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 ABSTRACT 

 
This research paper presents a comprehensive investigation of the performance and 
aerodynamic characteristics of a double-blade Darrieus wind turbine utilizing a NACA 
0018 airfoil. The study combines wind tunnel testing and numerical simulations using 
Ansys software to analyze the turbine's behavior under varying wind conditions. 
Experimental measurements of torque, power output, and blade forces were obtained, 
while computational fluid dynamics simulations provided insights into flow patterns and 
pressure distribution. The results demonstrated close agreement between 
experimental and numerical approaches, validating the accuracy of the computational 
model. The analysis highlighted the influence of wind speed on turbine performance 
and the favorable aerodynamic characteristics of the NACA 0018 airfoil. The findings 
contribute to wind turbine design optimization and offer valuable insights for future 
research in renewable energy. Furthermore, the research identified the optimum case 
in the experimental method for the double-blade Darrieus vertical axis wind turbine. 
The results revealed that the most efficient position is situated at a distance of 4 cm and 
3 cm from the rotor, which corresponded to 40% to 30% in terms of the distance ratio. 
Notably, a 6.7% improvement is observed when comparing single blade and double 
blade numerical results.  
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1. Introduction 
 

The Vertical Axis Wind Turbine (VAWT) is gaining prominence in the realm of small-scale wind 
power due to its notable benefits, which encompass structural simplicity, wind direction autonomy, 
absence of a yaw mechanism necessity, resilience to turbulent winds, cost-effectiveness, simplified 
maintenance, and reduced noise emissions. Numerous studies have delved into enhancing wind 
turbine designs and performance. Bošnjaković et al., [1] explored minor design modifications, 
including rotor blade aerodynamics, active rotor blade rotation control, and aerodynamic brakes. Li 
[2], Kumar et al., [3], and Ghasemian et al., [4] respectively scrutinized the development of Darrieus 
turbines, while Islam et al., [5] compiled primary aerodynamic models for predicting the performance 
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and design of straight-bladed Darrieus-type VAWTs. Bangga et al., [6] extensively evaluated different 
assessment methods, from DMST to fully resolved CFD approaches. 

Wind turbine solidity investigations were carried out by Bangga et al., [6], Singh and Biswas [7], 
and Soultanzadeh and Moradi [8], revealing the relationship between solidity, power coefficient, and 
performance. Cambered blade aerodynamics were addressed by Rainbird et al., [9], Chaitep and 
Chaichana [10], and Matrawy et al., [11]. Notably, Zidane et al., [12] study Enhancing H-Darrieus 
VAWT performance by using upstream deflectors. Investigated deflector configurations and 
compared turbine performance with and without wind rotor barriers. Validated CFD models provided 
novel insights on deflector effects. Provided that the Single deflector increased moment coefficient 
by 24%, two deflectors increased it by 22% within optimal tip speed ratio range. 

Several researchers, including Howell et al., [13], Rahman et al., [14], Rahman et al., [15], Parker 
and Leftwich [16], and Alaimo et al., [17], concentrated on improving VAWT designs, assessing 
aerodynamics, and employing CFD simulations for better understanding. The combination of 
Savonius and Darrieus turbines are explored by Bhuyan and Biswas [18], and Hosseini and Goudarzi 
[19] numerically designed, simulated and evaluated the performance of an innovative hybrid VAWT 
to obtain an extended operational range and enhance self-starting capabilities using Ansys. A hybrid 
VAWT consisting of a two-blade modified Savonius Bach-type rotor and a three-blade Darrieus 
turbine is numerically modeled and analyzed to calculate the characteristic parameters of the rotor 
system. Nenaey et al., [20] aimed at numerically combining the favor characteristics of Savonius and 
Darrieus turbine by producing a hybrid VAWT and evaluated its performance. Hammond et al., [21] 
aimed at designing a VAWT for urban use. Mohammed et al., [22] intended to design, fabricate and 
experimentally investigated the performance of hybrid VAWT on residential buildings. Pallotta et al., 
[23] experimentally described a novel hybrid Savonius-Darrieus combined rotor. They aimed 
optimizing performances in medium-low wind regimes. Alam and Iqbal [24] presented the design of 
a hybrid turbine based on a straight bladed Darrieus (lift type) turbine along with a double step 
Savonius (drag type) turbine. 

