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Homomorphic Encryption (HE), Multiparty Computation (MPC), Differential Privacy (DP) 
and Random Projection (RP) have been used in privacy preserving computing. The main 
benefit of the random projection approach is the lighter time and space complexity 
compared to the other available techniques. However, RP is typically used in a 
symmetric encryption mode, with one random projection matrix single key, making it 
vulnerable to attacks. An enhanced multi-key RP approach is proposed in this paper 
where a set of N random matrices are used as projection keys. Moreover, a randomly 
chosen one is used for each new query. Machine learning models are trained to perform 
specific vector operations on the randomly projected vectors and produce another 
randomly projected results vector. Another machine learning model is trained to 
decrypt the final result at the user’s side. The proposed system is shown to offer privacy 
against known plaintext and cipher-only attacks while preserving Euclidean distance 
calculations accuracy in the randomly projected domain which are demonstrated on the 
COREL 1K image retrieval task. Results show that the cyphertext space took sixteen 
times less than the ciphertext done with homomorphic encryption, and the 
computation of distance using random projection was 8 times faster than homomorphic 
encryption distance calculation. 
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1. Introduction 
 

Privacy preserving computing has become an important feature in various domains such as smart 
homes [1], autonomous vehicles [2], smart grids [3], portable medical information [4], and decision 
support systems [5]. Data is processed on cloud as it is capable of performing the required amount 
of computations with minimum latency, however, on the cost of potential privacy leakage [6].  

To address this concern, privacy-preserving techniques mostly employ one of 4 approaches: 
Homomorphic Encryption (HE) [7-10], Multiparty Computation (MPC) [11], Differential Privacy (DP) 
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[12,13], and Random Projection (RP) [10-12]. These techniques are sometimes combined for the 
purpose of achieving the needed privacy result. 

Homomorphic Encryption (HE) [14,15] is a secure computing technique that allows computations 
to be performed on encrypted data, without first decrypting the data. The main idea behind 
homomorphic encryption is to use cryptography to create encrypted representations of data that can 
be manipulated in a meaningful way, without having to reveal the data [16]. The HE approaches 
guarantees privacy on all levels (input data, model parameters and output); however, it has 
significant drawbacks in terms of the high storage and large encryption delay [16]. HE can support 
addition and multiplication operations; a Homomorphic Encryption that supports both operations 
with unlimited balance called Fully Homomorphic Encryption scheme (FHE) [14,15]. Multiplication 
operation causes more noise to the ciphertext than addition. Using HE to encrypt training data 
requires expressing the data as a low degree polynomial [17].  

Multiparty Computation (MPC) is a secure computing technique in which multiple parties can 
collaborate to perform a joint computation, without revealing their individual inputs to each other. 
The main idea is to encrypt the data to ensure that the computation is performed in such a way that 
no single party can see the inputs of the others, and the final result is revealed only after the 
computation is complete. Multi-party computation is useful in situations where multiple parties have 
sensitive data that they want to use in a joint computation, but do not trust each other to reveal their 
data. This technique is commercially ready and highly accurate, but there may exist corrupted parties 
who try to discover other parties’ inputs. It also has high communication complexity.  

Differential Privacy (DP) is a data perturbation method that provides privacy by “adding noise” 
[18]. DP introduces randomness to preserve the data and thus suffers from potential accuracy 
problems as well as attacks vulnerability [12]. It provides mathematical guarantees [19] about the 
privacy of individual data items in a dataset. The main idea is to add random noise to the data in such 
a way that individual data items cannot be easily distinguished from the noise, while still allowing 
meaningful statistical analysis to be performed on the overall dataset. Differential privacy is widely 
used in areas such as medical research [20], where it is important to protect the privacy of individual 
patients while still allowing meaningful insights to be gained from the data. However, the DP 
approach still suffers from potential accuracy problems as well as attacks vulnerability [12]. 

Random Projection (RP) and Compressed Sensing (CS) have been used as privacy preserving 
techniques [21-26] due to being lightweight compared to other techniques. In this paper, CS is 
considered as a special case of the more general RP approach and the term RP will be used in the 
paper for both of them. Random projection is a secure computing technique that involves 
transforming data into a lower-dimensional, and in this research a higher-dimensional, space in a 
random way. The main idea is to use random projections to obscure the structure of the original data, 
making it more difficult for an attacker to obtain meaningful information about the data. Random 
projection can be used in combination with other privacy-preserving techniques, such as differential 
privacy, to provide additional protection for sensitive data [27]. RP works by projecting any given 
feature vector by a random matrix. If the feature vector is sparse and its dimension is reduced, RP is 
performing compressed sensing (CS). Otherwise, it is a general-sense random projection.   

There are a few weaknesses in the RP approach in privacy preserving computing; Firstly, it is a 
single-key, symmetric encryption paradigm; thus, both the owner and the user have to share the 
same key (random projection matrix). This would compromise the secrecy and privacy of the data. 
Secondly, a semi-honest cloud or a malicious adversary could ultimately decrypt the data and make 
sense of the results if it accumulates a sufficient number of encrypted data [28,29].  

