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Motor Imagery-Brain Computer Interface (MI-BCI) is a very important technology 
gaining momentum throughout the last decade. This technology enables the linkage of 
brain activities to computer applications and can give disabled patients who suffer from 
motor disabilities (e.g., partial paralysis, muscle atrophy, etc.) the ability to interact 
normally with technologies around them. Currently, the technology is mostly limited to 
applications within dedicated laboratories and is hardly used in practical settings or in 
real-life applications. The purpose of this study is to review the latest trends and 
technologies in the field of MI-BCI, including the major challenges and the state-of-the-
art classification techniques. The scope of this review article covers the feature 
selection algorithms that can help identify the most informative and discriminative 
features from the recorded brain signals, and the classification techniques that can 
identify the different types of motor movements. 
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1. Introduction 

 
Brain computer interface (BCI) [1] is a trending technology that enables the interfacing of human 

brain with computer systems. This is accomplished by the acquisition of the brain signals using 
dedicated bio-sensors, which are later processed by a computer system to achieve certain tasks, such 
as controlling a mouse movement, a wheelchair [2], and so on. 

There exist non-invasive and invasive sensors that can be used with BCI [3]. Most of the research 
focuses on BCI systems using the non-invasive sensors [4] due to the fact that they are safer and 
easier to set up. Non-invasive BCI technology also has a broader user base, and they do not usually 
require a dedicated facility to operate (e.g. hospital, lab, etc.,). Another reason which can also be 
attributed to the widespread use of the non-invasive sensors, is their low prices [5]. However, while 
non-invasive BCI technologies offer numerous advantages, they also have some downsides when 
compared to invasive BCIs. The main issues with these non-invasive technologies are their lower 
signal quality, lower spatial resolution and higher signal interference. 

 
* Corresponding author. 
E-mail address: nour@graduate.utm.my 
 
https://doi.org/10.37934/araset.40.2.96116 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 40, Issue 2 (2024) 96-116 

97 
 

The main stages of any BCI system consists of 
i. Acquiring the signal from the brain using the relevant EEG sensor/headset. 

ii. Preprocessing the signal to remove any noises and retain only the desired frequency [6]. 
iii. Performing application-dependent features selection/extraction. 
iv. Classifying the signal according to the application. 
v. Carrying out required actions using the classified output. (e.g., motor action). 

Figure 1 below illustrates the main stages for most busy eye systems. 
 

 
Fig. 1. Main stages of a BCI system 

 
The upcoming section will provide a more in-depth exploration of the latest research pertaining 

to each stage of BCI systems. 
 

1.1 Acquiring The Signal 
 
In recent times, there has been a rise in the availability of commercially accessible EEG-based 

headsets in the market [7]. These devices range in price from low-cost options to more costly ones. 
While some of these devices cater more towards hobbyists rather than scientific or medical 
communities, their popularity and acceptable error margins [8] have led to their employment in 
numerous recent studies. The review of EEG headsets presented in this paper encompasses both the 
inexpensive and the expensive headsets, with a threshold of 1,000 USD separating them. Table 1 lists 
the widely used commercial devices below the price threshold, and Table 2 lists those above the 
same threshold. 
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Table 1  
List of commercially available EEG headsets below 1,000 USD 

Device Name Manufacturer Electrodes 
# 

Method of Adhesion Sample Rate 
(Hz) 

Resolution Price 
(USD) 

Muse 2 [9] IntraXon 4 Dry 256 12 249 
Mindwave [10] Neurosky 1 Dry 512 12 110 
Insight 2.0 [11] Emotiv 5 Semi dry 128 15 499 
Epoc+ / Epocx [12] Emotiv 14 Saline-soaked 

solution, Gel 
2048 14 699 

(Epoc+) 
849 
(Epocx) 

EEG Electrode Cap 
[13] 

OpenBCI Up to 19 Wet 256 24 499 

 
Most manufacturers provide a set of bundled BCI software tools or platforms [14,15] to help the 

research community take advantage of their EEG headsets, as well as to serve as a common 
benchmark. Since BCI is the main target of this review paper, only the headsets that provide such an 
interface will be covered. 

 
Table 2  
List of commercially available EEG headsets above 1,000 USD 

Device Name Manufacturer Electrodes 
# 

Method of 
Adhesion 

Sample Rate 
(Hz) 

Resolution Price 
(USD) 

DSI 7 [16] Wearable Sensing 7 Dry 300 4 19995 
DSI 24 [17] Wearable Sensing 21 Dry 300 8 24800 
Quick-20m 
premium+ [18] 

CGX systems 20 Dry 500 24 30700 

Active Two [19] Bio-Semi Up to 256 Dry / Wet 2,4,8,16 
(kHz) 

N/A 12000 

Gnautilus-pro [20], 
[21] 

