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 ABSTRACT 

 
This article discusses a model of spreading typhoid fever with direct and indirect 
transmissions. There are five compartments included in the model, namely susceptible 
individuals, infected individuals, chronic carrier individuals, recovered individuals, and 
salmonella typhi bacteria in the environment. As an effort to control and minimize the 
numbers of infected individuals and chronic carrier individuals, we introduce 
simultaneously campaign for the susceptible individuals and treatment for the infected 
individuals and for chronic carrier individuals. The resulting model is a system of non-
linear differential equations and quite challenging to analysis globally. Existence of both 
disease-free equilibrium point and endemic equilibrium point are analysed analytically. 
Stability of the equilibrium point is analysed locally by determining the eigenvalues of 
the associated Jacobian matrix, Routh-Hurwitz stability criteria, and basic reproduction 
number (𝑅0) via next generation matrix. The minimum Pontryagin principle and 
Hamiltonian equation are referred to minimize the numbers of infected and chronic 
carrier individuals. Simulation is carried out using suitable values of parameters. We 
found that the eigenvalues for endemic equilibrium point are all negative real numbers 
and 𝑅0 > 1. Optimal paths for the state and constate variables are plotted using fourth 
order forward-backward Runge-Kutta method. In case there are no campaign and 
treatments, we found 𝑅0 > 1 and endemic occurs. When campaign and treatments are 
included together in the model, we found optimal paths for all compartments that 
minimize the number of infected and chronic carrier individuals. Giving campaign and 
treatments increase significantly the susceptible and recovered individuals. At the same 
time, it reduces significantly the infected, chronic carrier individuals, and salmonella 
typhi bacteria in the environment. Involving campaign and treatment in the model of 
spreading typhoid fever can be considered as an effective strategy to minimize the 
numbers of infected and chronic carrier individuals.  
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1. Introduction 
 

The prevention and spread of both infectious and non-infectious diseases are still being carried 
out and remain a concern in the health sector. Some of the diseases that are still of concern on a 
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global scale are kidney disease, breast cancer, covid-19, and meningitis [1-4]. In addition to studying 
the mechanism of disease spread, researchers have also considered various factors as an effort to 
prevent or inhibit the spread of disease, including vaccination, fogging, treatments, and the like. 
Wiraningsih, et al., [5] used vaccination and treatment for humans and dogs as an attempt to inhibit 
and prevent the spread of the disease. A variant of the SIR model has been used by considering 
various factors such as migration, vaccination, and insecticide spraying as the effort to prevent the 
spread of malaria [6]. A developed SEIR model has been used to analyze the spread of hepatitis 
through vaccination and treatment [7]. Mathematical models, as tools and methods that provide a 
simple analysis, have become an alternative used by many researchers in the study and 
understanding the spread of infectious diseases. 

Typhoid fever is an infectious disease commonly suffered by children caused by Salmonella typhi 
bacteria [8, 9]. Typhoid symptoms include high fever, weakness, abdominal pain, dizziness, loss of 
appetite, and rashes on the body [10]. Typhoid fever usually takes 7-14 days to manifest in an infected 
person. Humans become a place for these bacteria to live and reproduce naturally, and as a place of 
life [10, 11]. The spread of typhoid fever can occur directly from one individual to another. The spread 
of typhoid fever can also occur indirectly through the consumption of food or water contaminated 
by Salmonella typhi bacteria [12, 13]. The World Health Organization (WHO) reported in 2018 that 
typhoid fever is still widely found in several developing countries. Annually, about 21 million cases 
and 220,000 deaths worldwide are caused by typhoid, and the pathogen is estimated to cause 9.8 to 
13.9 million cases. Most cases occur in South Asia, Southeast Asia, and sub-Saharan Africa, where 
poor sanitation and inadequate clean water supply are found [14]. 

Typhoid patients are usually given antibiotic treatment and will improve over the next few days. 
However, in worse cases, infected patients without proper treatment may develop complications 
resulting in death [15, 16]. Typhoid fever is a complex problem because it can be a chronic carrier, 
relapse, or drug resistance, which complicates treatment and prevention efforts. Not all treated 
patients become completely cured, but there are about 4% of patients who have the potential to 
become chronic carriers. These patients remain asymptomatic after acute treatment and can excrete 
Salmonella typhi bacteria for up to one year through feces and urine [17]. Typhoid should be treated 
quickly and thoroughly, as it can become more serious if not treated promptly. Proper treatment can 
reduce the patient's chances of becoming a chronic carrier. Therapeutic antimicrobials such as 
ceftriaxone and floroqinolone are more effective than chloramphenicol [11]. 

Mathematical models have been widely used in the field of epidemiology to study the mechanism 
of disease spread as well as a method to make quantitative predictions and control measures [18]. 
Mathematical models of the spread of typhoid fever have been developed from various perspectives 
which are taken from the previous studies [19-21]. The direct spread of typhoid disease and its 
indirect spread have also received attention which are taken from the previous studies [21, 22]. In 
this study, the direct and indirect spread of typhoid disease is further developed by adding chronic 
carriers as a compartment and further considering treatment for the infected compartment, 
treatment for the chronic carrier compartment, and a health campaign as a control. In the model 
formed, the endemic and disease-free equilibrium points and the basic reproduction number are 
determined and analyzed. Furthermore, numerical simulations were conducted to determine the 
effectiveness of providing control as an effort to reduce the spread of typhoid fever. 
 
