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Developing a safe and reliable autonomous vehicle has been a significant focus in 
recent years. Supervised learning methods require large amounts of labelled data for 
training, making it expensive. The performance of these agents is limited to the data 
provided in training and the inability to generalize performance in different 
environments. In addition, some driving situations, such as near-accident scenarios, are 
difficult to cover in the training data. As a result, the autonomous driving agent may 
behave unexpectedly in safety-critical situations, making it unreliable for safe 
transportation. Reinforcement learning is a potential solution for these issues. This 
research paper explores the potential of applying deep reinforcement learning 
techniques to autonomous driving, with a spotlight on comparing two popular deep 
reinforcement learning algorithms: Deep Q-Network (DQN) and Deep Deterministic 
Policy Gradient (DDPG). The study uses the CARLA simulator, which provides a realistic 
environment and conditions for testing autonomous driving algorithms. The study finds 
that DDPG outperforms DQN regarding average reward, but DQN performs better 
regarding collision rate. 
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1. Introduction 
 

Autonomous vehicles have been spurred primarily by their potential to resolve various 
transportation issues, such as traffic congestion, enhance the travel experience for mobility-impaired 
passengers, and reduce automobile accidents. However, these technologies require constant human 
intervention to achieve safe driving capabilities. Autonomous vehicles are innovative sensing devices 
with sensors such as radar, LIDAR, and cameras capable of storing and gathering immense quantities 
of data and information, necessitating efficient processing techniques to ensure continued 
effectiveness throughout the operational lifespan [1,2]. Due to the abundance of data, machine 
learning models may now be trained to carry out complex tasks such as driving. As a result, instead 
of using classical methods for controlling a vehicle, such as Proportional Integral Derivative (PID) 
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controllers or Model Predictive Control (MPC) [3], some alternative machine learning methods could 
be used.  

Nonetheless, machine learning researchers have made encouraging progress, as evidenced by 
completing challenges such as the DARPA Urban Challenge, suggesting that innovative machine 
learning-based solutions are conceivable [4-6]. Deep learning is one such technique that can 
effectively convert high-dimensional input data into task-specific representations. Due to the 
advancement of deep learning, the modular pipeline is replacing the conventional pipeline with the 
end-to-end pipeline. Rather than having multiple modules designed by humans, an end-to-end 
system directly converts the sensory input to control signals [7-9]. However, large quantities of 
labelled data, obtained at considerable expense using expert human drivers, are required to train 
such systems properly. Besides, the policies learned through supervised learning methods lack 
interpretability [10]. Moreover, the collected data may only encompass a subset of the conceivable 
scenarios autonomous vehicles can handle. This may indicate instability in situations where safety is 
paramount. Because it provides a paradigm that requires few or no expert demonstrations, 
reinforcement learning (RL) has received considerable attention in the context of control tasks.  

RL algorithms can be grouped into model-free and model-based algorithms. The model-based 
algorithm depends on an environment model for learning the optimal policy. Specifically, modelling 
the environment as a Markov Decision Process (MDP). Knowing the probability distribution and 
rewards will allow solving the problem by optimization. On the other hand, model-free algorithms 
such as Q-learning and Deterministic Policy Gradient (DPG) learn the optimal policy without any 
previous knowledge of the environment. In a complex task such as autonomous driving, it is not 
possible to model the environment [11]. In RL, the agent attempts various actions and observes the 
resulting environmental feedback. The agent modifies its internal parameters based on this data to 
determine the optimal action. The main objective of RL is to find an optimal policy that maximizes 
the expected cumulative reward over time [12]. The policy is a function that maps each state to an 
action. The optimal policy is the one that maximizes the expected cumulative reward over time. The 
optimal policy can be found using multiple RL algorithms, such as Q-learning, SARSA (state-action-
reward-state-action), and policy gradient methods. These algorithms learn the optimal policy by 
iteratively updating their estimates of the value function or the policy. The value function represents 
the expected cumulative reward under a given policy, while the policy represents the mapping from 
states to actions [13,14]. The Q-learning algorithm starts with the Q-values set to zero. During 
training, the agent learns to update these Q-values from interacting with the environment by 
selecting actions, observing their resulting rewards and next states, and adjusting its estimate of the 
value of certain actions in specific states. Deep reinforcement learning (DRL) combines the scalability 
of deep learning and RL's sample efficiency, producing more accurate predictions. This is particularly 
important for problems with extensive or continuous state and action spaces [15-17]. SARSA is an 
on-policy algorithm designed to teach a machine learning model a new Markov decision process 
policy in order to solve RL challenges. It’s an algorithm where, in the current state (S), an action (A) 
is taken and the agent gets a reward (R), and ends up in the next state (S1), and takes action (A1) in 
S1. Therefore, the tuple (S, A, R, S1, A1) stands for the acronym SARSA. In the SARSA algorithm, the 
Q-value is updated taking into account the action, A1, performed in the state, S1. In Q-learning, the 
action with the highest Q-value in the next state, S1, is used to update the Q-table. So, Q-learning 
directly learns the optimal policy while SARSA learns a near optimal policy and may not find the 
optimal policy in certain environments. Moreover, Deep Deterministic Policy Gradient (DDPG) is a 
reinforcement learning algorithm that belongs to the actor-critic family of reinforcement learning 
methods. This type of algorithm is particularly useful when working with continuous action spaces 
and can provide high-quality policies for control in complex environments. DDPG is a model-free 
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algorithm, which means it does not know about the underlying model of the environment and learns 
from interaction with the environment. The DDPG is also an off-policy algorithm, which means that 
the agent has a network for learning and another network for acting [18,19]. 