A multi-key RP system is proposed in this paper, maintaining the light-weight features of the RP 
while enhancing its security by using a potentially very large number of random keys. This is done by 
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employing randomly selected keys for the users and cloud, taken from a finite set of random 
matrices. Also, by using two trained machine learning model banks; one to do the encrypted 
computations at the cloud and the other to decrypt the computation results at the legitimate user 
side.  

The paper is organized as follows: Section 2 background and related work. Section 3 explains the 
details of the proposed model. Followed by section 4 that covers the security analysis of the proposed 
model. Section 5 show the experimental results, and finally discussion is on section 6, followed by 
the conclusion. 
 
2. Background and Related Work  
2.1 Comparison of Private Computing Methods 
 

Homomorphic encryption strength lays in its ability to perform computations on encrypted data, 
which provides the needed privacy for sensitive data, and it could also be used on a variety of use 
cases. However, it is computationally expensive, and it provides a limited functionality compared to 
the ones that could be done on unencrypted data. HE provides a tighter security guarantee, as it 
allows computations to be performed on encrypted data without first revealing the data itself. This 
makes it more difficult for an attacker to obtain sensitive information about the data. However, the 
tightness of security in homomorphic encryption depends on the strength of the encryption scheme 
and the ability to correctly implement the homomorphic encryption. If the encryption scheme is weak 
or the implementation is incorrect, the security guarantee can be compromised. 

MPC provides privacy for individual inputs, it could be applied on multiple use cases as well, and 
it could handle computations with multiple parties. On the other hand, it could cause communication 
overhead, could be difficult to coordinate between multiple parties, and could be vulnerable to rogue 
parties who do not follow the protocol. MPC provides a tight security guarantee by allowing 
computations to be performed on private data without revealing it to any of the parties involved. In 
a multiparty computation, each party inputs their private data and the computation is performed in 
such a way that no party can learn any information about the private data of another party. This 
makes it difficult for an attacker to obtain sensitive information about any individual's data. However, 
the tightness of security in multiparty computation depends on the ability to coordinate between the 
parties involved and the trustworthiness of the parties, as a rogue party could potentially manipulate 
the computation to obtain sensitive information. 

DP represents the mathematical guarantees of privacy, it could handle large datasets, and could 
be applied to multiple use cases. But it could result in significant loss of information [30], it could also 
be computationally expensive in some cases [31], could be difficult to tune the amount of privacy 
protection, Vulnerable to attacks that try to infer individual data items from the noise added by 
differential privacy [30]. DP provides a strong mathematical guarantee of privacy, but the tightness 
of this guarantee can depend on the amount of noise added to the data and the choice of privacy 
parameters. The privacy guarantee in DP is usually expressed as a bound on the likelihood of an 
attacker being able to determine the presence or absence of an individual data item in a dataset. The 
tighter this bounds, the stronger the privacy guarantee, but this can come at the cost of adding more 
noise to the data and reducing the accuracy of the results. 

RP can obscure the structure of data [32] and can be computationally efficient. And similar to DP 
it can result in significant loss of information, and it can be vulnerable to attacks that try to infer 
information about the original data. RP uses a random projection matrix to map the data to a lower 
or a higher dimensional space. The projection matrix is not known to the attacker and provides a 
level of security for the data, so the computations could be performed securely. 
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Each of the above techniques has its own strengths and weaknesses, and the best method for a 
particular use case will depend on the specific requirements and constraints of the situation. For 
example, if privacy is a primary concern, differential privacy or fully homomorphic encryption might 
be the best approach, while if the goal is to perform a joint computation with multiple parties, multi-
party computation might be the best choice, RP and CS shine in their fast performance and being 
lightweight.    

 
2.2 Related Work 
 

This section aims to cover the work done using private computing methods with machine 
learning, private computing methods with multikey encryption, and covering some of research that 
used random projection and compressed sensing for privacy preserving private computing. 

Hesamifard et al., [33] presented a framework to train deep neural networks on encrypted data 
using HE within its provided limitations. The limitations provided by the Fully Homomorphic 
Encryption (FHE) result in the direction of having a hybrid system that uses at least two of the 
commonly used privacy preservation techniques. Following this track some researchers lean into not 
using DP as the sole privacy preserving technique, as it would lack the robustness of the needed 
privacy protection. Owusu et al., [34] has developed a privacy preserving deep neural network using 
secure MPC and DP fusion due to the impracticability of the FHE, their approach is secure with a good 
performance.  

Multikey encryption also poses as a further security enhancement. Li et al., [35] has proposed a 
collaborative multi-key scheme to train a neural network for multiple data owners on an untrusted 
cloud platform. They proposed the system on a basic model using only HE, then used both HE and 
MPC as an advanced model. Their system shows it provides the required security for the encrypted 
data. Similarly, López et al., [36] has introduced an MPC scheme that encrypts the system with multi-
key FHE, the ciphertext is processed then deciphered using a secret key of the user who issued the 
operation. Likewise, Mukherjee et al., [37] has proposed a multiparty computation protocol using 
multi-key HE.  The scheme developed by Li et al., [31] reached the goal of private computing without 
any privacy leakage by combining MPC and DP with multiple public key encryption. The presented 
model provides simpler computation complexity, less spatial expansion, and highly accurate results.  