2. Methodology  
 

The research conducted by the authors in [13] and [21] on the typhoid spread model both direct 
and indirect spread was developed by adding a chronic carrier compartment. Some disease spread 
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models have considered chronic carrier as a separate compartment which are taken from the 
previous studies [19-20]. With the addition of the compartment, the constructed model includes five 
compartments, namely the susceptible individual compartment (S), infected individuals (I), chronic 
carrier individuals (C), recovered individuals, and Salmonella typhi bacteria in the environment (B). 
This model includes human populations and bacterial populations and their interactions in the spread 
of typhoid fever. To inhibit and control the spread of typhoid disease, treatment and campaign about 
the importance of health are involved in the model as controls. Typhoid fever is transmitted from 
bacteria to the environment through food or water contaminated with Salmonella typhi bacteria. 
Typhoid fever can also be transmitted directly through person-to-person contact. 

In this study, the spread is divided into two parts, namely direct transmission and indirect 
transmission. Direct transmission is through contact from person to person (direct transmission) with 
a rate of 𝛽1𝐼 + 𝛽2𝐶, and indirect transmission is by consuming food or drinks that have been 
contaminated with Salmonella thypi bacteria (indirect transmission) with a rate of  𝛽3𝐵.  The constant 
𝛽1 is the rate of infection due to contact with the population (I), 𝛽2 is the rate of infection due to 
contact with the population (C), and 𝛽3 is the rate of individuals consuming food and drinks 
contaminated with Salmonella typhi bacteria (B). It is assumed that the natural mortality rate in each 
sub-population is the same at 𝜇. Death due to disease only occurs in infected individuals by 𝛿. The 
rate of transfer of infected individuals into chronic carrier individuals is to 𝜃 and 𝜌 is the treatment 
rate of chronic carrier individuals, while 𝛼 is the treatment rate of infected individuals. Since the 
chronic carrier individual (C) can excrete bacteria for up to two years, the rate of removal of bacteria 
to the environment 𝜂1 by the chronic carrier individual (C) is greater than the rate of removal of 
bacteria to the environment 𝜂2 by the infected individual (I) so that 𝜂1 > 𝜂2.  The natural death rate 
of Salmonella typhi bacteria in the environment is 𝜇𝑏. 
 

 
Fig. 1. Flow diagram of the spread of typhoid fever 

 
Based on the above assumptions and the typhoid fever disease spread diagram in Figure 1, the 

rate of change for each compartment is mathematically expressed in the form of a system of non-
linear differential equations as follow: 
 
𝑑𝑆

𝑑𝑡
= Λ − (𝛽1𝐼 + 𝛽2𝐶 + 𝛽3𝐵)𝑆 − 𝜇𝑆                (1) 

 
𝑑𝐼

𝑑𝑡
= (𝛽1𝐼 + 𝛽2𝐶 + 𝛽3𝐵)𝑆 − (𝛼 + 𝜃 + 𝜂1 + 𝜇 + 𝛿)𝐼         (2) 

 
𝑑𝐶

𝑑𝑡
= 𝜃𝐼 − (𝜌 + 𝜂2 + 𝜇)𝐶            (3) 
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𝑑𝑅

𝑑𝑡
= 𝛼𝐼 + 𝜌𝐶 − 𝜇𝑅             (4) 

 
𝑑𝐵

𝑑𝑡
= 𝜂1𝐼 + 𝜂2𝐶 − 𝜇𝑏𝐵            (5) 

  
3. Results  
3.1 Basic Reproduction Number 
 

Let �̇� =  (𝐼  𝐶  𝐵)𝑇 be a matrix whose entries are the compartment of infected individuals. By 
using the next generation matrix principle, we obtain �̇� = 𝑓(𝒙) − 𝑣(𝒙), where: 
 

𝑓(𝒙) = (
(𝛽1𝐼 + 𝛽2𝐶 + 𝛽3𝐵)𝑆

0 
0

) and  𝑣(𝒙) = (

𝐿1𝐼
𝐿2𝐶 − 𝜃𝐼  

𝜇𝑏𝐵 − 𝜂1𝐼 − 𝜂2𝐶
)          (6) 

 
with 𝐿1 = 𝛼 + 𝜃 + 𝜂1 + 𝜇 + 𝛿 and 𝐿2 = 𝜌 + 𝜂2 + 𝜇. 
 

