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Precisely forecasting electrical load, especially through univariate time series analysis, 
is pivotal for effectively operating and planning power systems. This research 
introduces a hybrid model leveraging univariate time series and deep learning 
techniques. The model combines the Bidirectional Gated Recurrent Units (Bi-GRU) 
based encoder-decoder structure with the Convolutional Neural Network-Long Short-
Term Memory (CNN-LSTM) architecture to enhance single-step short-term electrical 
demand forecasting. Integrating Bi-GRUs ensures adept capture of temporal 
dependencies, while CNNs meticulously extract spatial features. Concurrently, LSTMs 
provide a robust mechanism to memorize long-range dependencies. The model's 
competence was rigorously assessed through evaluations using the publicly available 
American Electric Power (AEP) dataset, which represents real-world electrical load 
patterns. Findings highlight that the proposed model outstrips competing models in 
algorithmic stability and prediction accuracy. With a Mean Absolute Percentage Error 
(MAPE) of 80.032, this research posits a promising avenue for utilizing deep learning in 
univariate time series power load prediction. 
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1. Introduction 
 

The current enormous surge in energy consumption has been caused by several factors, including 
the quick development of motorized vehicles, complex machine systems, and global market 
commerce [1]. The Smart Meter Infrastructure enables the integration of smart grids and active 
power distribution systems, hence facilitating the construction of accurate and reliable short-term 
energy forecasting systems [2]. 

Power framework experts should develop and implement new techniques as the number of 
machines increases to manage power usage in consideration of customer interest effectively. Energy 
consumption analysis and estimations might be an approach for executives in the current energy 
sector to consider this issue. However, because energy consumption is nonlinearly unique and 
depends on various factors [3], developing an appropriate mathematical model of it is challenging. 
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Time series data can be thought of as a collection of observations made in time. Its kind can be 
divided into univariate and multivariate time series, each with a lot of data, is highly dimensional, 
and constantly changing. Based on traditional machine learning models, a number of methods have 
been proposed in the literature to address time series prediction. Deep learning techniques, being a 
worldly methodology, have the potential to supplant statistical approaches owing to their significant 
impact on the processes of pattern recognition and prediction. Convolutional neural networks (CNNs) 
and recurrent neural networks (RNNs) are used to illustrate this [4]. Even though RNN-based 
approaches have significantly improved power load forecasting, using other techniques, such as time 
series prediction using encoder-decoder networks, which resolve power forecasting and related 
management problems. However, in short-term load forecasting, encoder-decoder models 
encounter specific challenges. Firstly, encoder-decoder models may need help to capture the rapid 
and volatile patterns in short-term load forecasting, resulting in less accurate predictions for short-
term horizons. The second challenge is that encoder-decoder models typically rely on historical 
information encoded by the encoder to make predictions. 

In light of the aforementioned issues, a novel hybrid model is introduced for the first time. This 
model integrates the traditional Bi-GRU encoder-decoder structure with the CNN-LSTM prediction 
model. The objective is to effectively learn implicit temporal dependence features and improve the 
accuracy of predicting complexity performance and power demand. After conducting rigorous 
validation using a comprehensive dataset from American Electric Power, the proposed model 
demonstrates robustness and yields satisfactory predictive outcomes. The primary contribution of 
our model can be succinctly expressed as follows: 

 
i. The Bi-GRU Encoder-Decoder structure is tailored to univariate time series data. This 

allows the accommodation of temporal dependencies present in the electrical load data. 
By harnessing information from both preceding and succeeding time frames, this 
integration becomes vital for accurate forecasting. Furthermore, the Encoder-Decoder 
paradigm facilitates the transformation of input sequences into enriched internal 
representations, embedding time-sensitive data. This functionality significantly 
contributes to the enhancement of forecasting precision. 

ii. Incorporating CNNs in the model enhance its ability to detect and extract fine-grained 
patterns and refined features from the dataset. This is valuable for identifying cyclical 
trends in electrical consumption, such as daily or weekly patterns. Further, by 
incorporating LSTM layers, the model gains proficiency in recognizing and learning long-
term dependencies, enabling it to consider short-term temporal patterns and broader 
trends such as seasonal fluctuations in electricity usage. 

iii. The model is extensively evaluated on a publicly available dataset and compared to an 
alternative model, providing compelling evidence of its efficiency and superiority in 
addressing the challenges of single-step short-term electrical demand forecasting within 
the context of univariate time series data. 