On the other hand, the almost negligible processing needed for encryption using RP and CS makes 
it a promising approach for privacy preservation. Outsourcing images to the cloud for private data 
mining and image retrieval was used such as presented by Wang et al., [22] and Boyle et al., [32]. 

Random Projection was used by Peng et al. [38] to assist in protecting a biometric cryptosystem. 
The concept is to derive for each user’s feature vector a projection of random space from a projection 
matrix, they also used backpropagation neural network to link the projected vector with a randomly 
generated key. This approach secured the vulnerability of cross matching attack. Jiang et al., [39] has 
introduced a lightweight privacy preserving approach to using gaussian projections on IoT objects, 
they use deep learning on projected data to train the classifier. Ratra et al., [25] has used 
dimensionality reduction as a privacy preserving technique along with feature selection. Both 
random projection and principal component analysis hybrid approach results in a more improved 
overall performance and classification.   

Privacy preserving encryption using compressed sensing was used [23]. The researchers use 
compressive sensing to encrypt sensitive data, their targeted data were videos, they return the 
privacy preserved result based on the user level, if the user is not fully authorized the encryption will 
de-identify the image (face section) in the video, depending on the user’s clearance level. 
Compressed sensing encryption helped their scheme to be reversible i.e., their scheme could 
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navigate the users from decrypted image to de-identified one depending on their level of clearance 
back and forth, and it has the benefits of CS as a lightweight encryption compared to HE.  

Similarly, Kuldeep et al., [24] has introduced multi-class privacy preserving cloud computing 
scheme, using CS they have two user levels a super-user who could access sensor data and another 
level who could only retrieve reports and some statistical information done on the encrypted data, 
using CS signal recover, with an advantage of lower computational complexity.  

Fakhr and Mohamed [21] has developed a multiple-key random projection model which uses 
machine learning for results decryption, depicted in Figure 1. 𝑦!	  denotes user’s encrypted vector 
while 𝑦# denotes data owner’s randomly encrypted vectors using Φ!	&	Φ#  respectively. The Support 
Vector Machine for Regression 1 (SVR1) module at the cloud produces an encrypted output using 
their own cloud key Φ$  while the (SVR2) at the user’s side reveals the plaintext computation result. 
The paper introduced random projection with Machine Learning to solve the high computation 
problem of the HE and MPC since it requires matrix multiplication at encryption and support vector 
regression inference at decryption. The paper tested the proposed algorithm on two applications, 
Squared Euclidean Distance computation on COREL 1K image dataset and data prediction Time Series 
using Google Stock data. The results show a negligible difference between predicted data and 
plaintext results. The main drawback is that using fixed keys to train the SVR modules is vulnerable 
to attacks, and if the keys were to be changed or refreshed would require frequent retraining to the 
SVR modules which poses a scalability problem. 

 

 
Fig. 1. Private computing using multiple keys and compressed sensing developed by [21] u 
denotes data user, o denotes data owner, c denotes the cloud 

 
3. Proposed Private Computing Model 
3.1 Basic Idea 
 

Building on the work by Fakhr and Mohamed [21], this paper proposes a multi-key system, where 
both the user and the cloud encrypt their data vectors using randomly selected matrix from a 
potentially very large set of random matrices.  

Figure 2 highlights the proposed model. User 1 is the one who initiates the computation and 
requires the final outcome, and User 2 is the database owner which is encrypted and stored on the 
cloud. Each matrix Φ!"	𝑎𝑛𝑑	Φ!# is of dimension 𝑚	𝑥	𝑛, and are sampled randomly from two 
different sets with size 𝐽	𝑎𝑛𝑑	𝐾	𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. They are used to encrypt 𝑥" and 𝑥# which are image 
feature vectors with size 𝑛 each for Users 1 & 2 respectively as shown in Figure 2. 
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Fig. 2. The data flow of the basic idea of the proposed model 

 
In this paper, the model is trained to calculate the Euclidean distance between two feature 

vectors; however, this is merely an example; it could also be trained to do other computations such 
as addition, subtraction, and dot product.  

Algorithm 1 describes the process of the basic idea, each user gets a random Φ	from their set, 
encrypts the corresponding feature vector, then the encrypted vectors are sent to the cloud. The 
machine learning at the cloud to do the operation then returns a plaintext distance without 
compromising the used features. The experimental results should show the model’s ability to 
maintain the distance between features while two different keys were used. This model is 
outstanding compared to the previous one in terms of having multiple keys available for each user. 
However, the model has one SVR available at the could with one set assigned to it, which could 
expose the system to vulnerabilities easily as it could be exhausted, and the set could be figured out 
after multiple unique trials that matches the set length.  

