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ABSTRACT 

The shallow water equations have been widely used to simulate dam-break problem. Due to the nonlinear and discontinuous 
nature of the event, application of numerical methods is often plagued with problem such as oscillation and unphysical solutions. 
The aim of this paper is to simulate a one-dimensional dam break using an improved Discontinuous Galerkin Method. The 
governing equation is discretized using linear shape function and explicit third-order Runge-Kutta. Problem with negative water 
depth due to wetting and drying is treated using a combination of thin water layer and min-mod slope limiting techniques. The 
use of these techniques prevents solution blow-out and oscillation especially at the wet-dry interface. Comparison with available 
analytical solution shows excellent agreement without under and over-shooting of the solution. Convergence study demonstrate 
that the overall accuracy of the method is consistent with the shape function order. The method is promising as it can easily be 
extended to higher order and can be used as an alternative to typical method such as Finite Volume. 
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1. Introduction 
 

In recent years, numerical methods have been successfully used to model the dam-break 
problem. A dam break can be modelled using the three-dimensional Navier Stokes equation, with 
the free surface treated using a single or multi-phase approach. However, solving the Navier Stokes 
equation is computationally expensive, especially if the computational domain is large. For practical 
purposes, the Shallow Water Equations (SWE), a simplified form of the Navier-Stokes equation that 
consider hydrostatic assumption and a depth-averaged vertical velocity, is usually adopted. 

Since dam break is characterized by a discontinuous solution, typical numerical methods, 
especially those that rely on the continuity between nodes such as the Finite Difference Method (FDM) 
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and Finite Element Method (FEM) struggle to provide an accurate solution for SWE within the 
discontinuous region. An extremely fine mesh needs to be used to resolve the steep gradient of the 
solution with upwind technique utilized to reduce oscillations [1, 2]. The implementation of the 
techniques has undesirable consequences such as an increase in the computational resources and 
reduction in the overall solution accuracy.  

The Finite Volume Method (FVM) is usually used to solve discontinuous problems due to its 
inherent ability to capture shock. A typical FVM evaluates the derivatives of the governing equation 
at the center of the cell face [3]. Such evaluation limits the FVM to only second-order accuracy. 
Although a high-order accuracy can be constructed by evaluating the derivatives at multiple points 
on the cell face, this increases the complexity of the resulting computational stencils [4]. Recently, the 
Discontinuous Galerkin Finite Element Method (DGFEM) is introduced as higher order alternative to 
FVM. The DGFEM combines the shock-capturing ability of the FVM with higher order FEM shape 
function [5]. The combination allows the DGFEM to model highly discontinuous solutions with an 
arbitrary solution order [6]. However, the DGFEM still suffers from numerical instabilities such as 
negative water depth [7]. The negative water depth problem is associated with the wetting and 
drying of the wavefront, where unphysical water depth is produced, leading to spurious oscillations 
and blowing-up of the solution [8].  

Several techniques, some of which are mostly developed for FVM and FEM, has been proposed 
for positivity-preserving of the water depth. Some of these techniques are, the mesh adaptation [9, 
10], mesh reduction [11, 12] and thin water layer [13-15]. In the mesh adaptation technique, the 
positivity of the water depth is maintained by matching the mesh with the wet-dry interface. This 
technique is computationally expensive, especially if the underlying bathymetry is complex, and 
involves the development of sophisticated algorithm to track the mesh and the wave front [16, 17]. 
The mesh reduction method tackles the problem by removing cells associated with negative water 
depth and adding the cells back when the water depth becomes positive [18]. Removing and adding 
a cell in a computational domain has unfavorable consequences such as loss in momentum and mass, 
leading to oscillation. Improvement to the technique was introduced by redistributing the mean 
value of the solution to neighboring cells to improve momentum and mass conservation [19]. 
However, this then led to significant increase in computational effort.  

The thin water layer technique is a simple method that maintain a minimum threshold for dry cell 
to prevent negative water depth during calculation. Although the technique has issue with mass 
conservation [20, 21], a slope limiting method can be used to mitigate the issue. Popular slope 
limiting methods are the min-mod technique [22, 23], the nodal flux method [16], Monotonic 
Upstream-centered Scheme (MUSCL) [24] and Weighted Essentially Non-Oscillatory (WENO) [25]. 
The min-mod technique is widely used due to its simplicity and provide a consistent solution when 
applied to various benchmark cases [26]. 

Since the DGFEM is relatively new, the application of the method for the solution of SWE in 
conjunction with various stabilization techniques is quite limited. This paper proposed the use of thin 
water layer and min-mod techniques for the solution of a 1D dam break problem using DGFEM. This 
paper starts with the discretization of the SWE using the DGFEM with the stabilizing techniques, 
followed by the comparison between the numerical solution against analytical solution. Concluding 
remarks are given in the last section. 
 
 
 
 
 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 27, Issue 2 (2022) 1-15 

3 
 

2. Methodology  
2.1 Governing Equation 
 

The 1D SWE is derived based on the mass and momentum conservation equations, assuming 
hydrostatic pressure and depth-averaged velocity. The governing equation is given by 

 
𝜕ℎ
𝜕𝑡 +

𝜕(ℎ𝑢)
𝜕𝑥 = 0

𝜕(ℎ𝑢)
𝜕𝑡 +

𝜕 +ℎ𝑢! + 12𝑔ℎ
!/

𝜕𝑥 = −𝑔ℎ
𝜕𝑏
𝜕𝑥 − 𝑔ℎ

𝑛!(ℎ𝑢)|(ℎ𝑢)|

ℎ
"#
$

 (1) 

where ℎ is the water depth, 𝑢 is the velocity, 𝑏 is the bed elevation, 𝑛 is the Manning coefficient, and 
𝑔 is the gravitational acceleration. By introducing 𝑞% as discharge per unit width as follows 

