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In today's dynamic industrial environment, efficient capacity planning is of essential 
relevance, especially in the face of unpredictable and fluctuating client demands. 
Failure to address demand uncertainty may lead to undesirable effects, such as 
overproduction or underproduction. This study carefully analyses variety of capacity 
planning approaches employed by the industry. Additionally, the research extended to 
explore several simulation approaches employed as powerful tool in tackling capacity 
planning issues, delivering adaptable solutions that respond to the particular demands 
of both major organizations and small to medium-sized firms. This analysis underlines 
the vital role of simulation in increasing operational performance, optimizing resource 
allocation, and reacting to changing production needs, eventually leading to greater 
competitiveness and efficiency within the manufacturing industry. 
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1. Introduction 
 

Amidst the dynamic and always evolving industrial environment, it is vital to spend resources 
strategically in order to successfully answer the unanticipated market demands. Managing supply 
chain and production volatility is one of the main challenges of modern production network. Failure 
to appropriately address volatility in manufacturing may represent a serious danger to responsible 
and resource-efficient production. This may result in two extreme scenarios: overproduction or 
underproduction, both of which have adverse consequences on operations [45].  

According to Chen et al., [12], most businesses engage three stages of capacity planning, namely 
long-term, medium-term, and short-term capacity planning, in order to sustain a given demand over 
a planning horizon. According to Olhager et al., [48], capacity is frequently handled at a collective 
level, concentrating on significant labour hubs and projecting the demands of product families. The 
normal timeline for long-term capacity planning is from 1 to 5 years. This planning focuses on 
capabilities that take substantial time to adjust, such as obtaining extra capacity or lowering current 
capacity levels. The basic rationale for this strategy is that capacity gains occur in major, identifiable 
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increments rather than in tiny, gradual adjustments. From a usual operational approach, capacity 
may only be adjusted in discrete increments with a large amount of prior warning as shown in Figure 
1.  
 

 
Fig. 1. Capacity step wise change over continuous demand change [48] 

 
Another notable issue in capacity planning is capacity expansion, Chou et al., [16] separated it 

into two key aspect which are the scheduling and the size model of each expansion. Scale of increased 
capacity is considered in sizing methodology while timing method suggests the best period for future 
development. The study found that the temporal capacity expansion model outperformed the size 
strategy. In their research, Giovanni and Massabò [20] studied the most favourable timing and 
quantity of investment in the context of unforeseen demand and the flexibility to adjust output 
volume. Two distinct models of volume flexibility are applied in the studies: downside flexibility (the 
ability to downscale production below installed capacity) and upside flexibility (the ability to produce 
above installed capacity). It was discovered that the quantity of investment was lesser and the 
capacity utilization rate was larger and being maintained in upside flexibility model. 

This paper’s objective is to examine how do most manufacturing sector employ numerous 
approaches and methodologies into determining the most suited capacity and investment into their 
planning, in order to support unexpected and uncertain client demands. The research is further 
progressed into many simulation ways applied in operation environment in regulating diverse 
capacity and demands scenarios. To date, there have been several research including IoT (Internet of 
Thing) and sustainability concept into the capacity planning debate due to sustainable advancement 
and the preservation of the environment are receiving considerable emphasis within the industrial 
sector [40]; nevertheless, it appears to be relatively limited studies to incorporate emotional 
engineering technique into the framework of capacity planning decision making process. In the 
context of production and capacity planning, it could entail examining the emotions and experiences 
of workers, customers and other stakeholders in decision-making processes. 

 
2. Demand Uncertainty and Capacity Planning  

 
Chiang et al., [11] defined demand uncertainty as the actual demand varies from projected 

demand due to uncontrolled or expected source. There are different methods to interpret demands, 
for example, Angkiriwang et al., [2] evaluated demand uncertainty in: 
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i. Probabilistic nature of demand amount, type, time and location  
ii. Form of defects in the form of demand forecast  

iii. Uncertainty on production mix in client orders  
iv. Changes in customer orders  
v. Competitors action towards marketing promotion.  

 
Whereas for Yazici et al., [59], they noted that demand uncertainty should have coverage of 

demand, return, product design, recycling and distribution uncertainties. Furthermore, Polotski et 
al., [49] distinguish demands into variability and uncertainty where value is known for demand 
variability, however value is not precisely known for the case of demand uncertainty. When looking 
at investment standpoint, Ogawa and Suzuki [46] in their study for Japan industrial sectors, have 
shown in most situations there was a substantially negative connection between uncertainty and 
fixed investment. In addition, more sensitive impact occurred towards material industry group than 
for machinery industry group. Same for Italian manufacturing films, Bontempi et al., [5] in their study 
have explained the adverse association between demand uncertainty and investment decision. 
Further inquiry revealed that the effect of uncertainty regarding investment plan would become 
reduce for companies that employed more flexible workforce input. 