 
ALGORITHM 1: RANDOM PROJECTION ENCRYPTION WITH SVR DECRYPTION BASIC IDEA 
 Inputs: User 1 & 2 feature vectors 𝑥"	&	𝑥#. 
 Output: Calculated Euclidean distance ‖𝑥" − 𝑥#‖##. 

1 SVR 𝑅𝑎𝑛𝑑(𝑆𝑉𝑅$).  
2 𝑅𝑎𝑛𝑑=Φ$,&> // foreach user from available designated sets.  
3 Encryption: 𝑍 = 	Φ ∗ 𝑥	 // Multiply each user’s vector with a key Φ. 
4 Send encrypted features to the cloud. 
5 Estimate 𝜆 = ‖𝑥" − 𝑥#‖##. 
6 Return 𝜆.  

 
3.2 Enhanced Proposed Model  
 

The model is trained at the Trusted Third Party (TTP). TTP trains two different SVRs, one is at the 
cloud, which is a set of parallel SVRs, and the second SVR is a singular available at the user’s side. The 
need to increase the number of available SVRs at the cloud is to increase the number of available sets 
of keys, and the system expansion would result in having a more complex system. The available set 
of SVRs at the cloud are identical in performance but each is trained using a different set of keys. The 
input to the cloud’s SVR is two encrypted feature vectors that users wish to measure their distance 
against the database owner (𝐵𝐷') vectors. So, the TTP generates for each SVR available at the cloud 
three random matrix sets; EΦ()! , Φ!	𝑎𝑛𝑑	Ψ*+,H, each Φ is a potentially large set of keys, where the 
SVR has only one large key Ψ that encrypts the output distance. When a user inputs their vector, a 
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randomly chosen key from the randomly chosen SVR is multiplied with their vector, same is done 
with the database owner’s vectors, as both vectors get randomly projected.  

The cloud’s SVR input is a concatenation of both randomly projected encrypted vectors as shown 
in Eq. (1) through (3).  

 
wU	=	Φu*𝑥u   (1)                                                                                         

 
wDBO	=	ΦDBO*𝑥DBO   (2)                                                                                         

 
w	=	Kwu		wDBOL   (3)                                                                                         

	
The user’s SVR is trained to receive the encrypted vector in the form of Eq. 7 and retrieves the 

originally measured distance. Which will be explained in the user part. Algorithm 2 states the 
enhanced model procedure. 

 
ALGORITHM 2: RANDOM PROJECTION ENCRYPTION WITH SVR DECRYPTION ENHANCED MODEL 
 Inputs: User 1 & 2 feature vectors 𝑥'	&	𝑥(. 
 Output: Calculated Euclidean distance  𝜆 = ‖𝑥' − 𝑥(‖((. 
1 𝑅𝑎𝑛𝑑(𝑆𝑉𝑅)) // User is assigned to a randomly chosen SVR. 
2 For each feature: // for both vectors available designated sets.  
3   					𝑅𝑎𝑛𝑑*+,#(Φ) 
4 Encryption:  𝑊 = 𝑈(𝑥1) ∗ 𝑅𝑎𝑛𝑑𝑆𝑉𝑅𝑖(Φ𝑈) + 𝐷𝐵𝑂(𝑥2) ∗ 𝑅𝑎𝑛𝑑𝑆𝑉𝑅𝑖=Φ𝐷𝐵𝑂>. 
5 Send 𝑌 to the cloud’s chosen 𝑆𝑉𝑅. 
6 Foreach 𝑆𝑉𝑅-: 
7       Estimate: 𝑦- =	𝑍- ∗ 𝑆𝑉𝑅-(Ψ) //SVR produces an encrypted distance with random added noise. 
8 Calculate 𝑌 = 	∑ Ψ. 	 ∗ 	𝑍./

.01 																																																																																			 
9 Send 𝑌 to the user.  
10 Decryption:  𝜆 = Ψ) 	 ∗ Y 

 
3.2.1 User to Cloud 
 

Figure 3 displays the discussed further enhancements to the model in Figure 2. The cloud will 
offer multiple parallel SVRs instead of having just one. A user that wishes to do computations on their 
data against the (𝐷𝐵2) database owner’s data, will be assigned randomly one of the available SVRs 
at the cloud. Each SVR can calculate an encrypted distance and then sends an encrypted result to the 
user. The system at the cloud has L number of available SVRs. Each SVR has two sets of unique 
normalized and randomized Gaussian Φs, all sets of same size but different key combination. Each 
one of the SVRs is trained to calculate the distance and produce a sparse vector Ζ which is encrypted 
with a corresponding Ψ as an output of the cloud’s SVR, which is an orthogonal key matrix.  

The input to the cloud SVR is the user’s and the 𝐷𝐵2’s concealed vectors. All SVRs receive similar 
looking inputs to misguide the cloud from knowing the real working SVR. Each SVR at the cloud 
calculates the distance using both encrypted feature vectors. 