Gtec 8, 16, 32 Dry / Wet 1000 8 20000 

EegoTM sports [22] Ant neuro 32, 64, 128 Dry / gel 2000 8 25000+ 
Epoc flex kit [23] Emotiv Up to 32 Saline soaked 

solution, Gel 
1024 14 2099 

B Alert X [24] Advanced brain 
monitoring 

9, 20 Dry 256 16 14950 

 
1.2 Signal Pre-processing 

 
In the realm of Brain-Computer Interface (BCI) signal processing, a new era of enhanced data 

quality and signal reliability has arrived as a result of recent improvements. For BCIs to be fully utilized 
in a range of applications, from neurorehabilitation to assistive technology, improvement is essential. 
In recent years, a number of cutting-edge pre-processing methods have emerged, enabling more 
reliable and accurate signal analysis. Convolutional neural networks (CNNs) are used as a deep 
learning-based classification and noise removal method to automatically detect and remove 
undesired artifacts from EEG and other neuroimaging data [25], as well as to classify them. The 
effectiveness of this method in improving data quality has been astounding. The incorporation of 
adaptive signal processing methods, such as blind source separation and adaptive filtering, which 
adaptively decrease noise and artifacts in real-time, is another significant development [26]. 
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1.3 Feature Extraction and Selection 
 
Recent advancements in Brain-Computer Interface (BCI) technology have highlighted the 

significance of feature extraction and selection in optimizing the performance of BCI systems. The 
accuracy and effectiveness of BCIs have been improved by the incorporation of cutting-edge complex 
approaches that allow the extraction of discriminative information from brain signals. Convolutional 
neural networks (CNNs) and other machine learning techniques, such as deep learning architectures, 
have become effective tools for automatic feature extraction, enabling BCIs to detect complex 
patterns in EEG and fNIRS data. To further reduce dimensionality and improve BCI resilience, feature 
selection techniques like common spatial pattern (CSP) and genetic algorithms are increasingly used 
to determine the most pertinent and informative features [27]. These latest advancements highlight 
the crucial role that the feature extraction and selection techniques play in enhancing BCI capabilities 
for applications ranging from cognitive enhancement to neuroprosthetics. 

 
1.4 Classification 

 
The classification stage in Brain-Computer Interface (BCI) technology is crucial for turning neural 

signals into commands or insights that can be put into practice. The accuracy and efficiency of BCI 
categorization systems have significantly improved in recent years. Convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs), two deep learning models, have become well-known 
for their capacity to recognize intricate patterns in neural data, effectively decoding user intentions 
or determining cognitive states from EEG, fNIRS, or ECoG signals [28]. These models expand the 
adaptability of BCIs to accommodate changes in user states or situations, which strengthens their 
utility in a variety of applications, from neurorehabilitation to gaming and communication [29]. They 
also improve BCI performance. 

The quantity of EEG electrodes impacts the volume of data to be gathered and processed. EEG 
headsets that possess fewer than 8 electrodes are typically employed for specialized applications 
such as sleep quality assessment and traditional neuro-feedback. On the other hand, EEG headsets 
with a higher number of channels are considered high-density devices capable of capturing numerous 
brain signals. The placement of the electrodes follows the international 10-20 system, which is a 
widely accepted approach used to define and position scalp electrodes during EEG examinations, 
polysomnographic sleep studies, or voluntary laboratory research [30]. 

The main regions of the brain include the pre-frontal (Fp), frontal (F), central (C), temporal (T), 
parietal (P), and occipital (O) areas. Odd-numbered labels correspond to electrodes placed on the left 
side, while even-numbered labels indicate electrodes on the right side. Additionally, electrodes 
positioned above the midline are identified with the letter 'Z'.  

EEG signal is measured by getting the voltage difference between the recording electrodes and a 
reference voltage. Several types of EEG sensors can be placed on the participant's head. Dry 
electrodes, for instance, do not require the application of any electrolyte substance and can make 
direct contact with the scalp. One significant advantage is their ease of installation, as they do not 
necessitate significant preparations, and they eliminate the need for head cleanup afterwards. Their 
primary limitation lies in the high contact impedance between the sensor and the skin, which 
necessitates the implementation of enhanced noise and distortion filtering capabilities.  

The alternative prominent type of EEG sensors relies on wet electrodes, encompassing semi-dry, 
saline, and gel-based variants. To improve skin contact and reduce impedance at the electrode-skin 
interface, an electrolytic substance is applied between the scalp and the electrode. This facilitates 
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enhanced readings and higher performance of the system by reducing sensitivity to noise and other 
artifacts. 

 
2. Literature Review 
 

In this section, the focus will be on conducting a comprehensive literature review, delving into 
recent relevant studies, and examining the datasets that have been predominantly utilized in recent 
research work related to Motor Imagery Brain-Computer Interfaces (MI-BCI). To ensure a systematic 
review of recent MI-BCI research, we devised a search strategy that combined three primary search 
terms: 'MI-BCI,' 'EEG' (Electroencephalography), and 'CNN' (Convolutional Neural Network). 
Recognizing the importance of comprehensive coverage, we also incorporated alternative terms for 
each of these search categories, connecting them with the logical 'OR' operator. For example, to 
capture research related to 'EEG,' we included both 'EEG' and 'Electroencephalography' as search 
terms. 

This extensive literature search was executed using the Scopus database, using the following 
search string: 'MI-BCI' OR 'Motor Imagery Brain Computer Interface' AND 'EEG' OR 
'Electroencephalography' AND 'deep neural network' OR 'deep network' OR 'Convolutional Neural 
Network' OR 'Deep learning' OR 'attention.' Initially, the search yielded a total of 131 research 
articles. However, to ensure a precise focus on the targeted application of MI-BCI, we meticulously 
reviewed the titles and abstracts of these articles, following the Preferred Reporting Items for 
Systematic Review and Meta-analysis (PRISMA) framework, which provides a standardized approach 
for systematic reviews and meta-analyses, helping us maintain transparency and rigor in our data 
selection process. 