In the context of capacity planning, there are three forms of demand uncertainty to be 
considered: scenarios, random variables and stochastic processes. It was also depicted as imprecise 
distribution formed from numerous initial estimations [14]. Besides, Lin et al., [39] used three 
demand states, H; M; L, to indicate demand uncertainty or stochastic market condition: H (above-
forecast state); M (consistent with forecast average); L (below-forecast average). High degree of 
uncertainty could lead to unplanned alterations to manufacturing equipment in production capacity 
planning. The product demand is anticipated to follow a continuous probability distribution via 
approximated discrete scenarios was mentioned in the study of Dering and Swartz [21] for chemical 
processing industry, where the demands scenarios of low, medium and high were exhibited in normal 
distribution. Similarly, demand uncertainty is simulated to follow a discrete distribution with known 
probability, as indicated by Gozali et al., [26] and Felfel et al., [23]. 

Cardoso et al., [8] in their European supply chain case study evaluated three demand scenarios:  
 

i. optimistic scenario where assumption of 10% growth in demand in the following period 
with a chance of 0.25  

ii. realistic scenario where assumption of 3% increase in demands with a probability of 0.5  
iii. sad scenario where assumption of 5% decrease with a probability of 0.25.  

 
Chuang and Chiang [17] defined demand uncertainty as sigma demand in their study to examine 

finished-goods inventory in the U.S. automobile industry using economic order quantity (EOQ) 
model. 

Studies have been conducted to manage uncertainty in manufacturing production and 
equipment planning, such as Burggräf et al., [7] developed a holistic model to identify and evaluate 
uncertainty to support in decision-making of agile equipment planning process, which include fuzzy 
logic and Design for Changeability as key methods. Kuo and Chien [33] build sets of demand scenarios 
for minimax regret capacity expansion model applying both additive and multiplicative martingale 
models of forecast evolution (MMFE) for the semiconductor industry. Another new and robust 
strategy named Elastic p-Robustness approach was introduced. This approach was able to estimate 
probability distribution of random components associated with supply and demand changes when 
historical data is constrained or did not exist. Their investigation indicated that the unique method 
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outperformed the existing robustness algorithms which include minimax cost, minimax regret and p-
Robustness in terms of both supply chain cost and relative regret. 

Zhang [60] addressed capacity planning in both ways of capacity expansion and reduction. 
Capacity planning may be based on different models; some are deterministic, some are based on 
unknown demands, others are based on stochastic capacity and still others use fuzzy judgment. 
Among these, stochastic model is generally viewed more realistic because stochastic component 
happens in real in both market and production system (including some uncertain attributions in 
production capacity such as random failure in activity centre). Antomarchi et al., [3] reviewed the 
definition of capacity planning from different literatures and one of them include capacity planning 
as a decision-making process which determine the order and timing of acquisition or the sale of 
resources. Capacity utilization is continuously related with the issue of capacity planning. While since 
long back, Ragan Jr [52] revealed in the research that projection of capacity utilization is the 
consequence from the forecast of output divided by the forecast of capacity. Furthermore, according 
to Corrado and Mattey [18], capacity utilization is a ratio of the present level of production to a 
sustainable maximum level of output. Rimo and Ong [55] offered the usual definition of capacity 
utilization as a ratio of actual production to the potential output of a machinery; where potential 
output refers to the capacity of the machinery. This may be measured either in engineering viewpoint 
or economic perspective. 

Singh et al., [56] noted that capacity utilization is a relative indicator which informs the rate of 
the utilized capacity of the plant while it is determined using time series technique, survey method, 
economic approach and engineering approach in global industrial sectors. Based on Okunade and 
Oluwaseun [47], capacity utilization is measured in 100% efficiency level in theory, however in real 
manufacturing environment, due to some setbacks in the production process which coupled with 
wastages and breakdown, capacity utilization may not exceed 90% maximum level as practical. Each 
manufacturing organization will develop their best degree of utilization based on the concept of cost 
optimization. 

 
3. Capacity Planning Strategies in Manufacturing Industry  

 
There have been numbers of studies performed out in examining production capacities over a 

projected horizon in order to aid manufacturing films in their decision making on capacity expansion 
or new manufacturing system design. Ceryan and Koren [10] had their analysis focused on the 
optimal capacity investment options for a firm producing diverse items over a planning horizon. The 
study aided the firm in determining how much capacity to construct for their new system and 
whether to invest in dedicated or flexible systems or mix of both. In addition, the study broadened 
the analysis of optimal capacity investments to numerous selling periods, nonstationary demand 
processes based on product life cycles and discrete increment of capacity purchases. The applied 
analysis entails constructing a mathematical model evolve around the k factor (capacity investment 
decision) and d factor (product requirements throughout the planning horizon) for the capacity 
investment problem. Numerical calculations were carried out to determine the optimal capacity 
investment choice. Finally, the data revealed that a portfolio strategy consisting of both dedicated 
and flexible capabilities were able to provide bigger returns compared to single scale investment 
(dedicated or flexible system).  