Still Darrieus turbine has its self-starting problem and as a solution it may be combined in Double-
Darrieus hybrid system to be self-starting and to have a high-power coefficient. Ahmad et al., [25] 
emphasized designing a straight-bladed Double-Darrieus hybrid VAWT. To improve the self-starting 
characteristics and to enhance the low wind speed performance, Kumar et al., [26] experimentally 
proposed a Dual rotor Darrieus Turbine (DD) with secondary rotor in addition to the primary rotor 
(two set of blades). Their results indicated that the novel dual rotor had improved the self-starting 
capability at the reduced power performance. In addition to the inability to self-start, in a broad 
sense, research on hybrid Darrieus turbines has highlighted challenges associated with a high tip 
speed ratio. Investigations have identified issues linked to deflector performance during alterations 
in airflow direction, which can impact efficiency. In certain instances, these challenges could 
potentially lead to a decrease in overall turbine efficiency. 

The novelty of the presented study is to improve the overall Efficiency of Darrieus wind turbines 
thought Double rotor configuration. This involves identifying and developing designs that can 
maximize the Efficiency. The present study has been undertaken with the following objectives: 
 

i. Study single blade, Numerical and Experimental then compare between them. 
ii. Study the effect of a Double Blade numerically and experimentally. 

iii. Study the effects of different factors such as location of the Second blades and wind speed 
on the power coefficient. 

iv. Compare power coefficient results between single and double blade turbines. 
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2. Methodology  
2.1 Experimental Setup and Instrumentation 
 

The experimental setup consists of turbine base carrying Darrieus shaft, load cells and encoder. 
This arrangement is at center inside open type wind tunnel that has a test section of 30 x 30 cm with 
1 m length. Air velocity is measured using a calibrated Pitot tube. Darrieus turbine has NACA0018 
airfoil and 20 cm length, 20 cm diameter, 35 cm chord length and solidity of 1.05. Air speeds in the 
wind tunnel are comparative to average range of wind speeds in Egypt by employing Reynolds 
number formula as part of the similarity which is based in Eq. (1) to Eq. (4) [27]. Actual air velocity is 
calculated to be from 2.3 to 4.4 m/s. 
 
𝑅𝑒𝑚𝑜𝑑𝑒𝑙 = 𝑅𝑒𝑎𝑐𝑡𝑢𝑎𝑙                (1) 
 
𝜌𝑣𝑑

𝜇 𝑚𝑜𝑑𝑒𝑙
=

𝜌𝑣𝑑

𝜇 𝑎𝑐𝑡𝑢𝑎𝑙
                (2) 

 
𝑣𝑚𝑑𝑚 = 𝑣𝑎𝑑𝑎              (3) 
 
𝑣𝑎 = 0.1 ∗ 𝑣𝑚              (4) 
 
Power and power coefficient can be calculated from Eq. (5) and Eq. (6) [28]: 
 
𝑝 = 𝑇 ∗ 𝜔               (5) 
    

𝐶𝑝 =
𝑃

0.5∗𝜌∗𝑉3∗𝐴
              (6)  

 
2.2 Numerical Simulation and CFD Modeling 
 

A domain is adequate to two-dimensionally simulate the performed conditions of wind-tunnel in 
experimental case, see Figure 1. This allows comparison with both wind-tunnel measurements and 
numerical simulations. Numerical domain contains three sub-domains; two stationary and one 
rotating sub-domains. Inner and outer diameters of the rotating domain are 0.17 and 0.23 m, 
respectively. The lift boundary is configured as a velocity inlet, while the right boundary functions as 
a pressure outlet. Upper and lower boundaries were set as walls. The airfoil surfaces were modeled 
as walls with a no-slip condition. 
 