The Jacobian matrix for 𝑓(𝑥) and 𝑣(𝑥) evaluated at the disease-free equilibrium point (
Λ

𝜇
, 0, 0, 0, 0) 

are: 
 

𝐹 = (
𝛽1

Λ

𝜇
𝛽2

Λ

𝜇
𝛽3

Λ

𝜇

0 0 0
0 0 0

)  and  𝑉 = (
𝐿1 0 0
−𝜃 𝐿2 0
−𝜂1 −𝜂2 𝜇𝑏

)        (7) 

 
The inverse of matrix 𝑉 is:  
 

𝑉−1 =

(

 
 

1

𝐿1
0 0

𝜃

𝐿1𝐿2

1

𝐿2
0

𝐿1𝜂1+ 𝜃𝜂2

𝐿1𝐿2𝜇𝑏
  

𝜂2

𝐿2𝜇𝑏

1

𝜇𝑏)

 
 

                        (8) 

 
From which we have: 
 

det (𝐹𝑉−1 − 𝜆𝐼) = |

Λ𝛽1

𝜇𝐿1
+

Λ𝛽2𝜃

𝜇𝐿1𝐿2
+

𝛽3Λ(𝜃𝜂2+𝐿2𝜂1)

𝜇𝐿1𝐿2𝜇𝑏
− 𝜆

𝛽2Λ

𝜇𝐿2
+

𝛽3Λ𝜂2

𝜇𝐿2𝜇𝑏

𝛽3Λ

𝜇𝜇𝑏

0 0 − 𝜆 0
  0  0 0 − 𝜆

|     (9) 

 
Because of the matrix above is a triangular, we have the characteristic equation  
 

𝐺(𝜆) = 𝜆2 (
Λ𝛽1

𝜇𝐿1
+

Λ𝛽2𝜃

𝜇𝐿1𝐿2
+

𝛽3Λ(𝜃𝜂2+𝐿2𝜂1)

𝜇𝐿1𝐿2𝜇𝑏
− 𝜆)                    (10) 

 

The eigenvalues of 𝐺(𝜆) are  𝜆1 = 𝜆2 = 0 and  𝜆3 =
Λ𝛽1

𝜇𝐿1
+

Λ𝛽2𝜃

𝜇𝐿1𝐿2
+

𝛽3Λ(𝜃𝜂2+𝐿2𝜂1)

𝜇𝐿1𝐿2𝜇𝑏
 . Therefore, the 

basic reproduction number obtained from the spectral radius of the next generation matrix  𝐹𝑉−1 is 
given by: 
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 𝑅0 = 𝑅𝑚 + 𝑅𝑏 =
Λ𝛽1

𝜇𝐿1
+

Λ𝛽2𝜃

𝜇𝐿1𝐿2
+

𝛽3Λ(𝜃𝜂2+𝐿2𝜂1)

𝜇𝐿1𝐿2𝜇𝑏
                                                                                              (11) 

 

The term of  𝑅𝑚 =
𝛬𝛽1

𝜇𝐿1
+

𝛬𝛽2𝜃

𝜇𝐿1𝐿2
  denotes a contribution from direct transmission, that is contact with 

infected individuals, while 𝑅𝑏 =
𝛽3𝛬(𝜃𝜂2+𝐿2𝜂1)

𝜇𝐿1𝐿2𝜇𝑏
 is a contribution from bacteria in the environment in 

the spread of typhoid fever. 
 
3.2 Endemic and Disease-Free Equilibrium Points 
 

The disease-free equilibrium point is a condition where the disease does not spread in the 
population. This condition occurs when 𝐼 = 𝐶 = 𝐵 = 0. By substituting the values of  𝐼 = 𝐶 = 𝐵 =

0 into Eq. (1)-(5) we get 𝑅 = 0, and then from Eq. (1) we have 𝑆 =
Λ

𝜇
. Therefore, the disease-free 

equilibrium point is given by: 
 

 𝐸0 = (𝑆0, 𝐼0, 𝐶0, 𝐵0, 𝑅0) = (
Λ

𝜇
, 0, 0, 0, 0)                   (12) 

  
The endemic equilibrium point is a condition where the disease spreads in the population. This 

condition occurs when 𝐼∗ > 0, 𝐶∗ > 0  , 𝑅∗ > 0,  and  𝐵∗ > 0. Therefore, the endemic equilibrium 
points for model Eq. (1)-(5) is given by: 
 
 𝐸∗ = (𝑆∗, 𝐼∗, 𝐶∗, 𝑅∗, 𝐵∗)                      (13) 
 

where 𝑆∗ =
𝐿1𝜇𝑏𝐿2

𝑀
,  𝐼∗ = 

𝑄

𝐿1𝑀
(𝑅0 − 1), 𝐶∗ =

𝜃𝐼∗

𝐿2
, 𝑅∗ =

1

𝜇
(𝛼 +

𝜌𝜃

𝐿2
) 𝐼∗, 𝐵∗ =

1

𝜇𝑏
(𝜂1 +

𝜂2𝜃

𝐿2
) 𝐼∗. 

Therefore:  
 

𝐸∗ = (
𝐿1𝜇𝑏𝐿2

𝑀
,

𝑄

𝐿1𝑀
(𝑅0 − 1),

𝐿2𝜃𝑄(𝑅0−1)

𝐿1𝑀
, (𝛼𝐿2 + 𝜌𝜃)

𝜇𝑏

𝑀
(𝑅0 − 1), (𝜂1𝐿2 + 𝜂2𝜃)

𝜇

𝑀
(𝑅0 − 1))            (14) 

 
where 𝑀 = 𝜇𝑏𝐿2𝛽1 + 𝜇𝑏𝛽2𝜃 + 𝐿2𝛽3𝜂1 + 𝜂2𝜃𝛽3, 𝑄 = 𝜇𝐿1𝜇𝑏𝐿2. 
 