Chen et al., [13] completed a study to provide response towards customers’ stochastic demands 
in food processing industry. The study was separated into three approaches: First, a case study 
designed to evaluate the food processing and its special production limits. Data gathered were 
collated and a mathematical model was given for production schedule planning. Second, the model 
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was expanded to accommodate unforeseen demand and it was applied to develop three-week 
production plan. The probabilistic constraints of uncertain customer demand were transferred to the 
equivalent deterministic constraints using chance constrained programming (CCP). The limits were 
product diversity, changeover in production line and allocation of labour in each product. Third, 
historical data was employed to study the effect of three forecasting methodologies (moving average 
method, expected mean method and CCP method) on out-of-stock and inventory cost. The study was 
able to accomplish 95% customer service level for the three-week production plan applying CCP to 
overcome the random demand constraint. Also, CCP methodology (at defined customer service level) 
demonstrated higher performance on the sum of out-of-stock cost and inventory expenditures than 
moving average method and the expected mean method. 

Another study in food producers investigated the capacity investment and the benefit of flexibility 
in the context of product blending constraints [31]. This study assessed the stochastic programming 
under demand uncertainty of the food production system employing a newsvendor networks kernel. 
In their built model, K represent the optimal capacity acquisition vector while product demand was 
represented by vector D. Then, the Lagrangian problem is formulated and optimality criteria were 
devised. The numerical calculations indicated that a tiny amount of blending of intermediate was 
able to boost flexibility substantially. One of the main take-away from the study was on its model 
constraint which would seem to be extremely stylized in its application. However, it was agreed that 
the simplification allowed them to acquire some broad insights into the issue which offer guidance 
in capacity investment possibilities. 

Real option analysis (ROA) was widely disputed in investment theory. One of the studies that 
accept this was from Giovanni and Massabò [20] who completed their study on effect of volume 
flexibility towards capacity investment in monopolistic firm. In this study, the film was facing with 2 
dilemmas in their decision making; one is choosing a small capacity that allowed the firm to 
contemplate the possibility of suspending production in the future but made more costly adjustment 
of production volume at higher demand’s level; second was investing in large capacity that implied 
lower cost of production adjustment when demand boomed; however, the firm was not able to 
suspend the production if the market crashed. This article classified volume flexibility into two: 
downside volume flexibility (produced quantity below installed capacity) and upside volume 
flexibility (created quantity exceeding capacity). The study demonstrated that upside volume 
flexibility gave combined effect in term of investment size reduction and investment threshold. 
Besides, utilization rates were recognized bigger as the upside flexibility increased. 

Another real option analysis (ROA) was published in study done by Seifert et al., [54] for 
multiproduct continuous plant for three separate recombinant proteins. ROA was applied to examine 
the influence of uncertain market development on four separate modules with various growth 
stages. The framework had two stages: Stage 1 was to identify workable modular configurations and 
acceptable expansion techniques; step 2 was to assess its economic performance in an unpredictable 
market. Four distinct modules were put up which necessitated various sizes and bare equipment cost 
for 6 comparable equipment. Setup 1 (3.0 m3 fermenter size) is the smallest modules that allow 
smaller plant growth stages. Setup 2 (5.0 m3 fermenter size) and Setup 3 (8.0 m3) employ larger 
fermenter modules with higher expansion stages. Setup 4 is a fermenter module with a medium size, 
to be employed in analysing the impact of module selection of the downstream section. Decision 
making focuses on the economic performances of the different setup options based on several 
market situations. The market scenarios created in the study were:  
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i. base case scenario (fixed product mix and a demand growth over 10 years from 5 
tones/annum to 10 tones/annum) 

ii. variations of demand uncertainty 
iii. changes on product pricing 
iv. evolution of demand development.  

 
The study suggested that module selection played a vital role for the creation of flexibility at 

reasonable cost. For example, amid more volatility’s situation (scenario 2), smaller module size 
enhanced managerial flexibility and generated better expanded net present value (ENPV). 

Heitmann et al., [29] proposed a modular design that enables possibilities of a progressive 
capacity increase for future plant concept; which allow an efficient and adaptable manufacture of 
new products. In this study, a framework to evaluate the production capacity of a modular multi-
product plant for capacity expansion, considering economic performance and investment risk was 
addressed. A decision tree analysis (DTA) was performed to integrate production planning using a 
capacitated lot size technique, which was established to examine the economic performance of 
plants with changing capacities in an uncertain market. Additionally, the study discussed the NPV 
(Net Present Value) distribution and investment risk analysis for modular production lines with 
different capacities. The output of the framework was applied for a case study of a set of three 
separate items. As a result, the study suggested that a smaller scale production may minimize the 
investment risk by minimizing the fixed and setup expenses and it also provide opportunity to 
maintain profitability by an expansion strategy at reduced investment risk. 

Antomarchi et al., [3] addressed a deterministic problem of capacity planning for additive 
manufacturing and proposed a way for organizations to evaluate the optimal design approach under 
uncertainties of demands, resource development, cost and technology evolution. The approach 
supported judgment towards time when machine can be obtained, period when alternatives (other 
technologies on the machine) can be purchased and period when evolution (productivity and 
availability of the machines) can be purchased. In the study, a unique model was developed which 
may be applied to integrate both market and machine uncertainty and the attitude of decision-maker 
on risk management. As the first strategy, the authors constructed a mixed integer program by 
combining varied expenditures to obtain the goal function of net profit optimization. There were four 
demand scenarios utilized to the optimization model. Scenario 1 with quick increase of demand and 
stability in machine evolution; Scenario 2 with gradual increase of demand and stable in machine 
evolution; Scenario 3 with average increase of demand and stable in machine evolution and Scenario 
4 with average increase of demand but quick evolution (productivity and availability) on machines. 
The results indicated the effect of demand uncertainties and machine uncertainty on the net profit 
of the company.  