 
2.1 Limitations 

 
This work is limited to using Brain-Computer Interface (BCI) applications for motor imagery 

datasets obtained using an EEG headset. All primary papers that use Convolutional Neural Networks 
for MI-BCI feature extraction, classification, or any other task, and were written in English, were 
selected. However, since the topic of MI-BCI combined with deep learning is a relatively new 
discipline, the overall literature that was initially retrieved covered a span of 7 years, starting from 
year 2017 to year 2023. However, in order to maintain the focus on the most recent advancements 
in the field, articles published prior to 2020 were left out of this review. 

This Systematic Literature Review (SLR) focuses on contemporary research related to MI-BCI 
employing EEG datasets. Articles that exclusively covered the preparation of new datasets, without 
any research regarding MI-BCI applications were removed from the selection. Additionally, articles 
written in languages other than English, were also removed. The same criteria for selecting the 
research articles were applied to review articles.  

 
2.2 Related Work 

 
The selected publications are detailed in Table 3, which includes information on the article 

methodology, publication year, source title, and the number of citations for each publication. Figure 
2 illustrates the distribution of publications from 2020 to 2023. In the yearly distribution depicted in 
Figure 2, there is a noticeable sharp increase in literature, with only eight publications in 2021 
compared to 16 articles in 2022. Furthermore, as indicated in Figure 3, among the 50 articles, 36 were 
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published in journals, while 14 appeared in conference proceedings. Figure 4 presents the number 
of manuscripts published by each publisher. 

 
Table 3  
Methodology, publication year, source, and the number of citations of the selected publications 

No. Ref. Methodology Year Source Title Cited 
By* 

1 [31] CNN 2023 Proceedings of SPIE - The International 
Society for Optical Engineering 

- 

2 [32] Time-Frequency analysis and Deep-
Learning. 

2023 International Journal of Imaging 
Systems and Technology 

1 

3 [33] Multi-Modal Neural Network. 2023 Journal of Neural Engineering - 
4 [34] Custom technique and decoding using 

Bidirectional long short-term memory 
(BiLSTM) network. 

2023 Sensors 1 

5 [35] An Interactive Frequency Convolutional 
Neural Network (IF-NET). 

2023 IEEE Transactions on Neural Systems 
and Rehabilitation Engineering 

1 

6 [36] New EEG classifier based on Riemannian 
geometry. 

2023 Applied Intelligence - 

7 [37] Multi-branch Fusion CNN (MF-CNN). 2023 Frontiers in Neuroscience - 
8 [38] Parallel-Fusion Algorithm, Mult-scale CNN 

and LSTM. 
2023 Proceedings of SPIE - The International 

Society for Optical Engineering 
- 

9 [39] CNN 2023 Sensors - 
10 [40] Deep-ConvNet 2023 Journal of Neural Engineering 1 
11 [41] Subject-Separation Network (SNN). 2023 Brain Sciences 1 
12 [42] Deep-Ensemble: Multi-layer perceptron 

(ML), vision transformer and CNN. 
2023 Digest of Technical Papers - IEEE 

International Conference on Consumer 
Electronics 

1 

13 [43] Time segments and Frequency bands CSP 
using Genetic Algorithm (TSFBCSP-GA). 

2023 Biomedical Signal Processing and 
Control 

1 

14 [44] 2D-CNN and LSTM 2023 Biomedical Signal Processing and 
Control 

1 

15 [45] Multi-scale time frequency-CNN (MTFB-
CNN) 

2023 Biomedical Signal Processing and 
Control 

3 

16 [46] Review of various Conventional and Deep-
learning methods. 

2023 Journal of Neuroscience Methods 3 

17 [47] Multi-branch spectral-temporal 
convolutional neural network with channel 
attention and LightGBM model (MBSTCNN-
ECA-LightGBM) 

2023 IEEE Transactions on Neural Systems 
and Rehabilitation Engineering 

2 

18 [48] CNN 2022 Proceedings - 2022 International 
Conference on Computing, Electronics 
and Communications Engineering. 
iCCECE 2022 

- 

19 [49] Deep-Learning Support Vector Machine 
(DL-SVM) 

2022 Lecture Notes in Electrical Engineering - 

20 [50] Wavelet Packets CNN  2022 Proceedings - 2022 4th International 
Conference on Applied Machine 
Learning, ICAML 2022 

- 

21 [51] A Feature-Level Graph Embedding Method 
(EEG_GENet) 

2022 Biocybernetics and Biomedical 
Engineering 

3 

22 [52] 2 class Filter Bank Convolution Neural 
Network (2Con-FBCNet)  

2022 Medicine in Novel Technology and 
Devices 

2 

23 [53] Filter Bank and Convolution Network 
(ConvNet) 

2022 ACM International Conference 
Proceeding Series 

3 
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24 [54] Active Inference Neural Network (EEG-
ARNN) 

2022 IEEE Transactions on Industrial 
Informatics 

6 

25 [55] Deep Adversarial Domain Adaptation With 
Few-Shot (Deep-ADA) 

2022 IEEE Access 5 

26 [56] Deep Convolution Generative Adversarial 
Network.  

2022 International Journal of Neural Systems 9 

27 [57] Tensor-based frequency feature 
combination (TFFC). 

