cocotb coverage “crv.Randomized” to be able to 
implement randomization and constraints. The reader is advised to refer to [4] and see 
how the author implements randomization and use the sequence to constraint the 
transaction’s sequence item fields. We found the style presented here to be easier than 
the way the author of [4] carried out this process.  

 
Code Listing 4:sequence item implemented in Pyuvm 
class AxiSeqItem(uvm_sequence_item,crv.Randomized):  
def __init__(self, name):  
super().__init__(name) crv.Randomized.__init__(self)  
self.axi_addr = 0x0 
self.axi_data=0x77776666555544443333222211110000  
self.axi_burst = 0x0  
self.axi_size = 0x4  
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self.axi_len = 0x0  
self.axi_strb = 0xffff  
self.axi_id = None  
self.axi_wr_rd = 0x1  
self.axi_delay = 0x1  
self.add_rand("axi_strb", list(range(2**16)))  
self.add_rand("axi_addr",list(range(2**18)))  
'''Creating Data Kernal'''  
self.add_rand("axi_data", list( range( (2**16)-8) ) )  
self.add_rand("axi_wr_rd", list(range(2)))  
self.add_rand("axi_len", list(range(16)))  
self.add_rand("axi_size", list(range(5)))  
self.add_constraint(lambda axi_addr : (axi_addr)%16 == 0)  
def post_randomize (self):  
if (self.axi_len == 0x0):  
self.axi_burst = 0x0  
else :  
self.axi_burst = 0x1  
self.axi_data = self.axi_data\  
|(self.axi_data+1) <<16\ 
….………………………………. 
|(self.axi_data+7) <<112  
def __eq__(self, other):  
same = self.axi_data == other.data and self.axi_addr == other.addr and self.axi_strb == 

other.axi_strb  
return same  
def __str__(self):  
return f'{self.get_name()}: Addr: 0x{self.axi_addr:04x}  Data: 0x{self.axi_data:04x}  WR: 

{self.axi_wr_rd}  Sel: 0x{self.axi_strb} Length : 0x{self.axi_len}  Burst : 0x{self.axi_burst}' 
 

 
7. Conclusion 
 

Through this paper we have shown that Python has less data structures than SystemVerilog, also 
Python is more forgiving than SystemVerilog, those two features could arguably make learning 
Hardware Verification using Python easier. Python and Cocotb Covers most of the language 
constructs of SystemVerilog, we also showed the reader than Pyuvm covers the minimum needed 
subset of the UVM class library to allow for design verification. Python has slightly different features 
than SystemVerilog like multiple inheritance, this might encourage verification engineers to revisit 
some of the existing verification practices. Python seems to be promising in the applications of 
verification that involve DSP applications, heavy Data Path applications, and machine learning, as 
Python contains more than one package that supports machine learning, which means the package 
would just be imported in the testbench and used directly. On the other hand, Cocotb and Python 
verification initiatives seems like a work in progress with current status which is the lack of strong 
randomization as in SystemVerilog and limitation on the support for SystemVerilog assertions 
binding. Also, there are very few python verification components and Python verification Ips [4], 
while there are plenty of UVC (Unified Verification components) available in UVM --commercial and 
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non-commercial-- and it has been shown before in [3] that hardware verification process consumes 
the highest amount of time in projects where UVCs are not available for reuse. Yet, the main 
advantage of Pyuvm and Cocotb is the fact that they are open-source this would provide the 
academic community, and fresh-grads the opportunity to learn hardware verification and develop 
more standardized reusable verification components. 
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