As a novel engineering response to volatile global markets challenge especially on forecasting 
future product demands, reconfigurable manufacturing systems (RMSs) were invented in the last 
decade of twentieth century [36]. Figure 2 depicted the manufacturing invention evolution in 
Michigan where RMS emerge as its latest inventions which was discussed by Koren et al., [34]. 
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Fig. 2. Manufacturing inventions initiated in Michigan [34] 

 
Niroomand et al., [43] in their study has evaluated among dedicated manufacturing systems 

(DMS), flexible manufacturing system (FMS) and reconfigurable manufacturing system (RMS) to best 
decide on its capacity investments during the ramp up phase. Analysis of the capacity selection was 
done based on three basic patterns which are classic, Growth-plateau and Cycle–recycle. In the 
recommended model, capacity investment may be done on each of DMS, FMS, and RMS or a mix of 
those systems. The purpose was to evaluate the effect of different system scalability characteristics 
on capacity selection. Findings from the study revealed that RMS offer greater responsiveness in all 
demand life cycles, it can follow aggregate demand with least spare capacity. For certain cycle-recycle 
life cycle demands, a mix of RMS and FMS was adopted. In traditional life cycle need with quick setup 
time, RMS was again advised to be more suitable. However, with the longer reconfiguration time, it 
was desirable to have combination of DMS and FMS. Finally, a mix of all RMS, FMS and DMS best suit 
in growth-plateau life cycle demands as the reconfiguration time increase. 

Extensive literature analysis of Reconfigurable Manufacturing Systems (RMSs) from 1999 to 2017 
was done by Bortolini et al., [6]. In their review, RMS was compared with other contemporary 
manufacturing systems, namely Dedicated Manufacturing Systems (DMSs), Flexible Manufacturing 
Systems (FMSs) and Cellular Manufacturing Systems (CMSs) as presented in Table 1. The comparison 
indicated that RMS outperformed other production techniques in the context of flexibility, machine 
structure, productivity and variety. 
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Table 1 
Comparison among the features of the existing manufacturing systems [6] 
Features DMS FMS CMS RMS 
Cost per part Low Reasonable Medium Medium 
Demand Stable Variable Stable Variable 
Flexibility No General General Customized 
Machine structure Fixed Fixed Fixed Changeable 
Product family formation No No Yes Yes 
Productivity Very high Low High High 
System structure Fixed Changeable Fixed Changeable 
Variety No Wide Wide High 

 
Furthermore, six important aspects of RMS make it a dynamic system that can follow market 

evolution especially in term of capacity and functionality. The core system enables modularity, 
integrability, diagnosability, convertibility, customization and scalability. Among all these elements, 
scalability has closest relation with the production capacity planning as it facilitates change on system 
production capacity to match product demands [24]. Table 2 shows recent research (since year 2017) 
relating to capacity scalability in RMS manufacturing. 

 
Table 2 
Recent studies relating to scalability in RMS manufacturing 

Articles Findings 
 

Abdi and Labib 
[1] 

The study contributes to the novelty regards to indication of RMS distinguishing characteristic of 
scalability for capacity adjustment in a supply chain under the impact of product family life cycle. 
 

Hees et al., [28] The paper presents a novel production planning method to realize capacity scalability and 
functionality changes within the planning processes, by optimizing the potential of RMS. 
 

Koren et al., [37] 
 

The study proposes a set of principles for scalability of system design in order to maximize the 
economic value of the manufacturing system.  
  

Haddou 
Benderbal et al., 
[27] 

The study considers a multi-objective RMS design approach for selecting a best process plan and 
the completion time in order to address the problem of machines selections. 
 

Bhargav et al., 
[4] 

The study is to minimize the make span of selected product in RMS, by segregating and 
scheduling the similar operations of product, in different metaheuristic approaches. 
 

Prasad and 
Jayswal [50] 
 

The study proposes a modified reconfigurable layout for assembly line and product scheduling 
on the basis of reconfiguration effort in an automotive industry. 
 

Koren et al., [35] This study analyses and compare performance of system configuration for high-volume 
manufacturing, which includes serial lines, parallel system, serial lines in parallel (SLP) and RMS. 
Performance is evaluated in terms of investment cost and throughput, responsiveness to market 
change and product quality. 
 

Moghaddam et 
al., [41] 

The study presents two new approaches (integer linear programming (MILP) and integer linear 
programming (ILP) formulations) to address changes in initial RMS configuration and system’s 
capacity scalability for part family. 

Gola et al., [24] 
 
 

The study aims to identify structure of the new RMS during design stage which allow to maintain 
expected level of productivity, during the situation when the level of reliability of machine tools 
decreases and when new machines are added to the system. 
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Cerqueus and 
Delorme [9] 

The study focusses on evaluating the scalability of RMS at the design stage by using multi-
objective purpose for new measurement on all configurations. 
 