A further processing on the real distance is done within the cloud’s SVR, before multiplying it with 
the SVR’s Ψ. The calculated distance is encoded in 𝑍 which is a sparse vector. In order to stabilize the 
vector’s energy a random noise is added to it that is inversely proportional to the actual signal so 
their energy sum to a constant. Consequently, the sparse vector’s encoded output would not be 
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directly proportional with the real distance. Then 𝑍 is multiplied with Ψ. And this represents each 
SVR’s output at the cloud.  

 

 
Fig. 3. User to cloud phase, where the user is assigned a random SVR and a random key from the available set 
of the randomly chosen SVR 
 

The output of all SVRs is then summed together and sent to the user. 
 

Y=	Rya

L

a=0

=	RΨa	*	Za

L

a=0

   (4)                                                                                         

 
The rest of the SVRs that were not chosen produces noise. Undoubtedly, the cloud should not 

learn which SVR was chosen, therefore, all SVRs’ outputs are summed and then sent to the user.  
The purpose of generating two different sets of Φs for each SVR is to impair the cloud from 

knowing which SVR was chosen, and which one is actually running, this produces a more complex 
system, and have a divergent set of SVR. Nonetheless, the Database Owner at cloud could have an 
agnostic set of Φs, which will make a less complex system, and a – somewhat – more similar trained 
SVR. 

 
3.2.2 Cloud to User 
  

The proposed model uses machine learning for decryption to recover the mathematical 
computation done between the two vectors. In Figure 4 the user receives the output provided from 
the cloud Eq. (4); the user knows which is the correct SVR, so the summed output sent by the cloud 
to the user. The output is multiplied with Ψ Eq. (5). The result will be fed into the user’s SVR and 
finally produces the distance as plaintext Eq. (6). Encrypting the cloud’s output would protect the 
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system from eavesdroppers or curious clouds. The Ψ acts as another key dedicated for each SVR. 
Also summing the output of all SVRs adds another layer of complexity. 

 

User’s	SVR	Input	=		Ψi	*Ry	   (5)                                                                                         

  
User’s	SVR	Output		λ	=	‖𝑥1 − 𝑥(‖22 				   (6)                                                                                         

 

 
Fig. 4. User receives the cloud output and multiply it with the correct 𝛹 to get the energy vector 
and use it on their own SVR to compute the distance 

 
4. Proposed Model Cryptanalysis 

 
This section discusses the security concerns of the proposed model, from COA Ciphertext Only 

Attack [24] and KPA Known Plaintext Attack [40] perspectives: three attack scenarios are presented. 
  

4.1 Scenario 1  
 

The attacker is based at the cloud (Cipher-Only Attack). In the proposed approach, the SVR’s input 
is encrypted with a random key from a subset and the output signal’s energy is hidden by teaching 
the cloud’s SVRs to produce an encrypted signal, which is multiplied with a key that belongs to each 
SVR. The attacker will not be able to reverse engineer the input nor the output correctly. And it will 
be hard to recover the correct vector with the wrong key. Figure 5 explains scenario 1.  

Because all SVRs produce a randomly encrypted and energy normalized outputs, a curious cloud 
or an attacker based on the cloud will be misled and will not figure which SVR was the randomly 
chosen one.  

And should the attacker identify the correct SVR for a specific distance request the attacker will 
have to try and obtain the keys used to encrypt each vector, along with the SVR’s key. This would fall 
into an NP class problem, the attacker would know the key size, but will have to try all possible 
combinations to reach the correct key matrix used. And would reach a vector with minimal 
confidence, as a wrong key would produce the wrong vector. Rachlin et al., [41] has demonstrated 
that compressed sensing is not able to reach perfect secrecy provided by Shannon’s definition [42]. 
However, they tested trying to recover the plaintext given the ciphertext only while using a wrong 
key, and it resulted in a different plaintext which means that an adversary cannot recover the original 
signal without the correct key, given the key is sufficiently large, this happens with one-time 
scenarios. They also showed that using CS based encryption technique provides computational 
security and highlighted that the signal’s energy is a weakness an adversary might use. 
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Fig. 5. Scenario 1: The attacker is based on the cloud, could see the output of the SVRs but cannot be 
sure which one is currently in use 

 
This attack has a solution presented by Fay et al., [28] by using multiple keys that changes with 

every transaction. The adversary could guess parts of the key matrix Φ when they collect enough 
ciphertexts which would weaken the encryption abilities. Therefore, having a carefully generated 
Gaussian distributed keys which are chosen using a random seed with each transaction will result in 
generating different encrypted output to the same plaintext. 

Giving each user a limited number of system usage will also be beneficial in this case. As with 
each trial the output to the same plaintext will be different therefore the attacker will not be able to 
estimate anything useful. In this case the attacker will not only have to guess the number of keys and 
solve a clustering problem but will have to estimate the key that was used and the correlation in the 
data.  