2022 Communications in Computer and 
Information Science 

8 

28 [58] multiscale time-frequency with OVR-SVM 2022 Computers in Biology and Medicine 10 
29 [59] CSP and LDA for feature selection, and CNN 

for classification. 
2022 PLoS ONE 14 

30 [60] Tensor-based frequency feature 
combination (TFFC) 

2022 IEEE Transactions on Neural Systems 
and Rehabilitation Engineering 

20 

31 [61] CNN-LSTM 2022 Biomedical Signal Processing and 
Control 

27 

32 [62] Multi-scale CNN 2022 Biomedical Signal Processing and 
Control 

46 

33 [63] DeepConv Neural Network 2022 Engineering Applications of Artificial 
Intelligence 

48 

34 [64] Filter bank Wasserstein adversarial domain 
adaptation framework (FBWADA) 

2021 Proceedings of the International Joint 
Conference on Neural Networks 

1 

35 [65] Ensemble empirical mode Decomposition 
(EEMD) and Filterbank common spatial 
pattern (FBCSP) 

2021 International Conference on 
Information Networking 

3 

36 [66] Time-Incremental End-to-End Shared 
Neural Network with Attention-Based 
Feature Fusion. 

2021 Computational Intelligence and 
Neuroscience 

5 

37 [67] DNN with Subdomain adaptation 2021 Medical Engineering and Physics 7 
38 [68] Multi-domain CNN 2021 Sensors 6 
39 [69] CNN 2021 Journal of Neural Engineering 12 
40 [70] Sparse Spectro-Temporal Decomposition 

and Deep learning. 
2021 IEEE Transactions on Automation 

Science and Engineering 
24 

41 [71] Novel DNN based on EEGNet 2021 IEEE Access 44 
42 [72] CSP 2020 8th International Winter Conference on 

Brain-Computer Interface, BCI 2020 
6 

43 [73] SVM 2020 IEEE Transactions on Neural Systems 
and Rehabilitation Engineering 

10 

44 [74] Fisher’s linear discriminant analysis (FLDA) 2020 Electronics (Switzerland) 10 
45 [75] Feature Similarity-Based Weighted 

Ensemble Learning (Sessionnet) 
2020 IEEE Access 11 

46 [76] Fusion CNN 2020 Brain-Computer Interfaces 14 
47 [77] Deep Metric Learning  2020 IEEE Access 21 
48 [78] CSP 2020 Behavioural Brain Research 24 
49 [79] A MultiView CNN with Novel Variance 

Layer. 
2020 Proceedings of the Annual International 

Conference of the IEEE Engineering in 
Medicine and Biology Society, EMBS 

32 

50 [80] EEGNet-based technique. 2020 IEEE Medical Measurements and 
Applications, MeMeA 2020 - 
Conference Proceedings 

47 

 
* Citations based on Scopus database 
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Fig. 2. Number of publications per year 

 

 
Fig. 3. Ratio of conference and journal publications 

 

 
Fig. 4. Number of publications per publisher 
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A detailed explanation of the most cited articles within the covered literature is covered below. 
The next paragraphs will delve deeper into the methodology employed, the used dataset, as well as 
the results, potential shortcomings, and advantages of the techniques applied. 

Li et al., [61] proposed an EEG classification algorithm that combines multilevel spatial-temporal 
features based on CNN and LSTM to overcome the shortcomings of traditional machine learning 
algorithms. The superiority of the proposed method stems from using parallel structure and fusion 
features. By employing the CNN-LSTM parallel structure, both networks can simultaneously extract 
features from the input signal, thereby incorporating abundant original features in both temporal 
and spatial dimensions. In contrast, the serial structure that relies on CNN features as input for LSTM 
can only extract features layer by layer, leading to the loss of certain features during this process and 
ultimately resulting in a decreased accuracy. The authors used the four classes of BCI Competition IV-
2a dataset, which consists of (left, right, tongue, and feet). The results showed that the fusion of 
features demonstrated stronger separability and higher classification accuracy compared to using a 
single feature. The results have shown a Kappa value and average accuracy 0.8245 and 87.68%, 
respectively. 

Roy et al., [62] introduced a novel technique aimed at enhancing the classification of MI-BCI. The 
technique uses a multi-scale convolutional neural network (MS-CNN) to address the challenge of 
inter-subject variability in EEG data classification. By extracting two highly distinguishable features 
from non-overlapping frequency bands of EEG signals at multiple scales, the technique overcomes 
this issue. To further enhance accuracy and performance, user-specific features are incorporated into 
the CNN classifier, and various data augmentation techniques are employed to improve the model's 
robustness. The outcomes show that the suggested MS-CNN is successful, obtaining a remarkable 
Cohen's kappa-coefficient of 0.92 and an average classification accuracy of 93.74% on the dataset of 
BCI competition IV-2b. These results surpass those of baseline and state-of-the-art models, indicating 
the algorithm's ability to overcome limitations in existing CNN-based EEG-MI classification models 
and significantly improve classification accuracy. The findings provide a solid foundation for the 
development of efficient and reliable real-time human-robot interaction systems. 