 
The present paper is organized in the following manner: Section 2 presents a survey of relevant 

literature on time series modelling and forecasting. In Section 3, the research motivations behind the 
proposed model are clarified, followed by an analysis of the Bi-GRU encoder-decoder framework’s 
overall structure, accompanied by an explanation of the associated theories and procedural specifics. 
Section 4 encloses the analytical content of the experiments. Followed by an in-depth analysis of the 
experimental outcomes. The study concludes in Section 5 by providing a summary of the findings and 
potential possibilities for future research.  
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2. Literature Review 
 
Depending on their predictive performance, power load forecasting models can be categorized 

based on the forecast time horizon, including short, medium, and long-term forecasting. Depending 
on their ability to anticipate the future, power load forecasting models can be divided into three 
categories: short-, medium-, and long-term forecasting. The primary uses of short-term load 
forecasting (STLF) models are production and delivery plans, which try to estimate changes in 
electricity within a week or even a day. While long-term forecasting models concentrate on power 
prediction for periods longer than one-year, medium-term forecasting models are developed to 
forecast electricity demand from one week to one year. In order to estimate electric load for effective 
operational planning, reduce power waste, and provide a solid foundation for economic 
management and the long-term sustainability of the power system, short-term load forecasting 
models are crucial [5]. 

Different methodologies have been categorized into two broad groups for efficient energy 
consumption forecasting in various domains: buildings, industries, institutes, and residential areas. 
These categories include conventional techniques and approaches based on artificial intelligence. 
Traditional techniques often rely on statistical methods for accurate predictions [6]. Various 
statistical modelling methods are commonly employed in data analysis. These methods include 
exponential smoothing [9], weighted moving average [10], multiple regression analysis [7],  auto-
regressive (AR) [11], Kalman filtering [8] and autoregressive moving average (ARMA) [12]. These 
models typically involve a comprehensive theoretical derivation process and modelling steps that 
rely on prior knowledge and empirical assumptions to extract information from the data and 
determine the model parameters [13], where predicting the power load outcome becomes 
challenging when dealing with complex nonlinear data or when there is a mismatch between the 
data distribution and the model Hypothesis. Due to the nonlinear characteristics of time series load 
data, conventional methods may only sometimes perform effectively in short-term load forecasting. 
Additionally, most of the methods mentioned earlier are commonly employed for forecasting 
demand at the aggregated system level. Initial research in short-term load forecasting at the 
household level involved using time series analysis and traditional statistical techniques [14]. 