 
4.2 Scenario 2 

 
 In this case the attacker is both at the cloud and acts as a user as well to perform a KPA (Known 

Plaintext Attack). The attacker would have access to a black-box system where they get a random 
matrix to multiply their vector with, they get another key that represents the Ψ. The attacker could 
recover their specific Φ. Furthermore, they could exhaust the system in order to figure out all keys 
assigned in the users’ sets to be able to learn other users’ inputs. But the database owner is protected 
as their keys are independent of the users’. In this scenario the attack will require multiple queries 
using the same inputs to target the same key matrix and produce the same output, therefore, in 
order to replicate the framework an input should be queried twice using the same key. On the other 
hand, to replicate the system that is residing at the cloud only using brute force; each single key 
would require 𝑂(𝑚𝑛𝑟) to be figured, ignoring time complexity involved on the user’s side. Figure 6 
showcases the second scenario, where the attacker is both in the cloud and acting as a user. By 
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recovering both keys Φ & Ψ the attacker will be able to see the value of 𝑍 which contains the hidden 
value of the distance between the two vectors. The problem will be even more complex as the 
attacker will need to figure how many Φs are used in the system and will have to cluster the output 
data with those different Φs, so the attacker could apply inverse modeling to crack all keys. 
Cambareri et al., [43] reviewed CS encryption against Known Plaintext Attack in a theoretical 
approach, their results show that there are many keys that could result in a similar pair of plaintext 
and ciphertext. Which will harden a brute force attack on the key matrix as the results would be 
inconclusive. 

 

 
Fig. 6. Scenario 2: The attacker is based on the cloud and acting as a user as well, they could recover the 𝒁  
which is a vector that contains the value of the encrypted distance 
 

One of the algorithm an attacker could use is the Blind Source Separation (BSS) algorithm, which 
is the process of separating a mixture of 𝐾 sources into its individual sources without the knowledge 
of the mixing coefficients [44]. There is a popular algorithm that is used in solving the BSS problem 
called Independent Component Analysis (ICA). The idea of ICA is observing random variables 𝑣 which 
are modelled as the sum of hidden variables as in Eq. (7) 

 

vi=Raijsj

m

j=1

	   (7)                                                                                         

  
Where 𝑎)-  is a constant referred to as mixing matrix, and 𝑠-  are the hidden independent 

components or source vectors. The target is to estimate both 𝑎)-  and 𝑠-  using a set of assumptions.  
With the possibility of system expansion. The attacker could use such a technique after trying to 

exhaust the model to produce plaintext ciphertext pairs as much as possible, which enough data 
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points the attacker could apply a suitable BSS algorithm and try to separate the pairs, which could 
eventually let the attacker identify which pairs came from the same source.  

 
4.3 Scenario 3 
   

The third scenario would be the case of a TTP that acts as a user as well but cannot access the 
cloud. The attacker then would be able to generate enough feature vectors examples to train a 
machine learning algorithm that could resemble the entire system. Therefore, the more keys, key 
size, and system expansion the harder the process is for the attacker. Also changing the keys every 
while would also act as another protection layer against this attack. Figure 7 explains scenario 3 
where the TTP is acting as a user and using the output to train a machine learning algorithm to mimic 
the framework. 

  

 
Fig. 7. Scenario 3: TTP acting as a user, then training a machine learning 
to mimic the framework 

 
5. Experimental Results 
5.1 Methodology 

 
The research aims to prove that secure computations could be done on encrypted data, with low 

computational complexity, while preserving the data’s integrity and security. Following the work 
conducted by Fakhr and Mohamed [21], the proposed model is used to perform secure image 
retrieval on the COREL 1K dataset. The privacy-preserved Euclidean distance is sought between query 
and database image feature vectors which are PCA-reduced to only 7 features. Training the cloud’s 
SVRs and the user’s SVR was done using synthetic data to control the number of training examples. 
Each cloud SVR was trained on a set of unique random keys, to produce an encrypted distance, the 
encrypted data is sent to the user to decrypt and get the distance.   

The first experiment is designed to benchmark the retrieval accuracy of the proposed approach, 
in addition a designed nearest neighbour experiment was applied to measure the accuracy of the 
distance calculation before and after the encryption process. The second experiment is aimed to 
observe how changing the parameters of the system, by increasing the number of keys and SVRs, 
would affect the system. The third experiment represents the system’s extrapolation beyond the 
parameters used in the second experiment. Experiment 4 is a comparison between the proposed 
approach and Homomorphic Encryption in terms of storage, delay, and performance. 
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5.2 Training the Support Vector Regression Models: 
 

The training is done by using synthetic randomized Gaussian data that represent an image’s 
feature vector, which mimic the COREL 1K dataset and the same pre-processing steps were done on 
both. The keys are generated as an orthogonal randomized Gaussian matrix. As each SVR has two 
sets of keys, each feature vector is encrypted with a randomly chosen matrix Φ from the available 
keys. Each SVR at the cloud is capable of producing the output as an encrypted result that is multiplied 
with another key Ψ specific for each SVR. Ψ is another random Gaussian matrix. The cloud’s SVRs 
required more training examples as the number of the available set increased, the benchmark 
experiment was trained using 500 synthetically generated examples, where the user’s SVR required 
in all experiments between 1000 and 2000 training examples.  The user’s SVR is trained similarly as 
the cloud’s SVR. It also inherits the hyper parameters from the cloud SVR structure. The data for 
training and testing is generated and the same processing takes place. 
The experiments aim is to reveal the following:  

i. The amount of training data needed should be proportional to the complexity. 
ii. The retrieval accuracy, under the mentioned different scenarios. 

iii. Learning mean square error (MSE).  
iv. How the system extrapolation would look like.  