3.3 Stability Analysis of Equilibrium Points 
 

Model Eq. (1)-(5) is a non-linear and quite challenging to analyse the global stability of equilibrium 
points. In this analysis we just consider local stability of the equilibrium points. By linearizing model 
Eq. (1)-(5) around the equilibrium point, we get the Jacobian matrix as follows: 
 

𝐽 =

[
 
 
 
 
−(𝛽1𝐼 + 𝛽2𝐶 + 𝛽3𝐵) − 𝜇 −𝛽1𝑆 −𝛽2𝑆 0 −𝛽3𝑆

𝛽1𝐼 + 𝛽2𝐶 + 𝛽3𝐵 𝛽1𝑆 − 𝐿1 𝛽2𝑆 0 𝛽3𝑆
0 𝜃 −𝐿2 0 0
0 𝛼 𝜌 −𝜇 0
0 𝜂1 𝜂2 0 −𝜇𝑏 ]

 
 
 
 

                                                       (15) 

 
By evaluating the Jacobian matrix Eq. (15) at the disease-free equilibrium point 𝐸0,  we have the 

characteristic equation 𝑓(𝜆) = 𝑑𝑒𝑡(𝜆𝐼 − 𝐽(𝐸0)) as follows: 
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𝑓(𝜆) = (𝜆 + 𝜇)(𝜆 + 𝜇)(𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3)                   (16) 

 
where: 
𝑎1 = 𝐿2 + 𝜇𝑏 − 𝛽1𝑆

0 + 𝐿1 
𝑎2 = 𝐿2𝜇𝑏 − (𝛽1𝑆

0 − 𝐿1)𝐿2 − 𝛽2𝑆
0𝜃 − (𝛽1𝑆

0 − 𝐿1)𝜇𝑏 − 𝜂1𝛽3𝑆
0 

𝑎3 = 𝜃𝜂2𝛽3𝑆
0 − (𝛽1𝑆

0 − 𝐿1)𝜇𝑏𝐿2 − 𝛽2𝑆
0𝜃𝜇𝑏 − 𝜂1𝛽3𝑆

0𝐿2 
 

The two eigenvalues of Eq. (16) are 𝜆1 = −𝜇 and 𝜆2 = −𝜇, while the other three eigenvalues are 
the roots of the equation 𝜆3 + 𝑎1𝜆

2 + 𝑎2𝜆 + 𝑎3 = 0.  

In the case of 𝑅0 < 1, i.e.  𝑆0 𝛽1

𝐿1
+ 𝑆0 𝛽2𝜃

𝐿1𝐿2
+ 𝑆0 𝛽3(𝜃𝜂2+𝐿2𝜂1)

𝐿1𝐿2𝜇𝑏
< 1, it gives consequences  

𝑎1, 𝑎2, 𝑎3 > 0.  Furthermore, the disease-free equilibrium point 𝐸0 is stable when the Routh-Hurwitz 
stability criteria are satisfied, i.e.  𝑎1, 𝑎2, 𝑎3 > 0 and  𝑎1𝑎2 − 𝑎3 > 0. These criteria result in all the 
real parts of eigenvalues of the associated Jacobian matrix are negative. 

For the stability of endemic equilibrium point 𝐸∗, we have the related characteristic equation:  
 
𝑔(𝜆) = (𝜆 + 𝜇)(𝜆4 + 𝑏1𝜆

3 + 𝑏2𝜆
2 + 𝑏3𝜆 + 𝑏4)                   (17) 

 
where: 
𝑏1 = (𝐵𝛽3 + 𝐶𝛽2 + 𝐼𝛽1 − 𝛽1𝑆 + 𝜇 + 𝐿1 + 𝐿2 + 𝜇𝑏)  

𝑏2 = ((𝐵𝛽3 + 𝐶𝛽2 + 𝐼𝛽1 − 𝛽1𝑆 + 𝜇 + 𝐿1 + 𝐿2)𝜇𝑏 + (𝐵𝛽3 + 𝐶𝛽2 + 𝐼𝛽1 − 𝛽1𝑆 + 𝜇 + 𝐿1)𝐿2 +

(𝐵𝛽3 + 𝐶𝛽2 + 𝐼𝛽1 + 𝜇)𝐿1 − 𝑆(𝜇𝛽1 + 𝜃𝛽2 + 𝛽3𝜂1))  

𝑏3 = ((𝐵𝛽3 + 𝐶𝛽2 + 𝐼𝛽1 − 𝛽1𝑆 + 𝜇 + 𝐿1)𝐿2 + (𝐵𝛽3 + 𝐶𝛽2 + 𝐼𝛽1)𝐿1 − 𝑆(𝜇𝛽1 + 𝜃𝛽2))𝜇𝑏 +

(((𝐵𝛽3 + 𝐶𝛽2 + 𝐼𝛽1 + 𝜇)𝐿1 − 𝑆(𝜇𝛽1 + 𝛽3𝜂1))𝐿2 − ((𝜃𝛽2 + 𝛽3𝜂1)𝜇 + 𝜂2𝛽3𝜃)𝑆)  

𝑏4 = (((𝐵𝛽3 + 𝐶𝛽2 + 𝐼𝛽1 + 𝜇)𝐿1 − 𝛽1𝑆𝜇)𝐿2 − 𝛽2𝑆𝜇𝜃)𝜇𝑏 − 𝛽3𝑆𝜇(𝜃𝜂2 + 𝐿2𝜂1)) 

 
Therefore, the endemic equilibrium point is locally asymptotically stable when 𝑏1, 𝑏2, 𝑏3, 𝑏4 > 0 

and  𝑏1𝑏2𝑏3 − 𝑏1
2𝑏4 − 𝑏3

2 > 0 are fulfilled. 
 