In recent research, the emphasis has shifted towards artificial intelligence methods, leading to 
the application of various machine learning and deep learning techniques for predicting home energy 
use. Machine learning techniques include k-nearest neighbours (K-NN) [15], decision trees (DT) [16]. 
The performance of machine learning-based techniques in predicting non-linear load sequences has 
been found to be limited. These approaches also possess certain limitations. One of the problems 
lies in the necessity for manually built features, which entails a substantial degree of human 
involvement. The presence of this particular aspect poses a challenge in accurately capturing 
essential non-linear relationships and underlying temporal dependencies, particularly when taking 
into account the limited training data available for load forecasting. Deep learning techniques have 
been shown to be highly effective in addressing complex, non-linear, and dynamic problems across 
several domains, while also optimizing machine learning challenges [17]. In recent years, RNNs have 
been successfully applied to Short-Term Load Forecasting (STLF) due to their unique structure 
[21,22]. However, traditional RNNs encounter the issue of vanishing gradients, which can cause them 
to get stuck in local extreme values and need help to capture long-term dependencies [4]. To address 
this limitation and improve the accuracy of time-series prediction, Long Short-Term Memory (LSTM) 
units have been introduced. LSTM units incorporate input, forget, and output gates in their 
computational mechanism, allowing them to overcome the vanishing gradient problem and achieve 
significant success in various electricity load forecasting applications. Recently, another variant of 
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RNNs known as Gated Recurrent Units (GRU) has gained traction in power sequence prediction. The 
GRU model presents a neural architecture that is characterized by a simplified structure compared 
to LSTM. By combining the input and forgetting gates into a single update gate, this is accomplished. 
This design allows for faster computation and improved sequence-based electric load data 
expression capabilities.  

A recent study introduced a hybrid sequential learning methodology that used a deep learning 
model. This strategy involved a two-phase solution, where a Convolutional Neural Network (CNN) 
was implemented in the initial phase to extract features from the energy consumption dataset. In 
the succeeding phase, the utilization of Gated Recurrent Unit (GRU) models was employed to 
capitalize on its efficient gated architecture for the purpose of making predictions. In contrast to 
LSTM-based models, GRU-based models tend to exhibit reduced volatility because to their simpler 
architecture and fewer gradient flow gates [20]. Examining alternate modern networks, such as 
encoder-decoder networks, is an appropriate plan of action within the framework of time series 
prediction. Because encoder-decoder designs are successful in machine translation, natural language 
processing, and other areas, they have become more common as sequence-to-sequence (seq2seq) 
models [21]. The encoder-decoder structure typically consists of multiple RNN layers, including an 
encoder and a decoder, to encode the source data into a fixed-length vector representation. The 
decoder then uses this encoded representation to provide a translation or prediction, successfully 
capturing the input data's time-series properties and transformation features. It has been shown that 
the GRU-based seq2seq model performs better at forecasting short, medium, and long-term power 
data [22]. The application of temporal attention-based encoder-decoder models has been observed 
in the context of multivariate time series multi-step forecasting issues [23].  

In short-term load forecasting, encoder-decoder models encounter specific challenges. Firstly, 
encoder-decoder models may struggle to capture the rapid and volatile patterns in short-term load 
forecasting, resulting in less accurate predictions for short-term horizons. The second challenge is 
that encoder-decoder models typically rely on historical information encoded by the encoder to 
make predictions. However, short-term forecasting often requires a stronger emphasis on recent 
data points. The traditional encoder-decoder architecture may not effectively prioritize current 
information, reducing accuracy in short-term predictions. To address these challenges, bidirectional 
Gated Recurrent Units (GRUs) within the encoder are used in this paper. 

 
3. Methodology 

 
This section describes Our proposed model, which is depicted in Figure 1, consisting of four main 

components: an Encoder with Bi-GRU units, a Decoder with Bi-GRU units, a Convolutional Layer, and 
an LSTM Layer. The Bi-GRU Encoder ingests a sequence of historical electricity load data and 
effectively captures the temporal patterns by considering past and future contexts. The Bi-GRU 
Decoder takes the encoded sequence and reconstructs the target sequence. The Convolutional layer 
is employed to learn spatial features from the output of the Decoder. Convolutional networks are 
known for effectively learning hierarchical patterns in data, and we leverage this property to capture 
spatial correlations in electricity loads. The LSTM layer is integrated to refine further the temporal 
patterns extracted by the convolutional layer. An explanation of the possible structure of such a 
hybrid model is provided below: 
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3.1 Encoder-Decoder Structure 
 
In the domain of short-term load forecasting (STLF) in the energy sector, the conventional 

Encoder-Decoder architecture can be employed to anticipate the power load for a brief timeframe 
in advance, relying on past load data. The Encoder-Decoder structure can be employed for this 
objective.  
 