Zhang et al., [19] The study investigates the approach to design and reconfiguration of single-product scalable 
reconfigurable robotic assembly line (RAL) under fluctuating demands periods. 
 

 
4. Simulation-Based Approaches for Capacity Planning and Optimization in Manufacturing 

 
In manufacturing industry nowadays, simulation approaches have become increasingly prevalent 

as powerful tools for resolving a broad range of challenges and assisting decision-making processes. 
By simulating and modelling industrial processes, researchers and practitioners may examine 
alternatives to optimize capacity utilization, increase operational efficiency and fulfil fluctuating 
production demands. Various literatures have offered the equivalent insights on the efficacy of 
simulation approaches in assisting the industry to obtain outstanding operational performance and 
increase competitiveness. Figure 3 depicts number of articles on simulation in manufacturing system 
that have continually climbed in trends from 1970s.  

 

 
Fig. 3. Number of publications on simulation in manufacturing system based on Scopus database score [42] 

 
To date, various studies have been done, with a specific focus on capacity enhancement within 

the semiconductor industry. This emphasis is partially connected to the uniqueness of the industry, 
which is defined by its sensitivity to swings in demand and variations in product mix. For example, 
Hood et al., [30] have proposed a tool set by applying stochastic integer programming technique to 
solve demand uncertainty for a single demand profile. It improved the decision on the tools to 
purchase within a budget constraint as well as to lessen the weighted average un-realized demand. 
Chien et al., [15] have solved the tough capacity expansion and migration choice issue by adopting 
Markov decision process (MDP). The approach facilitates capacity migration, varying lead time on 
capacity expansion and connectivity between demands and different technologies in semiconductor. 
During the recent years, Chien et al., [14] had gone further on the research to investigate the new-



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 50, Issue 1 (2025) 88-106 

97 
 

generation products planning judgments due to the quick rise in semiconductor technology. The 
study was done to offer a model leveraging uncertain multi-objective decision (UMD) framework to 
decrease probable loss from capacity surplus or shortage under uncertainties.  

Still in semiconductor industry with its growing difficulties, Ziarnetzky and Mönch [61] applied 
Discrete Event Simulation (DES) in their study on integrated production planning and capacity 
expansion issue. A cost-based target function was applied in the study, which include lowering the 
total of inventory, WIP (work in progress) cost and backlog cost; difference of the realized profit and 
penalty terms and capacity expansion costs. Simulation model contains FE (front end) model which 
include roughly 200 machines organized in 69 work centres and BE (back end) model which 
composed of 23 work centres. FE lots comprised of 48 wafers whilst BE lots included 16 wafers. First 
product’s route had 211 process steps in FE and 25 process steps in BE facility; second product had 
246 process steps in FE and 31 process steps in BE. Capacity expansion capacity was supplied by 
activating additional units employing preventive maintenance orders. Five alternative demand 
scenarios with low and high mean utilization levels were designed for the experiments. Result of the 
study indicated that SA (simulating annealing) scheme picked the least bottleneck usage in the FE 
facility and the amount of boosted capacity in the BE facility. Overall, the recommended simulation-
optimization approach beat the usual planning formulation. 

Other than semiconductor, Kumar and Nottestad [32] applied discrete-event simulation and 
performed experiments to model and investigate a sequential plastic component manufacturing 
process. The author examined the use of front-end engineering approaches to better the decision-
making processes related to capacity planning, capital equipment selection and the control 
strategies. Their study tried to develop a semi-automated manufacturing line utilizing conventional 
technology that may result in cost savings. From the modelling and trials, it allowed the team to 
determine equipment capabilities, grasp failure circumstances and analyse control methods. With 
the combined use of Design of Experiment (DOE) and simulation in this study, the variables in a 
simulation defined machines, conveyors, buffers and labour and can simply be tweaked to assess the 
effect on manufacturing system performance. While DOE was used to analyse the simulation results 
and supplied information on the responses from specified variables. Numbers of input and output 
rules were applied and specified for each of the simulation components, for example mean machine 
cycle time, buffer capacity, machine Mean Time to Repair (MTTR), lot size, machine changeover time, 
buffer deadband and etc. were selected in this study for the DOE. As a result, the simulation aided 
the team in the selection of standard equipment rather than the unique equipment for the intended 
production line. Furthermore, the standard equipment gave such advantages in term of lower cost 
and speedier lead time. Whereas the DOE equations for the different responses including throughput 
analysis, cycle violation analysis and maximum component count analysis assisted the engineers to 
make fair assumption on equipment performance. 