3.4 Optimal Control Formulation 
 

An optimal control is applied to model Eq. (1)-(5) to obtain the optimal trajectory for control 
variables. There are three control variables considered in the model, namely health campaign (𝑢1), 
treatment for infected individuals (𝑢2), and treatment for chronic carrier individuals (𝑢3). The control 

variable 𝑢𝑖(𝑡) is defined in the region 0 ≤ 𝑢𝑖(𝑡) ≤ 1, for 𝑡 ∈ [𝑡0, 𝑡𝑓] and 𝑖 = 1, 2, 3.  Starting time is 

𝑡0 = 0  and 𝑡𝑓 = 1 is the end for controlling. The value of 𝑢1(𝑡) = 0 indicates that the health 

campaign is ineffective in reducing the infection rate and the value of 𝑢1(𝑡) = 1 indicates that the 
health campaign is highly effective in reducing the infection rate. The value of 𝑢2(𝑡) = 0 indicates 
that treatment for infected individuals is inefficient in reducing infected individuals (I) and the value 
of 𝑢2(𝑡) = 1  indicates that treatment for infected individuals is highly effective in reducing infected 
individuals (I). The value of 𝑢3(𝑡) = 0 indicates that treatment for chronic carrier (C) individuals is 
ineffective, while the value of 𝑢3(𝑡) = 1 indicates that treatment for chronic carrier (C) individuals is 
highly effective. Based on these assumptions, the control variables are defined in the domain of 

𝑈 = {(𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡))| 0 ≤ 𝑢𝑖 ≤ 1, for  𝑡 ∈ [𝑡0, 𝑡𝑓], 𝑖 = 1, 2, 3 }. 
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To reduce the infection rate, the control variable of health campaign is imposed on the rate of 
change of susceptible compartment S and then the infection rate becomes (𝛽1𝐼 + 𝛽2𝐶 + 𝛽3𝐵)(1 −
𝑢1(𝑡))𝑆. To reduce the number of infected individuals who become chronic carrier individuals, a 
control variable in the form of treatment for infected individuals is given and then the rate of entry 
of infected individuals into recovery individuals becomes (𝛼 + 𝑢2(𝑡))𝐼. To accelerate the recovered 
of chronic carrier individuals (C), the control variable in the form of treatment for chronic carrier 
individuals is given and then the rate of entry of chronic carriers into recovery individuals becomes 
(𝜌 + 𝑢3(𝑡))𝐶. Thus, the system of Eq. (1)-(5) becomes: 
 
𝑑𝑆

𝑑𝑡
= Λ − (𝛽1𝐼 + 𝛽2𝐶 + 𝛽3𝐵)(1 − 𝑢1)𝑆 − 𝜇𝑆                   (18) 

 
𝑑𝐼

𝑑𝑡
= (𝛽1𝐼 + 𝛽2𝐶 + 𝛽3𝐵)(1 − 𝑢1)𝑆 − (𝛼 + 𝜃 + 𝜂1 + 𝜇 + 𝛿)𝐼 − 𝑢2𝐼                (19) 

 
𝑑𝐶

𝑑𝑡
= 𝜃𝐼 − (𝜌 + 𝜂2 + 𝜇)𝐶 − 𝑢3𝐶                     (20) 

 
𝑑𝑅

𝑑𝑡
= 𝛼𝐼 + 𝑢2𝐼 + 𝜌𝐶 + 𝑢3𝐶 − 𝜇𝑅                      (21) 

 
𝑑𝐵

𝑑𝑡
= 𝜂1𝐼 + 𝜂2𝐶 − 𝜇𝑏𝐵                      (22) 

 
The next step is to form an objective function that minimizes the number of infected individuals 

and the number of chronic carrier individuals, as well as the costs of health campaign and treatments. 
The objective function is given by: 
 

 𝐽 = 𝑚𝑖𝑛
(𝑢1,𝑢2,𝑢3)

∫ (𝐴1𝐼 + 𝐴2𝐶 +
1

2
(𝑤1𝑢1

2 + 𝑤2𝑢2
2 + 𝑤3𝑢3

2)) 𝑑𝑡
𝑡𝑓
0

                                                       (23) 

 
subject to the model Eq. (18)-(22).  