3.1.1 Encoder 

 
The input sequence X could be historical load data at different time intervals e.g., X = 

[loadt−24,loadt−23,...,loadt] , where loadt is the load at time t. The Encoder uses GRU cells to process 
this sequence. The GRU is a variation of RNN that is designed to remember long-term dependencies. 
The state of a GRU at time t, is given by ht. GRU is a variant of LSTM with only two gates (the update 
gate and the reset gate). Because GRU has fewer training parameters than LSTM, it converges more 
quickly than LSTM during training [24]. The GRU structure is shown in Figure 2 (a), Where update 
Gate (zt) determines how much of the previous hidden state should be preserved and how much of 
the new input should be incorporated and reset Gate (rt) determines how much of the previous 
hidden state should be forgotten and how much of the new input should be focused on, the formulas 
of GRU [25] can be shown as: 
 
𝑧! = 𝜎(𝑊" 	 · 𝑥! 	+ 𝑈" 	 · ℎ!#$ 	+ 𝑏")            (1) 
 
𝑟! 	= 𝜎(𝑊% 	 · 𝑥! 	+ 𝑈% 	 · ℎ!#$ 	+ 𝑏%)																									          (2) 
 
ℎ′! 	= 	𝑡𝑎𝑛ℎ(𝑊& 	 · 𝑥! 	+ 𝑈& 	 · (𝑟! 	⊙ ℎ!#$) + 𝑏&)          (3) 
 
ℎ! 	= (1 − 𝑧!) ⊙ ℎ′! 	+ 𝑧! 	⊙ ℎ!#$            (4) 

 
where (zt) is the update gate, (rt) is the reset gate, (h’t) is the new memory content, (ht) is the hidden 
state , W, U, and b are weight matrices and bias vectors, σ is the sigmoid function and ⊙ represents 
element-wise multiplication. 
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Fig. 1. The architecture of the proposed BI-GRU Encoder-
Decoder prediction model 

 
The GRU reads in the input sequence element by element, updating its hidden state(ht) at each 

step. Once the entire sequence is read, the final hidden state represents the encoded information of 
the input sequence. This final state (ℎ!) serves as the context vector. However, future events can 
sometimes be known in advance for short-term load forecasting, influencing the current forecast. 
For example, if we know a holiday in the next few days, this information could help forecast the load 
today. A unidirectional GRU cannot use this type of information because it processes the sequence 
in a single direction (past to future).  

On the other hand, a Bidirectional GRU (Bi-GRU) can process information from both directions 
and, therefore, use future details when it’s available. Bi-GRUs have two GRU cells for each time step; 
one processes the sequence from left to right (forward states) and the other from right to left 
(backward states). The forward GRU cell equations are the same as the regular GRU [26] and can be 
shown as: 
 
𝑧! = 𝜎6𝑊" 	 · 𝑥! 	+ 𝑈" 	 · ℎ!#$

' 	+ 𝑏"7												          (5) 
 
𝑟! 	= 𝜎6𝑊% 	 · 𝑥! 	+ 𝑈% 	 · ℎ!#$

' 	+ 𝑏%7					           (6) 
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ℎ′! 	= 	𝑡𝑎𝑛ℎ6𝑊& 	 · 𝑥! 	+ 𝑈& 	 · 6𝑟! 	⊙ ℎ!#$
' 7 + 𝑏&7          (7) 

 
ℎ!
' 	= (1 − 𝑧!) ⊙ ℎ′! 	+ 𝑧! 	⊙ ℎ!#$

'             (8) 
 

The backward GRU [26] cell equations are similar, but it processes the sequence in reverse can 
be shown as: 
 
𝑧! = 𝜎6𝑊" 	 · 𝑥! 	+ 𝑈" 	 · ℎ!#$( 	+ 𝑏"7																					         (9) 
 