The selection of an algorithm for autonomous vehicle navigation control holds significant 
importance. We chose two promising and recent deep reinforcement learning algorithms, DQN and 
DDPG to investigate. This research aims to experiment and compare the results of the algorithms 
simulated on a high-fidelity simulator, CARLA [20,21]. It is the fundamental step of our project work, 
to choose a good algorithm and enhance it in the future work. The rest of the paper is structured as 
follows: Section 2 provides a literature review. The practical implementations of the two deep 
reinforcement learning algorithms, DQN and DDPG, are presented in section 3. Section 4 provides 
our results and discussion; and section 5 concludes the paper. 

 
2. Literature Review  

 
One of the approaches to autonomous vehicles is Behavioral Cloning [22], which was presented 

by Wael et al., in 2018. The core idea is that a convolutional neural network takes data provided by 
a human expert driver and learns from it. The input to the CNN is an image which was taken from the 
vehicle front camera. The CNN then uses the input to obtain steering commands in an end-to-end 
fashion. By simply using the provided human steering angle as the training signal, the CNN 
automatically picks up internal representations of the necessary processing pipeline steps, such as 
spotting useful road features. The instability of behaviour and inability to generalize to diverse 
situations are some of the drawbacks of this strategy. Another method based on supervised learning 
was proposed in 2019 by Jianyu et al., [23]. The adopted approach was using imitation learning for 
handling complex driving scenarios in urban areas with safety enhancements using deep learning. A 
bird eye view representation for the environment was also designed to simplify the sample 
complexity for imitation learning. Afterwards, a safety controller is added, which creates control 
orders to follow the intended trajectory while ensuring safety. The model obtained promising results, 
however, there were some failure cases. The system depended on ground truth information which 
was provided by the simulator. Consequently, the system needs a perception module which will 
affect the performance.  

To solve problems such as generalization, over fitting, and significant reliance on labelled data 
that occur in supervised learning environments, reinforcement learning approaches could be used. A 
reinforcement learning framework based on AlphaGo Zero algorithm [24] was presented by Carl-
Johan et al., [6]. This framework basic idea is combining planning and decision-making for 
autonomous driving. A neural network is trained for the Monte Carlo Tree Search to be guided to the 
relevant regions of the tree search. This framework is promising; however, it is limited to high level 
actions for autonomous driving such as staying on a specific lane or changing lanes. The AlphaGo Zero 
algorithm is a model-based reinforcement learning algorithm which can experience performance 
limitations in a diverse action space environment such as autonomous driving.  