To address the most common challenges of Deep learning (DL)-based MI-BCI classification, such 
as inter-subject variability, complex properties, and low signal-to-noise ratio (SNR). Roy et al., [63] 
conducted a study based on a transfer learning (TL)-based multi-scale feature fused CNN (MSFFCNN) 
that captures distinctive features from different non-overlapping frequency bands of EEG signals at 
different convolutional scales for multi-class MI classification. Notably, the study introduced four 
model variants to account for inter-subject variability, including subject-independent and subject-
adaptive classification models with different adaptation configurations. These configurations 
leverage the full learning capacity of the classifier, fine-tuning extensively trained models, and 
exploring a wide range of learning rates and degrees of adaptation. The performance of the MSFFNN 
model has been evaluated on the BCI competition IV-2a dataset which contains EEG data from 9 
patients with 4 different classes. The proposed model achieved an average classification accuracy of 
94.06% (±0.70%) and a kappa value of 0.88, surpassing several baseline and state-of-the-art EEG-
based MI classification models while using fewer training samples. The research demonstrates an 
effective and efficient transfer learning-based framework for robust MI-BCI systems, providing a 
foundation for high-performance applications in this domain. 

Sun et al., [70] proposed a two-stage classification framework for accurately classifying motor 
imagery (MI) signals using EEG data. The first stage of the framework involves employing sparse 
spectro-temporal decomposition. This technique was chosen to address the challenge of capturing 
both spectral and temporal information in the EEG signals. By decomposing the signals into sparse 
representations, it allows for the extraction of relevant features that enhance the separability 
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between different MI tasks. The second stage of the framework uses deep learning techniques, 
specifically convolutional neural networks (CNNs), to learn and classify the extracted features. The 
combination of sparse spectro-temporal decomposition and deep learning enables the proposed 
method to effectively capture discriminative features from the EEG data and automate the 
classification process. The results demonstrate that SSD-SE-CNN provides a 12.9% improvement with 
respect to BP-SVM and a 2.2% improvement with respect to CNN-SAE using the BCI Competition IV-
2b dataset. 

While deep learning-based Motor Imagery (MI) BCI systems have exhibited enhanced accuracy 
compared to traditional algorithms, the interpretability of these models remains a challenge. In an 
effort to address this, Deng et al., [71] conducted a study based on EEGNet, a popular deep learning 
model, and performed a comparison with the conventional Filter-Bank Common Spatial Pattern 
(FBCSP) algorithm. Then, the study proposed improvements to EEGNet by establishing a connection 
between its 1-D convolution and a specialized Discrete Wavelet Transform (DWT), as well as relating 
its depth-wise convolution to the Common Spatial Pattern (CSP) algorithm. To boost performance, 
the researchers applied the Temporary Constrained Sparse Group Lasso (TCSGL) algorithm to 
EEGNet, resulting in the proposed model, TSGL-EEGNet. Evaluations were carried out using the BCI 
Competition IV-2a and BCI Competition III 3a datasets, which involve 4-class MI tasks. The findings 
revealed that TSGL-EEGNet achieved notably higher average classification accuracy (78.96% with 
kappa 0.7194) compared to EEGNet, C2CM, MB3DCNN, SS-MEMDBF, and FBCSP, particularly for 
subjects with low sensitivity. Similarly, on the BCI Competition III 3a dataset, TSGL-EEGNet 
outperformed EEGNet, attaining an average classification accuracy of 85.30% (kappa 0.8040). 
Moreover, the researchers employed average-validation and stacking techniques to further enhance 
model performance, resulting in accuracy rates of 81.34% and 88.89%, with kappas of 0.7511 and 
0.8519 on the BCI Competition IV-2a and BCI Competition III 3a datasets, respectively. The study also 
utilized Grad-CAM to visually depict the frequency and spatial features learned by the neural 
network. 

Alwasiti et al., [77] proposed a triplet network to classify MI-EEG signals. The proposed method 
used the Stockwell transform to convert the datasets from the time domain to the frequency domain, 
representing the EEG power for a specific frequency range plotted over time. The dataset used in 
their study was collected from 64 EEG channels of 109 subjects. The proposed goal was to classify 
the MI-EEG signals and assign them to one of three labels: left, right, or rest. The classification using 
the Stockwell transform demonstrated higher performance compared to DML with Short-Term 
Fourier Transform (0.647% vs. 0.431%). 

Mane et al., [79] proposed a multi-view CNN with a novel variance layer for classifying MI-BCI 
actions. The system, called FBCNet, starts by creating a multi-view data layout using a band-pass filter 
that categorizes EEG into multiple frequency bands. Then, for each view, spatially discriminative 
patterns are learned using CNN layers. Finally, a fully connected layer divides the collected features 
into various MI classes by classifying the temporal information using a new variance layer. The 
performance of FBCNet was evaluated on a publicly available dataset obtained from Korea University, 
which includes two classes (left vs. right hand movements). The results demonstrated that FBCNet 
achieved a 6.7% higher accuracy compared to other state-of-the-art deep learning techniques, while 
using less than 1% of the learning parameters. 

Wang et al., [80] presented a precise and robust embedded system for Motor Imagery-based 
Brain-Computer Interfaces (MI-BCI). Their suggested model, which is based on EEGNet, was created 
mainly to satisfy the memory and processing needs of low-power microcontroller units (MCUs), such 
as the ARM Cortex-M family. To further reduce memory usage without compromising accuracy, the 
authors employed various techniques including temporal down-sampling, channel selection, and 
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narrowing of the classification window. Evaluating their system on the Physionet EEG Motor 
Movement/Imagery dataset, the standard EEGNet achieved impressive classification accuracies of 
82.43%, 75.07%, and 65.07% for 2, 3, and 4-class MI tasks in global validation, outperforming state-
of-the-art convolutional neural networks (CNNs) by margins of 2.05%, 5.25%, and 6.49% respectively. 
The proposed framework successfully achieved significant reductions in memory footprint, with a 
minimal accuracy loss of 0.31% and memory reduction of 7.6×, as well as a small accuracy loss of 
2.51% with a memory reduction of 15×. Deploying the scaled models on a commercial Cortex-M4F 
MCU yielded inference times of 101 ms and energy consumption of 4.28 mJ per inference for the 
smallest model, while a Cortex-M7 achieved an inference time of 44 ms and energy consumption of 
18.1 mJ per inference for the medium-sized model. These results demonstrated the potential for fully 
autonomous, wearable, and accurate low-power BCI systems. 