𝑟! 	= 𝜎6𝑊% 	 · 𝑥! 	+ 𝑈% 	 · ℎ!#$( 	+ 𝑏%7																									                   (10) 
 
ℎ′! 	= 	𝑡𝑎𝑛ℎ6𝑊& 	 · 𝑥! 	+ 𝑈& 	 · 6𝑟! 	⊙ ℎ!#$( 7 + 𝑏&7                    (11) 
 
ℎ!( 	= (1 − 𝑧!) ⊙ ℎ′! 	+ 𝑧! 	⊙ ℎ!#$(                       (12) 

 
the final context vector typically consists of the concatenation of the final hidden state of the forward 
GRU and the last hidden state of the backward GRU 
 
𝑐𝑜𝑛𝑡𝑒𝑥𝑡	𝑣𝑒𝑐𝑡𝑜𝑟	 = 	 <ℎ!

'	; 	ℎ$(>                      (13) 
 

where ℎ!
'	represents the last hidden state of the forward GRU after it has processed the entire input 

sequence from left to right. Here, T is the length of the input sequence, and f indicates that this is the 
hidden state from the forward GRU, ℎ$(	represents the last hidden state of the backward GRU after 
it has processed the entire input sequence from right to left. The index 1 is used here because it 
refers to the position of the first element in the original sequence, and b indicates that this is the 
hidden state from the backward GRU. 

 
3.1.2 Decoder 

 
The context vector from the encoder is used to initialize the hidden state of the decoder. Similar 

to the encoder, the decoder also uses two GRUs for each time step. The decoder’s forward and 
backward GRUs also similarly calculate hidden states to the encoder. Additionally, the decoder 
produces an output at each time step. This output is typically computed using an activation function 
over the hidden states to produce a probability distribution for the output tokens. The decoder 
generates the output sequence Y = (y1 , y2 , ..., yN), where N is the length of the target sequence. 
 
3.2 CNN-LSTM Layer 

 
The Convolutional Neural Network (CNN) is a widely employed deep learning method utilized for 

various image processing and computer vision applications. Nevertheless, it is also possible to modify 
it for the purpose of short-term load electricity forecasting. A CNN is commonly employed for the 
purpose of short-term load electricity forecasting. This architecture typically comprises convolutional 
layers, pooling layers, fully connected layers, and an output layer. 

LSTM (Long Short-Term Memory) networks are a specific variant of RNN that excel in capturing 
long-term dependencies within sequential data. This characteristic renders them particularly 
advantageous for time series forecasting tasks, such as the prediction of power loads [27]. In 
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electricity load forecasting, the LSTM can model the temporal dependencies of the load data. It can 
learn patterns across different time scales, such as hourly, daily, and seasonal trends. The LSTM 
structure is shown in Figure 2 (b), the formulas of LSTM [28] can be shown as follows: 
 
𝑓! = 𝜎6𝑊' 	 · [ℎ! − 1, 𝑥!] + 𝑏'7																																			                   (14) 
 
𝑖! 	= 	𝜎(𝑊) 	 · 	 [ℎ! − 1, 𝑥!] + 𝑏) 																									                    (15) 
 
𝐶′! 	= 	𝑡𝑎𝑛ℎ(𝑊* · 	 [ℎ! − 1, 𝑥!] + 𝑏*)                      (16) 
 
𝐶! =𝑓! ∗𝐶!#$ +𝑖! ∗𝐶′!		 	 	 	 	 	 	 	 	 	 													(17) 
 
𝑜! 	= 		𝜎(𝑊+ · 	 [ℎ! − 1, ℎ! − 1] 	+ 𝑏+)                     (18) 
 
ℎ! 	= 	 𝑜! 	 ∗ 	𝑡𝑎𝑛ℎ(𝐶!)                        (19) 

 
where (𝑓!) is the forget gate which decides what information to forget from the cell state, (it) is the 
input gate which decides what new information to store in the cell state, (𝐶′!) is the candidate 
memory cell which computes candidate values to be added to the cell state, (Ct) is the cell state which 
stores the long-term dependencies, (ot) is the output gate which decides what parts of the cell state 
are going to be output, (ℎ!) is the hidden state which stores the short-term dependencies, (xt) is the 
input at time step t, W and b are the weights and biases respectively, σ denotes the sigmoid activation 
function, whereas "tanh" is used to represent the hyperbolic tangent activation function. 
Additionally, the * is used to indicate element-wise multiplication.  
 