The experiments were done on the following specifications, the processor is a twelve cores AMD 
Ryzen 9 5900X, the used memory has a capacity of 32 GB.  
 
5.3 Experiment 1: COREL 1K Retrieval Performance of Proposed Model 
 

The benchmarking experiment was done to set the retrieval accuracy in the plaintext scenario. In 
this experiment to imitate the plaintext scenario, the user, and the database owner both have the 
same key Φ. While the number of SVRs at the cloud is set to only one.  

In the experiment the cloud was trained on the same Φ (i.e., only one key matrix). Moreover, 
using one SVR at the cloud. Two versions of the benchmarking experiment were done, a version 
represents dimensional expansion RP that expanded a vector from 7 non-zero elements to 420 
elements. The benchmark parameters setup is shown in Table 1. 

 
Table 1 
Benchmark Parameters 
Parameters Value 
Number of available SVRs at the cloud 1 
Number of available Φs for each user  1 
Feature vector length of non-zero values 7 
Expansion rate of vector  60 
Cloud SVR output length  8 
Expansion length of cloud output 2 
Cloud’s SVR encrypted input size  60*7 = 420 

 
The experiment was done by generating 5000 synthetic data to feed the cloud’s SVM for training, 

then generating 1000 examples to train the SVM at the User. The training MSE at the cloud reached 
a minimum of 10<=,  while training MSE of the user’s SVR 10<> with 60% retrieval accuracy when 
tested the classification on COREL1K dataset. The benchmarking experiment proved that the 
proposed model could preserve the distances even while encrypted.  

Table 2 contains the evaluated measurements of the retrieval. Figure 10 shows the precision and 
recall of COREL dataset, the green dashes are the plaintext calculated Euclidean distance and the red 
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line is the distance calculated using the SVR at the cloud then decrypted by the SVR residing at the 
user. 

 
Table 2  
Benchmark Measurements 
Measurement  Value 
Precision 0.6272 
Recall 0.6220 
Accuracy 0.6220 
Specificity 0.9580 
F1 score 0.6200 

 
To measure the accuracy of distance calculation before and after the encryption, the nearest 

neighbour experiment was done, by measuring the Euclidean distance between COREL features in 
training and testing sets, then retrieving the nearest neighbours. Once before encryption and once 
after encryption. The results of the K-Nearest Neighbour (KNN) before and after encryption were 
99% matching each other as shown in Figure 8 and Figure 9 showcases the precision and recall results 
of the COREL data.  

 

 
Fig. 8. Precision of COREL Data; the red line represents encrypted data 
precision, and the green dashes represents the plaintext data precision 
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Fig. 9. Precision and recall at each	𝑲 

 
5.4 Experiment 2: Advanced Settings 
 

The 2nd experiment was designed to increase both the number of available SVMs and Φs at the 
cloud. And to examine the minimum training data needed to successfully train all SVRs. As well as to 
reach the set MSE for the cloud and user of at least 3 decimal points, besides reaching 60% when 
testing on COREL 1K dataset the classification of the SVR. The retrieval percentage could be improved 
by increasing the feature vector length. Figure 10 and Figure 11 showcase experiment 2 upper and 
lower ranges of minimum training length given the hyperparameters mentioned in Table 3, note that 
the figures also include the results of the extrapolated parameters.  

 
Table 3 
Experiment 2 hyper parameters 

Parameters Value 
𝐿: Number of available SVRs at the cloud {1à8} 
𝑘: Number of available Φs for each user  {1à8} 
Vector length 7 
Expansion rate of the user’s vector  60 
Cloud SVR output length  8 
Expansion length of cloud output 2 
SVR input at cloud size  60*7 = 420 
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5.5 Experiment 3: System Expansion 
 

In this experiment the system’s extrapolation was modelled using polynomial regression to 
measure the minimum training length needed for the system when expanded up to 16 SVRs at the 
cloud and 16 Φs in each available set. The experiments were built based on the data acquired in 
experiment 2. This experiment is motivated by the need to measure the complexity of the system if 
an adversary attempts to attack. The deeper the system is the harder the task at hand. Figures 10 & 
11 display the lower and upper ranges and mean of minimum training length of all data displayed in 
experiment 2 and extrapolated from 9 to 16.  