 
Fig. 1. Darrieus turbine’s domain 
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An unstructured mesh of quadrilateral elements is generated for precise boundary layer 
resolution around the airfoil (Figure 2). A mesh independency analysis indicated that a mesh with 7.7 
× 104 elements yielded comparable lift coefficient values to larger element counts. This mesh 
employed smooth transition inflation, ensuring accuracy and computational efficiency. Mesh 
specifics, such as transition ratio, layer count, and wall distance, were carefully set to maintain 
optimal conditions for the wind turbine blade airfoils. Mesh views near turbine blades are illustrated 
in Figure 3. 

CFD model utilized the two-dimensional unsteady Reynolds-averaged Navier-Stokes equations 
(U-RANS) and incorporated k-ω SST turbulence model to capture the turbulent effects [12], Time step 
(Δt) is calculated to be Δt = 0.00018 s. The angular velocities are calculated using Eq. (7) according to 
wind speeds [28].  
 
v = ω r                           (7) 
 

     
   Fig. 2. Relation between Lift coefficient and number   Fig. 3. Mesh view near the blades 
   of elements at air velocity of 23 m/s. 

      
3. Results  
3.1 Single Darrieus 
 

The experimental testing provided valuable insights into the aerodynamic behavior and 
performance of single Darrieus wind rotor. The blade radius is 10 cm for the single blade 
configuration. The power coefficient (Cp) values obtained from the experiments with respect to tip 
speed ratio are summarized in Figure 4. The experimental results for the single blade configuration 
show power coefficient values ranging from 0.05 to 0.1. 

Tip speed ratio is a crucial parameter that characterizes the performance of a Darrieus VAWT. In 
this paper, TSR falls within the range of 0.1 to 0.2. This deviation from the normal range is primarily 
attributed to the size and solidity of the model used in the experiments. The relation between solidity 
and airfoil dimensions is in Eq. (8) [28]: 
 

𝜎 =  
𝑏𝑐

𝑅
                      (8) 

 
Present solidity value is calculated to be 1.05 and the corresponding TSR for the maximum power 

coefficient is reported to be 0.15592. In reference [23] at the same solidity value of 1.05, tip speed 
ratio for the maximum power coefficient is found to be 0.16 (Figure 5) 
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  Fig. 4. Experimental results for single blade         Fig. 5. Solidity and tip speed ratio [29] 

(at a 10 cm radius) 

 
Simulations visualized air flow velocities around the rotor at 26 m/s. Contour plots depicted 

velocity variations across blades and surroundings. Figure 6 shows velocity distributions at 26 m/s: θ 
= 0° and 90°. θ = 0° demonstrated efficient energy use, proper blade alignment and maximized 
turbine efficiency. While θ = 90° led to flow separation, hampering energy utilization. θ = 180° also 
yielded favorable results. θ = 270° had minor impact on power generation and efficiency due to 
blade's end position. 
 

 
 Fig. 6. Air flow velocity distributions at air velocity of 26 m/s, at θ = 0°,  
θ = 90°, θ = 180°, θ=270° 

 
Streamlines visualization colored by velocity magnitude provides valuable insights into the flow 

characteristics at various blade positions. At 0°, it offers a depiction of the flow pattern near the 
leading edge of the blade. At 90°, it provides a distinct perspective, when the blade is perpendicular 
to the wind flow, Figure 7. 

A validation process is conducted by comparing power coefficient values of the numerical results 
with the corresponding experimental data for the single blade configuration. Validation analysis, 
Figure 8, revealed that the error range between the numerical and experimental results are 
approximately less than 20%, which is considered reasonable for such complex aerodynamic 
simulations. Moreover, the observed trend in the power coefficient values from the numerical 
simulations are found to be compatible with the experimental results. 
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  (a)       (b) 

Fig. 7. Streamlines colored by velocity magnitude for single blade (a) θ = 0° (b) θ = 90° 

 

 
  Fig. 8. Validation between the numerical and experimental  
  results 

 
3.2 Double Darrieus 
 

Double blade configuration where the inner blade changes its position from the inner shaft to the 
outer blade by 1 cm step is shown in Figure 9. This configuration is discussed for a modified flow 
pattern and to potentially affect the overall aerodynamic behavior of the wind turbine. The power 
coefficient values were evaluated. The outer blade remained at a distance of 10 cm from the rotor.  
 