 

Fig. 2. The architecture of (a) Gate Recurrent Unit Structure (b) Long Short-Term Memory Structure [28] 
 
In our proposed model, after the decoder has processed the output sequence, we employ a CNN-

LSTM layer. Firstly, convolutional layers adeptly and autonomously learn the spatial hierarchies 
inherent in the decoder output. Subsequently, at time step t, the output of the CNN is calculated. 
 
𝐶! 	= 	 𝑓. 𝑂! + 𝑏                        (20) 

 
where 	𝑂! represents the output from the decoder at time step t, f represents filters, and b represents 
the bias term.  Then, this output is passed through LSTM units. The LSTM layer captures the temporal 
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dependencies of the features obtained by the convolutional layer. The output of the LSTM at time 
step t can be represented as:  
 
𝐿! 	= 	𝐿𝑆𝑇𝑀(𝐶! , 𝐿!#$)																																							                    (21) 

 
Finally, the output from the LSTM layer is passed through a dense layer with a linear activation 

function to make the final predictions Pt. 
 
𝑃! 	= 𝑊. 𝐿! + 𝑏                        (22) 

 
where W represents the weight matrix and b represents the bias term.   
 
4. Experiments 
4.1 Datasets and Setup 

 
The dataset used for this study consists of univariate time series data capturing the electric power 

load sourced from the American Electric Power Company (AEP) [29]. The dataset comprises 121,273 
data points, covering the time frame from December 2004 to January 2018, with an hourly sampling 
frequency. Electricity consumption patterns versus month for 2004-2018 is shown in Figure 3 .  
 

Fig. 3. The actual load of the dataset represented by years 
 
Figures  4 (a) and (b) demonstrate the study of the AEP hourly power consumption data before 

and after normalization. Figure 4 (a)  illustrates the raw AEP hourly power consumption data without 
normalization. The values represent the original power consumption measurements recorded over a 
specific period, capturing the actual load patterns and variations in the dataset. Figure 4 (b), on the 
other hand, depicts the AEP hourly power consumption data after normalization. The normalization 
process has been applied to scale the data within a predefined range or distribution, removing any 
inherent biases or absolute scales [30]. This transformation allows for fair comparisons and facilitates 
the modelling process by mitigating the influence of extreme values. By comparing Figures  4 (a) and 
(b), we can observe the effects of normalization on the power consumption data, providing insights 
into the significance of this pre-processing step in the context of short-term electrical load 
forecasting. The normalization procedure enhances the forecasting model’s performance by ensuring 
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that all features contribute equally and appropriately to the predictive process, leading to more 
accurate and reliable results. The dataset was partitioned into three subsets: 60% for training, 20% 
for validation, and 20% for testing. The training set is used for learning the model's parameters, the 
validation set is used for hyperparameter tuning and to prevent overfitting, and the test set is used 
for evaluating the model’s performance on unseen data, followed by normalization. Employing a 
supervised learning methodology, the model utilizes a sliding window technique to segment the 
electric load data into numerous input sets and corresponding target values, arranged sequentially 
in chronological order. The neural network can learn this temporally-ordered configuration. To 
enhance the model’s generalization capabilities, the data subsets generated by the sliding window 
are shuffled before being input into the neural network for training. In the research, several 
optimized parameter configurations were ascertained utilizing a randomized search cross-validation 
(CV) approach, specifically for the stacked deep learning layers present in the model under 
consideration.  