The minimum Pontryagin principle is applied to get the solution of optimal control 𝑢∗(𝑡). The 
Hamiltonian equation is then formed as: 
   
𝐻(𝑡, 𝑥, 𝑢, 𝜆) = 𝑓(𝑡, 𝑥, 𝑢) + 𝜆𝑇(𝑡)𝑔(𝑡, 𝑥, 𝑢)                     (24)                                                                                            
 
where 𝑥 = (𝑆  𝐼  𝐶  𝑅  𝐵  )𝑇 denotes the state variables,  𝜆 = (𝜆1  𝜆2  𝜆3  𝜆4  𝜆5  )

𝑇 denotes the 

costate variable, and 𝑓(𝑡, 𝑥, 𝑢) = 𝐴1𝐼 + 𝐴2𝐶 +
1

2
𝑤1𝑢1

2 +
1

2
𝑤2𝑢2

2 +
1

2
𝑤3𝑢3

2.  The Hamiltonian 

equation is then written as follows: 
 

𝐻 = 𝐴1𝐼 + 𝐴2𝐶 +
1

2
𝑤1𝑢1

2 +
1

2
𝑤2𝑢2

2 +
1

2
𝑤3𝑢3

2 + 𝜆1(Λ − (𝛽1𝐼 + 𝛽2𝐶 + 𝛽3𝐵)(1 − 𝑢1)𝑆 − 𝜇𝑆) 

+𝜆2((𝛽1𝐼 + 𝛽2𝐶 + 𝛽3𝐵)(1 − 𝑢1)𝑆 − (𝛼 + 𝜃 + 𝜂1 + 𝜇 + 𝛿)𝐼 − 𝑢2𝐼) + 𝜆3(𝜃𝐼 − (𝜌 + 𝑛2  

𝜇 + 𝜎)𝐶 − 𝑢3𝐶) + 𝜆4(𝛼𝐼 + 𝑢2𝐼 + 𝜌𝐶 + 𝑢3𝐶 − 𝜇𝑅) + 𝜆5(𝜂1𝐼 + 𝜂2𝐶 − 𝜇𝑏𝐵)               (25) 
 

In order to minimize the objective function Eq. (23), the necessary conditions �̇� =
𝜕𝐻

𝜕𝝀
, �̇� = −

𝜕𝐻

𝜕𝒙
 , 

and 
𝜕𝐻

𝜕𝒖
= 0 must be satisfied.  Further, we get: 
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�̇� =
𝜕𝐻

𝜕𝝀
= (

𝜕𝐻

𝜕𝜆1
  

𝜕𝐻

𝜕𝜆2
  

𝜕𝐻

𝜕𝜆3
  

𝜕𝐻

𝜕𝜆4
  

𝜕𝐻

𝜕𝜆5
)
𝑇

                      (26) 

 
where: 
 
𝜕𝐻

𝜕𝜆1
= Λ − (𝛽1𝐼 + 𝛽2𝐶 + 𝛽3𝐵)(1 − 𝑢1)𝑆 − 𝜇𝑆                   (27) 

 
𝜕𝐻

𝜕𝜆2
= (𝛽1𝐼 + 𝛽2𝐶 + 𝛽3𝐵)(1 − 𝑢1)𝑆 − (𝛼 + 𝜃 + 𝜂1 + 𝜇 + 𝛿)𝐼 − 𝑢2𝐼                (28) 

 
𝜕𝐻

𝜕𝜆3
= 𝜃𝐼 − (𝜌 + 𝜂2 + 𝜇)𝐶 − 𝑢3𝐶                                  (29) 

                                                                                                  
𝜕𝐻

𝜕𝜆4
= 𝛼𝐼 + 𝑢2𝐼 + 𝜌𝐶 + 𝑢3𝐶 − 𝜇𝑅                     (30) 

 
𝜕𝐻

𝜕𝜆5
= 𝜂1𝐼 + 𝜂2𝐶 − 𝜇𝑏𝐵                       (31) 

 
For the costate variables, we have: 

 

 �̇� = −
𝜕𝐻

𝜕𝒙
, i.e.,  (�̇�1 �̇�2 �̇�3 �̇�4  �̇�5)

𝑇
= (−

𝜕𝐻

𝜕𝑆
−

𝜕𝐻

𝜕𝐼
−

𝜕𝐻

𝜕𝐶
−

𝜕𝐻

𝜕𝑅
  −

𝜕𝐻

𝜕𝐵
)
𝑇

               (32)  

 
where: 

�̇�1 = (𝜆2 − 𝜆1)𝛽3𝑢1𝐵 + (𝜆2 − 𝜆1)𝛽2𝑢1𝐶 + (𝜆2 − 𝜆1)𝛽1𝑢1𝐼 + (𝜆1 − 𝜆2)𝛽3𝐵 + (𝜆1 − 𝜆2)𝛽2𝐶 +
(𝜆1 − 𝜆2)𝛽1𝐼 + 𝜇𝜆1  

�̇�2 = (𝜆2 − 𝜆1)𝛽1𝑢1𝑆 + (𝜆1 − 𝜆2)𝛽1𝑆 + (𝜆2 − 𝜆4)𝛼 + 𝜆2(𝛿 + 𝜇) + (𝜆2 − 𝜆3)𝜃 + (𝜆2 − 𝜆5)𝜂1 +
(𝜆2 − 𝜆4)𝑢2 − 𝐴1  