Newly, in late 2022, Elallid et al., used the Deep Q-Networks to control the autonomous vehicle 
in a complex scenario involving vehicles and pedestrians. They test and validate their approach using 
the CARLA simulator [25]. However, Park et al., apply the deep deterministic policy gradient (DDPG) 
path-planning method for mobile robots using Gazebo simulator [26].  
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3. Methodology  
3.1 The Problem 

 
The RL problem could be described as a Markov Decision Process (MDP). The MDP consists of 

three components: the state, 𝑠!, action, 𝑎!, and reward, 𝑟!, generated every timestep according to 
the agent's interaction with the environment. The main goal of an MDP is to find an optimal policy 
for interacting with the environment given a specific state. In the conducted experiments, the MDP 
is represented as a tuple (𝑆, 𝐴, 𝑃, 𝑅).  

 
i. S (State Space): The state space is the set of available states that could be perceived from 

the environment during the interaction. In this case, the state space consists mainly of 
visual features, 𝑣𝑓!, and driving features, 𝑑𝑓!. The visual features are represented as a 
vector that contains a set of waypoints, 𝑤!, obtained from the global path planner 
provided by the CARLA simulator. The driving features are the vehicle's state in the 
environment relative to the waypoints provided. The driving features are described as a 
vector, 𝑑𝑓! = (𝑣! , 𝑑! , ∅!), with multiple components, including the vehicle velocity, 𝑣!, 
the vehicle's distance to the center of the lane, 𝑑!, and the angle between the vehicle and 
the center of the lane, ∅!. 

ii. A (Action Space): CARLA simulator offers some commands to control the vehicle in the 
environment. At each timestep, the agent (vehicle) should perform an action that includes 
values of different types: throttle, brake, and steering. The accepted values for throttle 
and brake are in the range [0,1], while the steering angle is in the range [-1,1]. So, the 
agent should perform an action at each time step that includes a value for a_t = (throttle, 
brake, steering).  

iii. P (Transition Probability): The transition probability is the probability of being in the state, 
𝑠!"#, due to acting, 𝑎!, from being in the state: 𝑠!: 𝑃(𝑠!"#|𝑠! , 𝑎!). 

iv. R (Reward Function): The reward results from taking a specific action from being in a 
specific state. The main goal is to maximize the reward over time. 

 
3.2 State Representation  
3.2.1 CARLA waypoints 

 
In order to control the vehicle, we need to obtain the waypoints or trajectories that the agent 

should follow. The experiment will use the CARLA waypoints generated using the global planner using 
the Python API, which means the vehicle is not perceiving the environment using images and 
convolutional neural networks. The global planner gives two random points, which are the starting 
and ending points. The agent is required to follow the trajectory specified by the global planner. Since 
the two points are random, the path distance could vary in each episode.  

The global planner outputs the waypoints relative to the map starting position, which will result 
in unwanted values. The RL learning algorithm requires the vehicle's state relative to the 
environment. Therefore, a transformation matrix, 𝑇, is applied to the provided waypoints to obtain 
their positions relative to the vehicle. The following matrix performs translation and rotation. The 
vector [𝑋$ , 𝑌$ , 𝑍$] is the global position of the vehicle on the map.  
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𝑇 = 8

𝑐𝑜𝑠𝛼$ −𝑠𝑖𝑛∅$ 0 𝑋$
𝑠𝑖𝑛𝛼$ 𝑐𝑜𝑠∅$ 0 𝑌$
0 0 1 𝑍$
0 0 1 1

A           (1) 

 
The waypoints are an array of points updated every timestep to keep enough information about 

potential obstacles, turns, or intersections.   
 
3.3 Experiment 1 : DQN Algorithm  
3.3.1 Experiment setup 

 
To specifically use DQN to solve the Markov Decision Process, we need to redefine the action and 

reward functions.  
 

i. Reward Function: Assuming the goal of the vehicle is to move as fast as possible while 
being in the centre of the lane, the reward function should give high rewards in proportion 
to the velocity and being as close as possible to the centre. On the other hand, the reward 
function should penalize the deviation from the centre of the lane. This framework has 
three terminal states: crossing the lane line, collision, and reaching the goal position. The 
reward function is given as follows:  

 

𝑅 = B
					100,																																																																																				𝑔𝑜𝑎𝑙	𝑟𝑒𝑎𝑐ℎ𝑒𝑑
−200,																																																		𝑜𝑛	𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛	𝑜𝑟	𝑙𝑎𝑛𝑒	𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔
∑ |𝑣!cos ∅!| − |𝑣! sin ∅!| − |𝑣!||𝑑!|	,																	(𝑒𝑣𝑒𝑟𝑦	𝑒𝑝𝑖𝑠𝑜𝑑𝑒)%
!