 

 
Fig. 4. AEP hourly power consumption data (a) before (b) after Normalization 

 
4.2 Evaluation Metrics 

 
In the present study, four criteria were employed to assess the performance of the model. The 

indices encompassed in this set are Root Mean Square Error (RMSE), Mean Absolute Error (MAE), 
Normalized Root Mean Square Error (NRMSE), and Mean Absolute Percentage Error (MAPE). The 
Root Mean Square Error (RMSE) is a commonly employed metric for quantifying the extent of 
discrepancy between the projected values generated by a model and the corresponding observed 
values. The system has a high degree of tolerance towards substantial errors. The Mean Absolute 
Error (MAE) is a metric used in academic research and statistical analysis to quantify the average 
magnitude of errors between predicted and actual values. The Mean Absolute Error (MAE) is a 
statistical metric used to quantify the average magnitude of errors within a given set of predictions, 
irrespective of their directions. The metric of interest exhibits a lower sensitivity to outliers in 
comparison to the root mean square error (RMSE). The Normalized Root Mean Square Error (NRMSE) 
is calculated by dividing the Root Mean Square Error (RMSE) by the range of the observed data. The 
purpose of this technique is to normalize the root mean square error (RMSE) and facilitate the 
comparison of model performance across different scales. The Mean Absolute Percentage Error 
(MAPE) is a metric utilized to represent the magnitude of prediction mistakes in terms of a 
percentage. This characteristic enables a clear and direct interpretation and facilitates comparisons 
across various scales. 

 
4.3 Results and Discussion 

 
To evaluate the applicability of our method for electric load prediction on the AEP dataset, we 

conducted a series of experiments aimed at comparing the performance of our proposed models. To 
ensure a comprehensive assessment, we introduced our novel models and integrated and evaluated 
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well-established state-of-the-art deep learning architectures within our framework. These 
architectures represent cutting-edge approaches in the field of deep learning. We could perform 
direct head-to-head by incorporating these advanced architectures into our work. comparisons, 
providing valuable insights into the effectiveness and innovation of our proposed methods. 

Table 1 presents the variations observed in the predictive outcomes of various models. providing 
the values for MAE, MAPE, MSE, and RMSE for the different models. Our model gives the lowest 
RMSE (0.01997261) , MAE (0.109563443), and NRMSE (0.182292656), while the (CNN GRU encoder-
decoder) achieves the lowest MAPE (77.82%). For instance, the (LSTM encoder-decoder) exhibits a 
relatively high RMSE value, implying a larger deviation between predicted and actual consumption 
values. The (GRU encoder-decoder) and (encoder-decoder GRU) models demonstrate similar 
performance across most metrics, suggesting their comparable effectiveness in handling time series 
forecasting tasks. These results emphasize the importance of bidirectional recurrent connections in 
capturing temporal dependencies. The (encoder-decoder LSTM dilated causal CNN) and (encoder-
decoder causal CNN LSTM) models demonstrate comparable performance in most metrics. This hints 
at the potential of combining dilated causal convolutional layers with LSTM structures for capturing 
local and global electricity consumption patterns. Overall, the (encoder-decoder CNN LSTM) model 
emerges as a notable candidate, delivering promising results across multiple error metrics. Its 
balanced performance suggests its effectiveness in capturing both spatial and temporal features in 
the data, making it a strong contender for electricity consumption forecasting applications. 
 