�̇�3 = (𝜆2 − 𝜆1)𝛽2𝑢1𝑆 + (𝜆1 − 𝜆2)𝛽2𝑆+𝜆3𝜇 + (𝜆3 − 𝜆4)𝜌 + (𝜆3 − 𝜆5)𝜂2 + (𝜆3 − 𝜆4)𝑢3 − 𝐴2,               

�̇�4 = 𝜆4𝜇  

�̇�5 = (𝜆2 − 𝜆1)𝛽3𝑢1𝑆 + (𝜆1 − 𝜆2)𝛽3𝑆 + 𝜆5𝜇𝑏   
 

For the control variables, we have  
𝜕𝐻

𝜕𝒖
= (

𝜕𝐻

𝜕𝑢1

𝜕𝐻

𝜕𝑢2

𝜕𝐻

𝜕𝑢3
)
𝑇

= (0 0 0)𝑇, where  𝑢1 =

(𝜆2−𝜆1)𝛽3𝐵𝑆+(𝜆2−𝜆1)𝛽2𝐶𝑆+(𝜆2−𝜆1)𝛽1𝐼𝑆

𝑤1
, 𝑢2 =

(𝜆2−𝜆4)𝐼

𝑤2
,   and 𝑢3 =

(𝜆3−𝜆4)𝐶

𝑤3
 . The boundary conditions for 

the control variables are given by  0 ≤ 𝑢𝑖 ≤ 1.  Further, the optimal controls for 𝑢𝑖
∗(𝑡) are obtained 

as follows: 
 

𝑢1
∗(𝑡) = min [1,𝑚𝑎𝑥 [0,

(𝜆2−𝜆1)𝛽3𝐵𝑆+(𝜆2−𝜆1)𝛽2𝐶𝑆+(𝜆2−𝜆1)𝛽1𝐼𝑆

𝑤1
]]                 (33) 

 

𝑢2
∗(𝑡) = min [1,𝑚𝑎𝑥 [0,

(𝜆2−𝜆4)𝐼

𝑤2
]]                     (34) 

 

𝑢3
∗(𝑡) = min [1,max [0,

(𝜆3−𝜆4)𝐶

𝑤3
]]                     (35) 

 
 
 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 59, Issue 2 (2026) 73-86 

81 
 

4. Numerical Simulation 
 

The parameter values with suitable units used in the simulation are given in Table 1. 
 
  Table 1  
  Parameter values used for the model 

Parameter Description Value References 

𝚲 Human birth rate 100 [23] 
𝝁 Natural death rate in humans 0.0005 [23] 
𝜷𝟏 The rate of infection from compartment (𝐼) to  

compartment (𝑆) 
0.02 [13] 

𝜷𝟐 The rate of infection from compartment (𝐶) to compartment (𝑆) 0.0001 Assumed 
𝜷𝟑 The rate of individuals consuming food and drinks contaminated with 

salmonella thypi bacteria (𝐵) 
0.01 

[13, 21] 

𝜶 Treatment rate of infected compartment (𝐼) 0.002 [23] 
𝝆 Treatment rate of chronic carrier compartment (𝐶) 0.000315 [19] 
𝜽 Rate of movement from compartment (𝐼) to compartment (𝐶) due to 

treatment failure 
0.0004 

[24] 

𝜹 Death rate due to disease 0.002 [19, 25] 
𝜼𝟏 Rate of removal of salmonella typhi bacteria from the  

compartment (𝐼) 
0.4 

[13] 

𝜼𝟐 Rate of removal of salmonella typhi bacteria from the  
compartment (𝐶) 

0.2 
[13] 

𝝁𝒃 Natural death rate of the Salmonella thypi bacteria  
compartment 

0.3 Assumed 

 
Model Eq. (18)-(22) with the parameter values given as in Table 1 without controls 

(𝑢1 = 𝑢2 = 𝑢3 = 0) gives disease-free equilibrium point 𝐸0 = (20,000, 0, 0, 0, 0) and endemic 
equilibrium point 𝐸∗ = (12.1421, 246.9596, 0.4919, 988.1482, 329.7074). The eigenvalues 
associated with the disease-free equilibrium point are 𝜆1 = −0.0005, 𝜆2 = −0.0005, 𝜆3 =
−0.2009,  𝜆4 = −0.4998, and 𝜆5 = 3,999.7951. The eigenvalues associated with the endemic 
equilibrium point are 𝜆1 = −0.0005, 𝜆2 = −0.3209, 𝜆3 = −0.3209,  𝜆4 = −0.2008, and 𝜆5 =
−7.9867. The parameter values also give 𝑅𝑚 = 9,879, 𝑅𝑏 = 6,592. Thus, we have basic 
reproduction number 𝑅0 = 16,471. From the basic reproduction number and eigenvalues, we know 
that the endemic equilibrium point becomes stable. This means that the numbers of infected 
individuals, chronic carrier individuals, and salmonella typhi bacteria are always positive. 