Optimal deployment of capacity investments at the tactical decision-making level was examined 
by Niroomand et al., [44]. In their study, a Mixed Integer Programming (MIP) model was developed 
to analyse how varied RMS settings have effect on responsiveness and customer service level. At the 
same time, ramp-up time and capacity availability during the reconfiguration phase are included into 
the model as a function of added or withdrawn capacity. Subsequently, Discrete Event Simulation 
model was built to test with demand uncertainty. The simulation result has proved that when 
developing an RMS, it should be targeted at choosing the configurations that may offer a greater 
capacity scaling. As one of the studies had proven that when scalability of RMS grew, the 
manufacturer was able to decrease the lost opportunity cost even when the speed of reconfiguration 
was only small. 
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Gómez-Rocha et al., [25] designed two multi-stage stochastic linear programming models to be 
utilized to build aggregate production plan (APP) for a Mexico’s furniture sector. In the constructed 
model, production periods are treated as the states; whilst production capacity and demands are 
regarded as random variables which are represented by a continuous probability distribution 
applying stochastic programming solver. A deterministic model was built with the objective function 
to lower the total cost of APP; it consisted labour cost, inventory costs, backlogs and production cost. 
There are two models presented in the study: Model-I coupled the random parameters of production 
capacity and demands to a normal distribution, and a scenario tree with comparable likelihood of 
occurrence for each scenario was built. While Model-II displayed the scenario tree with shifting 
probabilities for each scenario was provided by a discretization of the probability distribution. These 
two models were evaluated based on the effect of the percentage of service level and features of 
probability distribution. Between the two models, an optimization gap was calculated. Result from 
the study indicated that Expected Value (EV) - expectation of all situations, had minor disparity 
between the two models. Model-II was decided to be more convenient for a speedy decision-making 
purpose. The study was complemented by undertaking sensitivity analysis to adjust the parameters 
of the probability distribution or stochastic parameters in order to analyse the implications of the 
solutions and decision factors. This had benefited the organization in more accurate planning in case 
those criteria varied in the future. 

A dynamic multi-site capacity planning problem was examined by Lin et al., [39] in the thin film 
transistor liquid crystal display (TFT-LCD) industry who currently applied the deterministic model in 
their strategic capacity planning operations. The study addressed the capacity expansion decision to 
meet the projected stochastic demands, by calculating the acquired amount of new auxiliary tools 
and increased quantity of product group-specific capacity within a set time. A two-stage stochastic 
programming known as Stochastic dynamic programming (SDP) model with an integrated linear 
programming (LP) was applied to develop a capacity planning strategy as per newly available demand 
information, and it was evaluated against current deterministic model. The SDP model analysed 
numerous capacity growth and budget limits using backward induction approach; however, the LP 
model provided a choice on capacity allocation plan. Verification of the practicality of the 
recommended concept was done towards a TFT-LCD manufacturer in Taiwan. The capacity allocation 
decision was characterized by a created equation which reflected product amounts of product group 
k at site i in period of t. LP model will produce the option under the demand situation and total 
purchase amount of new auxiliary tool. Three various problem size (location, product, time) with 10 
different cases each were analysed to show and assess the consequences of SDP model versus 
current paradigm. From the conclusion of the study, it demonstrates that SDP model generated larger 
overall profits and it was not susceptible to demand uncertainties; this was further verified using 
Monte Carlo simulation. As conclusion, the SDP model was evaluated to outperform the deterministic 
strategy now utilized by the organization. 

Another simulation methodology done by Renna [53] who devised a decision-making method 
based on Gale-Shapley model (a Game-Theory algorithm) for reconfiguration of machines in a work 
shop context. The Gale-Shapley approach intended to find stable matching between two equally 
groups of things and for each element there was an ordering preference. This design developed a 
network of over-loaded and under-loaded machines with controlled number of machines’ 
configurations. The simulation model was done based on 3 (Bottleneck’s circumstances) x 5 (Tp 
parameter) x 3 (K- threshold) + 3 (Benchmark) with a total of 48 scenarios produced. Tp refers to 
periodic review time to analyse the reconfiguration of machines in production system; K-threshold 
refers to the breadth of zone on average use of the machine. The simulation result demonstrated 
improvement of all performance metrics (on time delivery, machine throughput and workloads) in 
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all simulated conditions compared to benchmark (without reconfiguration and workload 
management technique). Eventually, the study was able to support the management option to 
analyse investment in reconfigurable machines. 

In another study by Diaz et al., [22], it proposed a simulation-based multi-objective strategies for 
the reconfiguration of multi-part lines in reconfigurable manufacturing systems (RMS). The purpose 
of the study was to improve throughput and minimize total buffer capacity simultaneously in 
managing fluctuating production volumes. A Simulation-Based Multi-Objective Optimization (SMO) 
tool called FACTS Analyzer was applied in this study, where a discrete event simulation engine and 
numerous optimization algorithms were merged and used to simulate the manufacturing line and 
carry out all the optimization runs. Number of elements such as processing times, times to repair and 
buffer capacity were introduced as option variables with different possible combinations. The study 
demonstrated that the recommended SMO approach was able to aid production planning and 
management of RMS when the organization encounters shifting production volumes. It was also 
discovered that the recommended SMO approach was not constrained to be utilized to production 
systems with modular machines, it could also be used to human-based assembly with changeable 
configuration. 