	                 (2) 

   
ii. Action Space: The DQN algorithm does not handle continuous action spaces. Therefore, 

we need to discretize the action space to fit the algorithm. CARLA simulator accepts 
control commands for steering and braking in the range [0,1] and for steering in the range 
[-1,1]. To discretize the action space, we need to take some samples of the action space. 
The values for acceleration are [0.5], and the values for steering are [-0.4, -0.2, 0, 0.2, 0.4]. 
Instead of having many values in the original ranges, the total number of actions possible 
is 5.  

 
3.3.2 Training  

 
Due to limited resources, the DQN agent used for this experiment is a pre-trained model. It was 

trained for 9000 episodes. The vehicle used in training is a regular sedan (Tesla Model 3), the most 
common type and size of an autonomous vehicle, with multiple sensors, including collision and lane 
invasion sensors. The collision sensor and lane invasion are attached to the vehicle to detect collisions 
and lane crossings. The target network of this neural network is updated every five episodes. The 
replay memory size for this agent is 5000. The steps for training the DQN algorithm are as follows: 

 
i. Initialize the size of replay memory to 5000. 

ii. Actions are selected using the epsilon greedy strategy (epsilon decays over the episodes) 
iii. Set the number of episodes to 9000 and start the training to iterate over the episodes 
iv. When starting the episode, call the global planner to generate a random route between 

two points in the map  
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v. The state is fed to the neural network at each step to predict the actions.  
vi. The actions are used to control the vehicle in the simulator  

vii. Check the collision sensor and lane invasion sensor at every step to continue the episode  
viii. Repeat until the training episodes end. 
 
Figure 1, Figure 2 and Figure 3 show the average distance, average reward, and maximum reward, 

respectively, over the 9000 training episodes. These metrics are calculated over the most recent 
twenty episodes of training. The values increase as the episodes increase.  

 
3.3.3 Validation 

 
The agent was observed while running for 20 episodes. The testing occurred in two different 

towns in the CARLA simulator, town01 (training town) and town02. The agent is tested in multiple 
towns to test the agent's ability to generalize the policy learned over different environments. Figure 
7 and Figure 8 shows the driving distance of the agent and the reward for every episode over 20 
episodes. The episodes where the agent failed to reach the destination is due to a collision or lane 
crossing. The DQN agent has shown the ability to generalize to different environments. Figure 9 and 
Figure 10 show the agent's results in town 02. 

 
3.4 Experiment 2 : DDPG Algorithm  
3.4.1 Experiment setup 

 
In contrast to DQN, DDPG does not require any modifications to the action space. The DDPG 

algorithm can handle continuous action spaces. As a result, the action space in this experiment is the 
original ranges accepted by CARLA which are [0,1] for brake and throttle and [-1,1] for steering. The 
reward function is the same as in the DQN experiment. 

 
3.4.2 Training  

 
The setup of this experiment is similar to the DQN in terms of the vehicle type and the sensors 

attached to the vehicle. The replay memory for this experiment is 100,000 experiences. It is higher 
than the DQN because DDPG algorithms deal with continuous state and action spaces, which means 
many values of states and actions are considered. So, we need a large experience memory for storing 
these continuous states and actions resulting from interacting with the environment. Figure 4 to 
Figure 6 shows that the DDPG agent reached the highest driving distance, average reward, and 
maximum reward in the early stages of the training. The values are not correlated with the training 
time. The DDPG algorithm can reach a suitable model in less training time. 

 
3.4.3 Validation 

 
The same testing strategy is used for this experiment. Figure 11 and Figure 14 show this test's 

progress regarding driving distance and rewards. It needs to improve its ability to generalize in 
different environments.  
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Fig. 1. DQN agent average driving distance  Fig. 4. DDPG agent average distance 

 

 

 

Fig. 2. DQN agent average reward  Fig. 5. DDPG agent average reward 

 

 

 

Fig. 3. DQN agent maximum reward  Fig. 6. DDPG agent maximum reward 
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Fig. 7. DQN agent driving distance in town 01  Fig. 11. DDPG agent driving distance in town 
01 

 

 