 

 
Fig. 10. Expected Minimum Training Length Ranges and Mean of Training Data for each Phi Available 
at Cloud (Extrapolation from 9 to 16 Phis) 

 

 
Fig. 11. Expected Minimum Training Length Range and Mean of each SVR Available at Cloud 
(Extrapolation from 9 to 16 SVRs) 

 
5.6 Experiment 4: Time and Space Comparison with FHE 

 
In this experiment a comparison was made between Fully Homomorphic Encryption and the 

proposed RP system. Microsoft Research has an open-source Simple Encrypted Arithmetic Library 
called Microsoft SEAL [45]. The HE algorithm that was used for the comparison is the BFV [44,46]. 
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The time comparison was measured in milliseconds and an average was calculated between two 
vectors. And finally, ciphertext size expansion in HE and RP case. Note that all three methods have 7 
features to start with. 

The HE experiment is conducted by having two plaintext vectors, each vector has 7 features, then 
both vectors get encrypted and Euclidean distance is calculated. The process was as follows: encode 
plaintext vectors, then encrypt both, execute distance calculation, then decrypt and decode. The 
degree of polynomial modulus is set at 8192, the larger this number is the more calculations it allows 
with more noise budget, allowing multiple usages. But on the other hand, it also results in a larger 
ciphertext. When the degree was set to less than 4096 the encoding failed, while at 4096 there was 
0 noise budget left for computations after the vectors squaring homomorphically. Table 4 encloses a 
comparison between HE, and RP. 

 
Table 4  
Comparison between Homomorphic Encryption, Random Projection  
 Homomorphic Encryption Random Projection 
Encryption Time  0.6076 milliseconds 0.0610 milliseconds 
Distance Calculation Time 0.5816 milliseconds 0.0654 milliseconds 
Ciphertext Expansion Rate 1:987 1:60 

 
6. Discussion 

 
The proposed model shows in experiment 2 that increasing SVRs affects the minimum required 

training length less than adding more Φs, this means the anchor of the system is having multiple 
keys. The keys are generated randomly as orthogonal Gaussians. The model was tested by using all 
available SVRs with all available Φs to make sure they all reach the satisfying MSE, so there wouldn’t 
be any ill performing SVR. This reflects the integrity of the system and the complexity of how hard it 
could take for an attacker to break the system with more SVRs and Φs.  

The user is capable of concealing their data before sending it to the cloud using the key sent to 
them, the database owner has their own sets of keys as well, the cloud receives encrypted inputs and 
the SVR produces encrypted output. While all SVRs run a cloud’s eavesdropper will not be able to 
identify the currently working SVR on a user’s data. And the only symmetrical key is used for distance 
decryption and not used to recover the user’s vector at all. Which is a reference to the mentioned 
scenario 1 in section V.  

Experiments 2 & 3 displays the amount of data to be used to reach certain system learnability 
accuracy, when an adversary tries to duplicate the system as a black box, these data would give a 
solid image of how much data is needed to replicate the system, as the system’s complexity is 
proportional to the minimum training length values. As mentioned in the second scenario, this is 
considered the minimum where the system has the ability to be verified, as for the replica it will need 
more than that to reach the same performance stability. Also, it will require a lot of trials and time 
especially where the system goes beyond the extrapolated values. Increasing the number of available 
Φs would definitely heighten the system’s resilience and attack complexity. The data increases in an 
almost exponential behaviour when increasing the key count as shown in Figure 8. Therefore, 
increasing the key size and key count is recommended to be done together. The encryption time is 
𝑂(𝑛() as it’s a multiplication of a vector with a random matrix. 

Users will benefit from this system by securely having computations done on their data against 
others’. The proposed system’s strength lays in its ability to be expanded while giving a robust 
performance with its growth. Having larger key space with RP gives an advantage against attacks. 
Although the same concept could be applied on CS but in a limited conservative manner. RP exceeds 
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HE when compared in encryption and calculations speed, in addition to the less space it takes, as 
shown in experiment 4, taking into consideration that in RP the expansion rate is controlled and set 
as a parameter.  

Moreover, the distance was measured between training and testing sets, once before projection 
and again after, then the index of the nearest neighbour was retrieved at each possible K, Figure 8 
showcased the retrieval before and after projection which means that the projection doesn’t affect 
the original data.  

The trained SVR at the cloud was taught to calculate the distance between two vectors, however, 
it could also be trained to do any computation securely and on matrices as well. Furthermore, this 
presented system’s expansion could be tuned to a given system, to find the perfect size, 
performance, privacy, and security combinations.   
 
7. Conclusion 

 
This paper introduced a lightweight secure expandable approach to enable parties to do 

computations privately, by giving an example of computing the Euclidean distance between images 
feature vectors securely, using random projection encryption and machine learning decryption. The 
distance is calculated in an encrypted manner by an SVR that is available at the cloud, and another 
SVR is used to decrypt the distance at the user’s side. The proposed model eliminated the weakness 
of symmetric encryption methods. It also could be applied to various operations, not only distance 
calculation. The experiments done showed the ability of expansion which is an added layer of 
protection. It shows its supremacy over HE in speed and storage. In the future the system could be 
tested on larger different datasets and applications, also adding a multilevel encryption system.  
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