For simulation, the initial values for each compartment are given by 𝑆(0) = 60,  𝐼(0) = 50, 
𝐶(0) = 50, 𝑅(0) = 40, and 𝐵(0) = 200. It is assumed that the controls carried out are limited, 
which 𝑢1𝑚𝑎𝑥

= 𝑢2𝑚𝑎𝑥
= 𝑢3𝑚𝑎𝑥

= 1 means that the controls can be applied up to 100%, whereas 

𝑢1𝑚𝑖𝑛
= 𝑢2𝑚𝑖𝑛

= 𝑢3𝑚𝑖𝑛
= 0 means that the controls are completely ineffective. We apply individual 

weights given by 𝐴1 = 𝐴2 = 50 because the interests in minimizing each infected subpopulation are 
the same. The constant 𝑤1 is the weight of costs for health campaign, 𝑤2 is the weight of medical 
costs for infected individuals and 𝑤3 is the weight of medical costs for chronic carrier individuals. The 
cost weights required for each control in controlling the spread of typhoid fever are given by 𝑤1 =
12, 𝑤2 =  2, and 𝑤3 =  2.  The fourth order Forward-Backward Sweep Runge-Kutta method is 
applied to plot the solution curves for compartments S, I, C, R, and B with and without control, as 
given in Figure 2. 

Figure 2(a) shows that sustainable individual without controls decreasing as time goes. By 
applying controls, sustainable individuals significantly increase. Contrary in Figure 2(b), the infected 
individual without control increases while the infected individual with control decreases as time goes. 
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Figure 2(c) shows that, with and without controls, the chronic carrier individual decreases as time 
goes. Trajectory of chronic carrier individuals with controls decreases more quickly compared to the 
compartment without controls. Figure 2(d) shows that, with and without controls, the recovered 
individual increases. Trajectory of recovered individuals with controls more quickly increases 
compared with the trajectory without controls. Figure 2(e) shows that salmonella typhi bacteria 
without control increases while salmonella typhi bacteria without control decreases as time goes. 

Figures 2(b), 2(c), and 2(e) show that by implementing controls in the form of health campaign 
(𝑢1), treatment of infected individuals (𝑢2), and treatment of chronic carrier individuals (𝑢3), the 
number of infected individuals (𝐼), chronic carrier individuals (𝐶), and Salmonella typhi bacteria 
decrease from the beginning of the observation to the end of the observation. Figures 2(a) and 2(d) 
show that the number of susceptible individuals (𝑆) and recovered individuals (𝑅) increase from the 
beginning of the observation to the end of the observation. From the simulations we know that 
providing health campaigns (𝑢1) can reduce the occurrence new infections, while treatment of 
infected individuals (𝑢2) can reduce infected individuals (𝐼) and treatment of chronic carrier 
individuals (𝑢3)  can reduce the number of chronic carrier individuals (𝐶). The control variables 
reduce effectively the level of salmonella typhi bacteria in the environment. 
 

  
(a)       (b) 

  
(c)      (d) 
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(e) 

Fig. 2. Plots of trajectories with and without control (a) S (b) I (c) C (d) R (e) B 

 
Figure 3(a) shows that the health campaign (𝑢1) must be applied maximally from the beginning 

of the observation until the end of the observation. Treatment for infected individuals (𝑢2) must be 
applied maximally from the beginning until the fifth month and in the following months the control 
(𝑢2) can be reduced slowly, Figure 3(b). The treatment for chronic carrier individuals (𝑢3) must be 
applied maximally from the beginning of observation until the sixth month of observation and then 
it can be reduced gradually until the end of observation, Figure 3(c).  
 

   
(a)      (b) 
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(c) 

Fig. 3. Trajectories for control variables (a) 𝑢1 (b) 𝑢2 (c) 𝑢3 

 
5. Conclusions 
 

Model on spreading typhoid fever with direct and indirect transmissions and also without 
campaign and treatments results susceptible individuals decrease slowly, infected individuals 
increase rapidly, chronic carrier individuals decrease rapidly, recovered individuals increase slowly, 
and salmonella typhi bacteria increases rapidly. Simulation with parameter values as given in Table 1 
gives disease-free equilibrium point 𝐸0 = (20,000, 0, 0, 0, 0) and endemic equilibrium point 𝐸∗ =
(12.1421, 246.9596, 0.4919, 988.1482, 329.7074) with basic reproduction number 𝑅0 = 16,471. 
Without providing campaign for the susceptible individuals and treatments for the infected 
individuals, endemic situation occurs in the population. The number of infected individuals grows 
rapidly and tends to the endemic equilibrium point. 

By implementing campaign for the susceptible individuals, treatments for the infected individuals 
and for the chronic carrier individuals simultaneously, the minimum numbers of infected and chronic 
carrier individuals are obtained. These conditions are achieved when the campaign is applied 
effectively while treatments are initially given effectively and then gradually reduced, Figure 3. At the 
same time, the number of susceptible individuals become increasing. The number of infected 
individuals, chronic carrier individuals, and salmonella typhi bacteria decreases and then tends to 
zero. The number of recovered individuals increase rapidly. Giving campaign and treatments 
simultaneously as controls to the model of spreading typhoid fever with direct and indirect 
transmission reduce effectively the number of infected individuals, chronic carrier individuals, and 
salmonella typhi bacteria. This strategy maybe considered as an efective control to reduce 
transmission of typhoid fever in the population.  
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