One of the manufacturing difficulties namely a capacity expansion problem (CEP) was addressed 
in the study done by Lee and Charles [38]. There were 4 proposed models applied to conduct 
comparison in the study as mentioned in Table 3, such as Basic Model, ULB (Upper Bound and Lower 
Bound) Model, EV (Expected Value) Model and SP (Stochastic Programming) Model. Each model was 
explained in such a way that “Basic Model” minimized the maximum capacity regret in terms of all 
demand scenarios in avoiding worst case; “ULB Model” combined at demand scenarios into the 
upper bound and lower bound and further simplified into 2 extreme scenarios; “EV Model” made 
assumption that all demands scenarios was likely to occur only when there was no knowledge 
indicating unequal probabilities. Lastly, “SP Model” coupled stochastic programming (SP) with 
predicted recourse problem to alter the variable input level based on the demand forecasting. It 
analysed the capability regret for minimizing the predicted recourse function. The study 
demonstrated that proposed SP Model gave more robust solution in managing capacity surplus and 
capacity deficiency. 

 
Table 3 
The comparison of four proposed models on capacity expansion problem [38] 

Models Basic Model ULB Model EV Model SP Model 
 

Strengths Consider all 
scenarios 

Easy understanding Easy understanding Not sensitive to the 
worst case 
 

Drawback Sensitive to the 
worst case 

Creates extreme worst 
case 

Dilutes the worst case Computational burden if 
there are too many 
scenarios 
 

Feasibility Yes Non necessary Non necessary Yes 
 

Managerial 
Implication 

Avoid the 
worst case 

Conservative solution, 
avoid the ideally worst 
case 

Over optimistic 
solution, only consider 
expected value 
 

Robust solution 
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Applicable 
Environment/ 
Condition 

Too many 
scenarios, risk 
aversion 

Risks extreme aversion Only a few scenarios 
with small variance 

Too many scenarios, 
capital intensive, 
competitive market 
 

 
In addition, Radatz et al., [51] designed framework for identifying best strategy for equipment-

wise capacity development in chemical manufacturing plant. The study aimed to build a modular 
equipment-wise capacity expansion techniques in order to uncover the ideal trade-off solutions 
between initial investment risk and adaptability to a market requirement. A modular equipment-wise 
capacity expansion method picks the ideal time and the best size of expansion step utilized to the 
dehydrogenation of isopropyl alcohol to acetone. Indicators included TCinitial which indicate initial 
investment risk and NPV (net present value) demonstrate profit and adaptability to the market 
demand development. Difference between conventional design, line-wise capacity expansion and 
modular equipment-wise capacity extension was displayed in Figure 4. Simulation started with 
building equipment module database which was handed to the Process Simulation. At this phase, a 
process was simulated at variable production rates which would ultimately result in multiple 
equipment modules at different sizes for each process unit. Additionally, reactor modules at bigger 
operating window were inserted into the equipment module database to evaluate how it impact the 
overall operating window of production. Next, the discrete market demand points were being 
simulated. During this, viable equipment-wise capacity expansion phases were moved to the Lifestyle 
Simulation. Result suggested that equipment-wise capacity expansion displayed superior 
performance followed by the line-wise capacity expansion strategy and the conventional design 
when assessed by NPV (net present value) and EAA (equivalent annual annuity). Overall, a step-wise 
capacity expansion utilizing modular equipment was judged to be a viable answer in view of uncertain 
market and production demands. 
 

   
(a) conventional design  (b) line-wise capacity expansion 

capacity expansion 
(c) modular equipment-wise 

Fig. 4. Schematic illustration of conventional design, line-wise capacity expansion and modular 
equipment-wise capacity extension [51] 
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Teerasoponpong and Sopadang [57] also analyse small and medium-size company on their 
simulation-optimization approach for manufacturing capacity planning. The approaches applied in 
the study included an artificial neural network (ANN) for model simulation and data link 
identification, with the combination of genetic algorithm (GA) for resource configuration 
optimization. In this study, simulation approach begins with problem formulation to emphasize the 
relationship between the process parameters. There were both internal and external process 
parameters addressed in the simulation. Internal criteria included available equipment and staff, set 
up time, processing time, waiting time etc. External influences included demand quantity and 
available operation time. A synthesis dataset was generated which include of production yield, total 
operation time and total cost depending on the configurations of the manufacturing resources. 
Brute-force method was applied for identifying all conceivable parameter values in the created 
model. This study applied intelligent approach ANN for discovering the relationship between the 
resource configuration and production yield, cost and time. After that, genetic algorithm (GA) was 
applied to perform process parameters optimization. The recommended approach of configuration 
from the study may be applied as decision support system (DSS) for manufacturing capacity planning. 
Implementation of the simulation approach in pastry company indicated the growth in average yield 
at 6.86%, 14.34% decrease in average cost and reduction of 9.95% of labour cost. 