 
2.3 Data Sets 
 

A notable observation is that the majority of recent studies have relied on secondary datasets 
obtained from the BCI competition archive. Alternatively, some researchers have opted to generate 
their own primary datasets for use in their original experiments. 

The latest data set used in the BCI competitions was created in 2008, employing outdated devices 
and a limited number of samples. The largest participation in any of the BCI competition data sets 
involved nine subjects, while certain data sets, such as BCI competition II, dataset 3, comprised only 
one subject. In terms of the number of samples, the largest study was conducted by Karácsony et al., 
[81], using the PhysioNet EEG data set with approximately 109 individuals over a four-year period. It 
is worth noting that while this study was conducted in 2019, the data set itself was generated 
between the years 2000 and 2004. 

The trend of processing EEG data for the advancement of BCI systems, notably in Motor Imagery 
tasks, is crippled by the absence of modern, diverse and big data sets. Such data set was actually 
created by Kaya et al., [82] and published in Scientific Data journal by Nature Research in 2018. They 
released the largest publicly available data set based on EEG signals for BCI applications. Their data 
set contained 60 hours of EEG signal recordings, and over 60,000 motor imagery data, based on 4 
different interactions. Table 4 presents the data sets commonly used in MI-BCI research.  

 
Table 4  
Data sets commonly used in MI-BCI 

Dataset Year Type Number of subjects 
BCI Comp. IV: IIa 2008 EEG-MI  9 
BCI Comp. III: IIIa 2004 EEG-MI 3 
BCI Comp. II (aka 2003): III 2003 EEG-MI 1 
BCI Comp. IV: IIb 2008 EEG-MI 9 
BCI Comp. III: IVa 2004 EEG-MI 5 
High Gamma Dataset (HGD) 2017 EEG-MI 14 
Technische Univsersitat Berlin dataset 1 2016 Brain Cognitive using EEG 

and fNIRS 
26 

Technische Univsersitat Berlin dataset 2 2017 EEG-MI 29 
NIRSCOUT and NIRX Medical Technologies 
dataset 

2020 fNIRS-MI 10 

PhysioNet EEG dataset 2000 – 2004 EEG-MI 109 
OpenBMI 2021 EEG-MI 36 
Meng dataset 2019 EEG-MI 42 
Stieger dataset 2021 EEG-MI 42 
Kaya dataset 2018 EEG-MI 13 
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3. Methodology and Discussion 
3.1 Various Deep Learning Techniques for MI-BCI 

 
As already mentioned, EEG data is widely used in MI-BCI classification research. It records the 

brain's electrical signals through electrodes placed on the scalp. Before EEG signals can be used, they 
are first subjected to various pre-processing techniques to enhance their quality and extract relevant 
information. These techniques include filtering methods such as band-pass and notch filters to 
remove unwanted frequencies and eliminate noise. Artifact removal techniques are applied to 
address sources of interference like eye blinks and muscle artifacts. Additionally, signal normalization 
is performed to improve the signal-to-noise ratio and facilitate accurate feature extraction. 

Feature extraction is a critical step in MI-BCI classification, involving the extraction of 
discriminative information from pre-processed EEG signals. As demonstrated in the related work 
section, various techniques are employed, such as time-domain analysis, frequency-domain analysis 
(e.g., Fourier Transform), time-frequency analysis (e.g., wavelet transform), and spatial filtering 
methods (e.g., Common Spatial Patterns). These techniques aim to capture relevant features that 
can distinguish between different motor imagery classes. 

Machine learning algorithms are commonly employed to classify the extracted features into 
different classes. Some of these techniques according to the literature are rule-based methods, 
including Support Vector Machines (SVM) and k-Nearest Neighbors (k-NN), as well as traditional 
machine learning algorithms such as Random Forests and Naive Bayes. 

Deep learning techniques have shown incredible capabilities in classification tasks due to their 
ability to handle complex patterns and large amounts of data. Some of the most important 
techniques covered by the literature are 

 
i. Stacked Autoencoders (SAEs): which are unsupervised deep learning models used for 

feature learning and dimensionality reduction. 
ii. Deep Belief Networks (DBNs): which are probabilistic generative models capable of 

capturing complex representations of the input data. 
iii. Recurrent Neural Networks (RNNs): neural networks that can model sequential data by 

using recurrent connections. In the context of MI-BCI classification, RNNs are suitable for 
capturing temporal dependencies in EEG signals, making them effective for analyzing 
time-varying patterns during motor imagery. 

iv. Convolutional Neural Networks (CNNs): designed to analyze grid-like data, such as images 
or time-frequency representations. In MI-BCI classification, CNNs can be applied to EEG 
signals or spectrograms to automatically extract spatial and temporal features. 

v. Three-dimensional Convolutional Neural Networks (3D CNNs): extend the CNN 
architecture to analyze volumetric data, such as spatiotemporal EEG data. These networks 
capture both spatial and temporal dependencies simultaneously, making them suitable 
for MI-BCI classification tasks where 3D information is relevant. 

vi. Attention CNNs: incorporate attention mechanisms into CNN architectures. These 
mechanisms allow the model to selectively focus on informative regions or features in the 
input data, enhancing the discrimination between different motor imagery classes. 