 
Fig. 8. DQN agent rewards in town 01  Fig. 12. DDPG agent reward in town 01 

 

 

 

Fig. 9. DQN agent driving distance in town 02  Fig. 13. DDPG agent driving distance in town 
02 

 

 

 
Fig. 10. DDPG agent reward in town 02  Fig. 14. DDPG agent reward in town 02 
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4. Results & Discussion 
 
The experiments were conducted on a machine with the following specs: Intel(R) Xeon(R) CPU 

E5-2670 0 @ 2.60 GHz (2 processors), 32GB RAM, and NVIDIA Quadro K2200. The results were plotted 
using the Tensorboard Python library. The DQN agent was trained for 9000 episodes, while the DDPG 
agent was trained for only 2200 episodes. The DDPG algorithm collects more rewards during the 
episodes from testing the agents than the DQN agent. This may result from varying distances of the 
path planned by the global planner. However, the DDPG performs better actions in the environment 
as the agent stays at the centre of the lane and reaches high speeds. This results in a higher reward 
per step and, consequently, a higher reward per episode. On the other hand, the DQN algorithm 
achieved a higher success rate than the DDPG algorithm. Table 1 shows the success rate over two 
different 20 episode. Also, As observed during testing, the DDPG has overall better performance 
except for a specific state in the map which is a left turn at the corner of a street. The main reason 
for this problem is the sampling from the experience replay memory.  

 
Table 1 
Success rate over two different 20 episodes 

Training Town1 Town2 
DQN DDPG DQN DDPG 
90% 75% 90% 55% 
100% 75% 75% 60% 

 
The replay memory may not contain enough samples of this state. This problem could be solved 

by fine-tuning the agent with the desired situations after training. In addition, different 
hyperparameters and hardware specifications may lead to a better model. 

 
Table 2 
Time comparison in (minutes: seconds) between DQN and DDPG algorithms 
 Training Town1 Town2 
 DQN Failed  DDPG Failed  DQN Failed DDPG Failed 
Total Time 14:32  15:38  12:44  8:05  
Episode 0 00:48  01:21  00:39  00:04 F 
Episode 1 00:29  00:31 F 00:43  00:22  
Episode 2 00:44  01:12  00:44  00:31  
Episode 3 00:44  00:59  00:44  00:28  
Episode 4 00:46  00:27 F 00:46  00:24  
Episode 5 00:45  00:34  00:42  00:12 F 
Episode 6 00:46  01:17  00:39  00:17 F 
Episode 7 00:43  01:03  00:41  00:24  
Episode 8 00:44  01:06  00:43  01:03 F 
Episode 9 00:42  01:02  00:21 F 00:08 F 
Episode 10 00:32  00:14 F 00:43  00:15 F 
Episode 11 00:45  00:58  00:30 F 00:24  
Episode 12 00:44  00:43  00:41  00:15  
Episode 13 00:47  00:09 F 00:21 F 00:19  
Episode 14 00:44  00:38  00:38  00:13 F 
Episode 15 00:43  01:24  00:30 F 00:42  
Episode 16 00:46  00:36  00:43  00:39  
Episode 17 00:47  00:08 F 00:24 F 00:35  
Episode 18 00:48  00:47  00:41  00:43 F 
Episode 19 00:45  00:29  00:45  00:26  

 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 41, Issue 1 (2024) 168-178 

177 
 

5. Conclusions 
 
The DDPG algorithm is better at handling continuous action spaces and has better transitions 

between actions while driving. The DQN is mainly aimed at tasks with discrete state and action 
spaces. The performance of the DQN is unacceptable in the real world, as the agent can only perform 
a limited number of actions while driving. In the simulation, the agent alternates between steering 
left and steering right, trying to find equilibrium to stay straight. In terms of generalization, both 
algorithms have their strengths and weaknesses. DQN has been shown to generalize well to new 
environments and tasks, as it learns a more general Q-value function that can be used to make 
decisions in new situations. However, DQN can struggle with continuous action spaces and be 
sensitive to hyperparameters. DDPG, on the other hand, can learn a more precise policy function that 
can generalize well to new situations, especially in continuous action spaces. However, DDPG can be 
more environmentally sensitive and may require more data to learn a good policy. With the 
appropriate training, DDPG is the better choice for autonomous driving. 
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