 
  Fig. 9. study experimental configuration  
  of Double Darrieus wind turbine 
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The power coefficient values versus TSR for different inner blade distances (L) are presented in 
Figure 10. Power coefficient values vary for each inlet blade distance, ranging from 0.016711708 to 
0.252215436. Results showed that the most efficient position coincided with 40% of length at 4 cm 
from rotor, and 3 cm from the rotor. The power coefficient revealed influence of blade positioning 
on the turbine's performance. Its values varied with the distance of the inlet blades from the rotor, 
indicating the importance of blade placement for maximizing power extraction. The results showed 
that the power coefficient generally increased as the inner blade distance decreased especially from 
30% to 40% distance from the rotor. This finding highlights the significance of optimizing the design 
and configuration of the Darrieus wind turbine for improved performance.  
 

   
      (a)              (b) 

 

   
     (c)               (d) 

 

  
  (e)                        (f) 

Fig. 10. Power coefficient values (a) L=1 (b) L=2 (c) L=3 (d) L=4 (e) L=5 (f) L=6 
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Numerical results are obtained from the simulations of the double blade configuration of the 
Darrieus wind rotor. Contour depict air flow velocities around the double-blade setup at 26 m/s, 
Aligning blades with wind flow (θ = 0°) results in even velocity distribution, ensuring effective wind 
energy use (Figure 11). Conversely, perpendicular blades (θ = 90°) lead to flow separation, wake 
effects, and decreased energy utilization. Notably, θ = 180° presents efficient configuration, while θ 
= 270° minimally affects power generation despite flow separation. Visualization of streamlines 
colored by velocity magnitude as illustrated in Figure 12, it provides valuable insights into the flow 
characteristics of a double-blade Darrieus vertical axis wind turbine (VAWT) at various blade 
positions. Examining the streamlines for the blade positioned at 0° offers a depiction of the flow 
pattern near the leading edge of the blade. Streamlines corresponding to the blade positioned at 90° 
provide a distinct perspective, revealing the flow behavior around the trailing edge of the blade. 

Finally, referring to improvement achieved by the double blade configuration and as mentioned 
in Figure 10(e) where the blade at 5 cm from the rotor and at a speed of 26 m/s, the result for single 
blade power coefficient (Cp) is 0.108, and the results for Double blade power coefficient (Cp) is 0.117, 
this indicates Improvement of 6.7% between single blade and double blade numerical cases. 
 

 
Fig. 11. Air flow velocity distributions at an air velocity of 26 m/s, at θ = 0°,  
= 90°, θ = 180°, θ=270° 

 

   
Fig. 12. Streamlines colored by velocity magnitude for double blade, at θ = 0°, θ = 90° 

       
4. Conclusions 
 

This study has explored the potential of wind energy as a clean and renewable source of power, 
highlighting its importance in addressing environmental concerns on fossil fuels. The experimental 
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and numerical study conducted on the double-blade Darrieus wind turbine has provided valuable 
insights into its performance and flow characteristics. 
 

i. The comparison between the numerical and experimental results for the single-blade 
Darrieus turbine demonstrated a reasonable level of agreement, with less than 20% 
error. validating the effectiveness of both approaches. 

ii. The analysis of power coefficient and tip speed ratio has shed light on the influence of 
blade positioning and design parameters on turbine performance, results showed that 
the most efficient position coincided with 40% and 30% of the length.  

iii. The comparison between single blade and double blade numerical cases Results showed 
an Improvement of 6.70% for Double Blade.  

The insights gained from the experimental and numerical study can be utilized to optimize the 
design, operation, and integration of double-blade Darrieus turbines for enhanced wind energy 
utilization. 
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