Figure 5 below shows the knowledge mapping for MI-BCI based on the literature review. 
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Fig. 5. Knowledge mapping for MI-BCI 

 
CNNs in general show superior performance when compared to other deep learning techniques. 

Incorporating attention or self-attention mechanisms within CNN can significantly help with 
applications related to MI-BCI applications. The next sub-section highlights the shortcomings of using 
conventional CNNs and how self-attention technique can help overcome these issues. 
 
3.2 Challenges of Using CNN for MI-BCI Applications 
 

CNNs are considered as a powerful type of deep learning models, which are primarily designed 
for applications that deal with matrix (aka., grid) data. However, most of the research that has been 
covered in this review article showed that CNNs were often used for classification of MI-BCI classes 
without an explicit features selection technique. In this case, CNN can have certain disadvantages.  

For instance, CNNs tend to produce a huge number of feature maps in their hidden layers, and if 
these features are not explicitly filtered or selected, they can lead to very high-dimensional feature 
representation. This negatively affects the computational performance and memory usage, and it 
will lead to longer training times. 
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Another major disadvantage of using CNNs in such a way is the lack of feature interpretability. 
CNNs are often treated as a black-box due to their complex structures, and therefore, it is very 
challenging to understand which features in the original input affect the CNN prediction. As such, it 
will be quite challenging to assert the link between the MI-BCI output and the relevant segments of 
the EEG signal. 

According to the comprehensive review done by Khademi et al.,[46] in 2023 that explored the 
challenges in the field of MI-BCI, deep learning techniques have shown acceptable performance in 
handling complicated and dynamic neural signals. However, they reached the conclusion that 
separate models need to be trained for each subject due to individual differences in EEG signals. 
Another major finding was that training deep learning models, such as CNN, on limited data can lead 
to over-fitting because of the large number of parameters. Furthermore, they recommended the 
usage of unsupervised models since real-life BCI applications lack class labels. 

The self-attention mechanism can be a valuable technique in addressing the aforementioned 
challenges. It allows the model to focus on the different important parts of the EEG signal, effectively 
learning personalized patterns from each individual person. Also, given the enough computational 
resources are available, it can capture very long-range dependencies from the input which helps the 
model understand the complicated relation between different EEG channels. 

Compared to other techniques, self-attention is known to be data-efficient which means that it 
can extract important information from small datasets, which is the case for MI-BCI datasets, where 
the average number of subjects varies from 8 to 13 (e.g., BCI Competition datasets and HGD).  

The self-attention mechanism can also be applied in an unsupervised learning setting, which is 
very crucial for MI-BCI applications where the class labels are missing (e.g., real-life applications). 
Finally, the self-attention can mitigate overfitting problems, even when the deep learning model is 
dealing with millions of parameters, as it allows the model to tend exclusively to important 
information, while suppressing the irrelevant noisy information. 
 
4. Results 

 
Based on recent trends, the self-Attention Convolutional Neural Network (CNN) technique holds 

significant importance in MI-BCI classification research. It stands out as one of the most important 
techniques due to several reasons. Firstly, self-attention mechanisms in CNNs enhance discrimination 
by selectively focusing on informative regions or features in the input data. This selective attention 
improves classification accuracy and enables the capture of subtle patterns. Additionally, attention 
CNNs provide interpretable results by highlighting the regions of interest contributing most to the 
classification decision. This is valuable in understanding the underlying neural processes in motor 
imagery and facilitating the development of targeted interventions. Furthermore, attention CNNs 
adaptively handle inter-subject and intra-subject variability in motor imagery tasks. They robustly 
focus on relevant features and regions, enhancing model performance across different individuals 
and sessions. Self-attention CNNs also excel in processing high-dimensional data, such as multi-
channel EEG recordings or time-frequency representations. They learn discriminative features at 
multiple spatial and temporal scales, capturing complex patterns and dependencies within the data. 

Generally, Self-attention mechanism is one of the very prominent sub-types of attention 
mechanisms, due to its ability to capture long-range dependencies, adaptively weight input 
elements, handle variable-length sequences, provide interpretability, and integrate with other deep 
learning techniques.  
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Given an input sequence of length N, denoted as 𝑋	 = 	 [𝑥₁, 𝑥₂, . . . , 𝑥!], where 𝑥"  represents the 
ith element of the sequence, the self-attention mechanism computes attention weights and 
generates context-aware representations. 

First, the input sequence X is transformed into three types of embeddings: query embeddings 
(Q), key embeddings (K), and value embeddings (V). These embeddings are linear transformations of 
the input sequence and are computed as 

 
𝑄	 = 	𝑋	 × 	𝑊𝑄             (1)	
𝐾	 = 	𝑋	 × 	𝑊𝐾             (2)	
𝑉	 = 	𝑋	 × 	𝑊𝑉             (3) 
 
where WQ, WK, and WV are learnable weight matrices. 
 