For Make-To-Order (MTO) enterprises frequently cope with continuing capacity planning 
challenge. Wicaksono H and Ni T [58] designed an automated manpower planning model that assist 
in synchronization of capacity load for short to medium planning horizons. Validation was then done 
in an actual production unit at a German small MTO business that employ SAP (Systems, Applications, 
and Products in Data Processing) ERP (enterprise resource planning) in their operation. Several data 
pertaining to current and expected orders, purchasing lead times, manufacturing process and 
production routings were gathered from Manufacturing Resource Planning (MRP II) system; whereas 
ERP grabbed the data regarding human resources, machines and finance. For data extraction 
purpose, a unique Excel Macro was built as part of the planning tool. Those important capacity 
demands data were then pre-processed and translated into aggregate values, followed by 
presentation in a form of bar chart.  Simulation was done in such way to remove or to add machine 
from the production line and observed the capacity load consequence. As a result, the created model 
which was pragmatic and personalized tool was able to allow the production planner to have 
appropriate time to alter capacity in short and medium planning horizons. In conclusion, Table 4 
illustrates the overview of above-discussed literatures important to simulation-approaches in 
capacity planning. 
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Table 4 
Summary of studies relating to simulation-approaches in capacity planning 
Articles Research Objectives 

 
Techniques Utilized 

Kumar and 
Nottestad [32] 

Use of front-end engineering techniques to improve the 
decision-making processes related to capacity planning, capital 
equipment selection and the control strategies in a sequential 
plastic parts manufacturing line 
 

Discrete-Event 
Simulation; 
Design of Experiment 
(DOE) 

Niroomand et al., 
[44] 
 

To suggest optimal allocation of capacity investments at the 
tactical decision-making level 

Mixed Integer 
Programming (MIP); 
Discrete-Event Simulation 

Gómez-Rocha et al., 
[25] 
 
 

To minimize the total cost of aggregate production plan (APP); 
which include workers cost, inventory costs, backlogs and 
production cost for a Mexico’s furniture company 

Two multi-stage 
stochastic linear 
programming models  

Lin et al., [39] 
 

To address the capacity expansion decision to meet the 
projected stochastic demands, by identifying the purchased 
amount of new auxiliary tools and expanded quantity of 
product group-specific capacity within a particular timeframe in 
the thin film transistor liquid crystal display (TFT-LCD) industry 
 

Stochastic dynamic 
programming (SDP) 
model with an embedded 
linear programming (LP) 
 

Renna [53] To improve all the performance measures with controlled 
number of machines’ reconfigurations.  
 

Gale-Shapley model (a 
Game-Theory algorithm) 

Diaz et al., [22] 
 
 
 

Reconfiguration of multi-part lines in reconfigurable 
manufacturing systems (RMS) to maximize throughput and 
minimize total buffer capacity simultaneously in handling 
fluctuating production volumes 
 

A Simulation-Based Multi-
Objective Optimization 
(SMO) – FACTS Analyzer 

Lee and Charles 
[38] 
 

To address a capacity expansion problem by integrating the 
perspective of marginal productivity factors in the model 

Comparison of Basic 
Model, ULB Model, EV 
Model and SP Model 

Radatz et al., [51] 
 

To find best strategy for equipment-wise capacity extension in 
chemical production plant 

Process Simulation 
Lifestyle Simulation 

Ziarnetzky and 
Mönch [61] 
 

To address integrated production planning and capacity 
expansion problem for a simplified semiconductor industry 

Discrete Event Simulation 
(DES) 

Teerasoponpong 
and Sopadang [57] 

To propose a solution for reducing the burden on SMEs in 
collecting and utilizing data for the planning of manufacturing 
capacity 
 

artificial neural network 
(ANN) 
genetic algorithm (GA) 

Wicaksono and Ni 
[58] 
 

To implement an automated manpower planning model that 
help in synchronizing of capacity load for short to medium 
planning horizons for Make-To-Order (MTO) companies 

Simulation using 
customized Excel Macro 

 
Manufacturing sectors operate in dynamic and evolving environments, with fluctuating market 

conditions, technological developments and different sustainability standards. As such, it is vital to 
ensure that the simulation models developed for capacity planning decisions not only work well in 
the short term but also preserve their usefulness and accuracy over a long period. As such, study on 
the adaptability and endurance of these models in the face of evolving market trends, sustainability 
initiatives, and unforeseen shocks will contribute to a more thorough understanding of their practical 
utility. The lack of research that examine the long-term efficacy and sustainability of capacity 
planning simulation models presents a chance for academics to explore into this key element. 
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5. Conclusions 
 
These reviews have successfully covered studies ranging from optimal capacity investments, 

stochastic demand management, manufacturing flexibility considerations, real option analysis, and 
reconfigurable manufacturing systems that proven to be able to provide valuable insights into 
addressing the complexities of capacity planning and decision making. Besides, the diverse range of 
simulation techniques and models discussed in these studies underscores the versatility of simulation 
as a problem-solving tool, adaptable to the unique needs and contexts of manufacturing companies, 
whether they are large enterprises or small and medium-sized businesses. This collection of studies 
underscores the crucial significance of simulation in aiding manufacturers in reaching improved 
consistency and effectiveness in capacity planning, thereby helping them navigate the ever-evolving 
terrain of modern manufacturing. Further study in this field may further deep dive into studies of the 
long-term performance and sustainability of the numerous constructed models. Besides, integrating 
of emotional engineering into capacity planning decision making framework can be a fascinating 
subject to be investigated in the future. 
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