Table 1 
Errors of the prediction result in different models 

Algorithm  RMSE MAE NRMSE MAPE 
GRU Encoder-Decoder 0.022510408 0.118326365 0.190240003 78.95109703 
Encoder-Decoder GRU 0.021486559 0.115697263 0.185713634 79.0329015 
CNN Encoder-Decoder GRU 0.023046887 0.12268567 0.187853119 80.7012239 
Encoder-Decoder CNN GRU 0.021107744 0.11368845 0.185663051 79.5901271 
CNN GRU Encoder-Decoder 0.02587543 0.13164793 0.196550217 77.8205254 
GRU CNN Encoder-Decoder 0.021721118 0.1163123 0.186748255 80.3584475 
LSTM Encoder-Decoder 0.026619573 0.1361029 0.195584177 81.7614897 
Encoder-Decoder LSTM 0.020211411 0.11098989 0.182101364 80.2165176 
CNN Encoder-Decoder LSTM  0.022869683 0.12343165 0.18528216 79.1671769 
CNN LSTM Encoder-Decoder 0.02303152 0.12267128 0.187749889  80.5441498 
LSTM CNN Encoder-Decoder 0.022938372 0.12211122 0.187848195 78.4883429 
Encoder-Decoder LSTM dilated causal CNN 0.022037947 0.11603436 0.189926046 79.58317607 
Encoder-Decoder causal CNN LSTM 0.022055267 0.12150262 0.181520917 79.6837816 
Proposed Model 0.019972611 0.10956344 0.182292656 80.0328196 

 
In Figure 5 present the results of single-step short-term electrical load forecasting using our 

proposed encoder-decoder CNN-LSTM model. The figure compares the actual power consumption 
data and the model’s predicted values over a specific period. The blue line in the plot represents the 
actual power consumption data, which serves as a reference for the ground truth values. On the 
other hand, the orange line depicts the model’s predicted power consumption values. By visually 
examining the figure, we can assess the model’s performance in capturing the dynamic behaviour of 
electricity demand. The encoder-decoder CNN-LSTM model demonstrates its efficacy in producing 
accurate and precise forecasts. The alignment between the predicted and actual lines indicates that 
the model successfully captures the underlying patterns in the data. This includes accurately 
predicting peak load periods, seasonal variations, and short-term fluctuations, which are essential 
for effective power system operation and planning. The proximity of the predicted and actual lines 
indicates the model’s ability to capture short-term dependencies and adapt to real-time variations in 
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electricity consumption. This level of accuracy is crucial for electricity providers and energy 
management teams, as it enables them to make well-informed decisions in allocating resources, 
optimizing energy generation, and mitigating potential grid disruptions. 

 

 
Fig. 5. Prediction values of the proposed model 

 
5. Conclusions 

 
Short-term electrical load forecasting ensures power production and scheduling processes' 

safety, stability, and sustainability. Improved prediction results have significant implications for 
electricity industries and power supply companies, enabling them to make reliable decisions 
regarding operation control, power system management, cost reduction, and pollution prevention. 
The present study provides a novel hybrid model that considerably improves the accuracy and 
dependability of single-step short-term electrical load forecasting. The proposed model successfully 
captures temporal dependencies, extracts spatial features, and retains long-range dependencies, 
yielding highly accurate load predictions. It does this by fusing the strengths of the conventional Bi-
GRU based encoder-decoder structure with the CNN-LSTM architecture. The model's performance 
has been thoroughly assessed through comprehensive testing using the publicly available AEP 
dataset, which represents actual electrical load data. The results demonstrate that the presented 
hybrid model outperforms competing models regarding algorithm stability and prediction accuracy. 
This research contributes to advancing deep learning techniques for time-series power load 
prediction, offering a practical and reliable method for effectively operating and planning power 
systems. The precise forecasting capabilities of the proposed model can lead to optimized energy 
management, cost savings, and improved overall efficiency in the power industry. The hybrid model 
presented in this paper represents a significant step forward in electrical load forecasting, paving the 
way for more accurate and efficient power system management. Further investigations will explore 
the model's adaptation to other datasets and evaluate its performance under various load patterns 
and environmental circumstances. Incorporating cutting-edge methods and architectures may also 
significantly improve the model's forecasting abilities, given the rapid evolution of deep learning. 
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