Next, the self-attention mechanism computes similarity scores between the query and key 
embeddings to capture the relationships between elements in the sequence. The similarity scores 
are obtained by taking the dot product between the query and key embeddings 

 
𝑆	 = 	𝑄	. 𝐾#               (4) 

 
where S is a matrix of shape (N, N), where each element Si,j represents the similarity score between 
the ith and j-th elements of the input sequence. KT is the transposed matrix K. 

The similarity scores are then scaled by the square root of the dimension of the key embeddings 
and passed through a softmax function to obtain attention weights 

 
𝐴	 = 	𝑠𝑜𝑓𝑡𝑚𝑎𝑥( $

√&'
)             (5) 

 
where dk represents the dimensionality of the key embeddings, and A is a matrix of shape (N, N), 
where each element Ai,j represents the attention weight between the ith and jth elements. 

Finally, the attention weights are used to compute the context-aware representations of the 
input sequence by taking a weighted sum of the value embeddings 

 
𝐶	 = 	𝐴	 × 	𝑉              (6) 

 
where C is a matrix of shape (N, d), where d represents the dimensionality of the value embeddings. 
Each row in C represents the context-aware representation of the corresponding element in the input 
sequence. 

As can be inferred, the self-attention mechanism allows each element in the sequence to attend 
to other elements based on their importance, as determined by the attention weights. This way, it 
captures the relationships and dependencies between different elements, enabling the model to 
focus on the most relevant information during processing. 

In context of MI-BCI, the self-attention mechanism enables capturing long-range dependencies 
in temporal sequences. Since brain signals are recorded over time, it is crucial to model and 
understand the temporal dynamics and relationships between different time steps. Therefore, the 
self-attention mechanism allows the model to attend to relevant time steps and weigh their 
importance, facilitating the identification of critical patterns and correlations in the brain signals. It is 
also capable of handling variable-length sequences. In MI-BCI analysis, the duration of motor imagery 
tasks can vary among individuals and sessions, therefore, traditional approaches like fixed-size 
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windows may not be optimal for capturing the entire temporal context. On the other hand, self-
attention can adaptively attend to different time steps, regardless of their length, providing flexibility 
in analyzing variable-length sequences commonly encountered in MI-BCI. Another major advantage 
of using self-attention mechanism is its inherent ability to handle both local and global information. 
Local attention focuses on capturing fine details within a specific temporal context, while global 
attention considers broader patterns and dependencies across the entire EEG sequence. This ability 
to capture both local and global information is very beneficial for MI-BCI analysis, where local 
temporal patterns (e.g., specific patterns preceding or following motor imagery) as well as global 
temporal dynamics (e.g., overall trends or changes during a whole session) are relevant for accurate 
classification. 

 In summary, while attention mechanisms generally refer to mechanisms that selectively focus 
on relevant information, self-attention is a specific type of attention mechanism that focuses on 
establishing relationships within the same input sequence. Combined with temporal EEG data, self-
attention is particularly useful for capturing long-range dependencies and modeling complex 
relationships in tasks such as MI-BCI classification. 

 
5. Conclusion 
 

The objective of this review article is to evaluate the different deep learning techniques used for 
the classification of MI-BCI applications, notably CNNs. The aim is to discover what are the current 
limitations of the existing techniques and how they can be mitigated.  

In this comprehensive review article, a detailed overview of the diverse range of technologies 
employed for acquiring EEG signals was provided, encompassing both wet and dry EEG 
sensors/headsets. The article not only presented a thorough examination of the most popular EEG 
headsets available during the time of the study but also delved into recent advancements in research 
concerning the critical tasks of feature selection and classification of EEG signals, specifically focusing 
on their application in Motor Imagery-Based Brain-Computer Interface (MI-BCI) systems. 

Within the context of MI-BCI applications, the article shed light on the formidable challenges 
faced by these technologies, such as signal artifacts, noise interference, and the need for accurate 
and efficient feature extraction methods. To overcome these challenges, the article explored the 
potential of various machine learning techniques, showcasing how they can be harnessed to 
effectively address the aforementioned issues and improve the overall performance of MI-BCI 
systems. 

To validate and benchmark these techniques, the review also extensively covered the datasets 
most commonly employed in the field. These included renowned resources such as the collective BCI 
competition datasets, which offer standardized and rigorously evaluated data for benchmarking 
purposes, as well as well-known repositories like PhysioNET and EEGnet, which provide access to a 
diverse range of EEG recordings from different experimental settings and populations. 

A comparison with the findings of a recent review article was also conducted, and in this review 
paper, the self-attention mechanism was proposed to tackle the current challenges. Self-attention 
mechanism, particularly the self-attention mechanism when combined with temporal EEG signals. 
This innovative approach showcased immense potential in enhancing the accuracy and efficiency of 
feature selection and classification in MI-BCI applications. By leveraging the self-attention 
mechanism's ability to capture long-range dependencies and temporal dynamics, researchers can 
effectively exploit the rich temporal information present in EEG signals, enabling more precise 
identification of discriminative patterns and yielding improved performance in MI-BCI systems. 
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Through this in-depth exploration of technologies, challenges, machine learning techniques, 
datasets, and the emerging role of attention mechanisms, this review article offers valuable insights 
into the field of EEG signal acquisition and analysis, while also pointing towards exciting directions 
for future research in the pursuit of more advanced and efficient MI-BCI systems. 
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