 
𝑞% = ℎ𝑢  (2) 

 
Eq. (1) can be simplified as: 
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 (4) 

 
2.2 Spatial and Equation Discretization 

 
                 Fig. 1 shows the spatial discretization of the discontinuous Galerkin method. Using a 

linear element with two nodes, the domain is divided into 𝑁( numbers of elements. Note that the 
adjacent element does not have a shared node as in the typical FEM where element continuity is 
enforced. Instead, each element in discontinuous at the element interface, with element connectivity 
enforced through a so-called numerical flux.  
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                 Fig. 1. Spatial discretization of discontinuous Galerkin method 

The governing equation given by Eq. (3) is discretized using a standard Galerkin formulation. For 
each element, the Galerkin formulation is applied by multiplying the governing equation with a 
weighting function, 𝑊, which is then integrated to force the residual of the equation to zero as 
follows 

 

E 𝑊:
𝜕𝑄
𝜕𝑡 +

𝜕𝐹(𝑄)
𝜕𝑥 − 𝑆&(𝑄) − 𝑆'(𝑄); 𝑑𝑥

%!!

%"!
= 	0 (5) 

 
The variables in Eq. (5) are approximated by linear shape functions as: 

 

ℎG =H𝑁)ℎ)

*

)+"

						𝑞I% =H𝑁)𝑞%)

*

)+"

 (6) 

where 𝑛 is the total number of nodes in the element and the shape functions for both nodes are 
 

𝑁" =
𝐿 − 𝑥
𝐿 ,𝑁! =

𝑥
𝐿 (7) 

 
Substitution of Eq. (6) into Eq. (5) and applying integration by part results in 

 

𝑀
𝜕𝑄G
𝜕𝑡 + 𝐹

MN𝑄GO − 𝐹GN𝑄GO = 𝑆&N𝑄GO + 𝑆'N𝑄GO (8) 

 
where 
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(9) 

In Eq. (8), 𝑄G  represents the solution variables, 𝐹GN𝑄GO represents the flux term, 𝑆&N𝑄GO represents 
the bed slope term, and 𝑆'N𝑄GO represents the friction slope term. 𝐹MN𝑄GO represents the numerical flux 
term for the discontinuous boundary of the elements, where the solution of the numerical flux term 
can be calculated using the Harten-Lax-Leer (HLL) scheme as follows: 
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⎬
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Note that 𝑢∗ in Eq. (11) is the wave speed of the node.  
 
2.3 Time Discretization 

 
By applying temporal discretization to Eq. (8), the equation can be written in a compact form as: 
 

𝑀
𝑄G*1" − 𝑄G*

∆𝑡 = 𝑅 (12) 
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where  
𝑅 = 	𝐹GN𝑄GO − 𝐹MN𝑄GO + 𝑆&N𝑄GO − 𝑆'N𝑄GO 

 
An explicit 3rd order Runge-Kutta method is used to further discretize the temporal terms in Eq. 

(12) as follows:  
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2.4 Stabilization Schemes 

 
The DGFEM is unstable without stabilization, especially when the portion of the domain is entirely 

dry. The thin water layer technique is proposed to prevent stability issue. The technique works by 
making sure that each element is not entirely dry by maintain a co-called threshold water depth, 𝜀wet 
[21].            Fig. 2 shows the conditions for wet, partially wet, and dry element. If the water depth for 
all nodes in the element is large than 𝜀wet, the element can be defined as the wet element. If only one 
of the nodes is above 𝜀wet, it is considered partially wet, while the element is considered dry if both 
nodes have depths lower than 𝜀wet. In the case of partially wet and dry element, the negative water 
depth at the node will be converted to the threshold water depth, 𝜀wet, and the velocity for the node 
is set to zero. This means, there is no redistribution of water depth to the other elements as the 
element water depth is negative.  

 

 
           Fig. 2. Representation of wet, dry and partially dry element as compared to threshold  
           water depth (red dashed line).         
  

Since the thin water layer technique does not fully ensure mass convergence, a slope limiter is 
applied after the water depth treatments to reduce mass loss. The slope limiter is written as 

 
𝑄(𝑥) = 𝑄o + (𝑥 − 𝑥̅)𝜎	𝑓𝑜𝑟	𝑥8( < 𝑥 < 𝑥(( (14) 

 
where 𝑄o is the average value of the variable for element, 𝑥̅ is the midpoint of the element, and 𝜎 is 
the slope limiter parameter. In this study, a simple min-mod slope limiter parameter is used. The slope 
limiter function is given by the following equation  
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2.5 Dam Break Description 
 

The dam-break considered for this study consists of domain with varying water depth at the 
upstream and downstream sections, separated by a vertical dam at the middle [27]. The difference 
between upstream and downstream water depths produces a discontinuity at the interface between 
upstream and downstream sections. The 1D dam-break was modelled for both the wet bed and dry 
bed cases. The latter used to investigate the influence of wetting and drying on the solution. Fig. 3 
shows the schematic view of the initial condition for the wet bed and dry bed dam-break cases. 

 

 
Fig. 3. Initial condition for the dam break problem          

In this study, the computational domain has a length of 𝐿 = 600	𝑚, and the dam is located at 
𝑥# = 300	𝑚. The initial upstream water depth for wet bed and dry bed dam-break cases were similar 
with value of ℎ9 = 10	𝑚. The downstream water depth for the wet bed dam break case is set to 1	𝑚, 
while zero water depth is used for the dry bed case. The numerical case was modelled with an 
element size of 24 m, 12 m, 6 m, 3 m and 1.5 m. The numerical cases of wet and dry bed dam-break 
were modelled using a fixed time steps for all cases. The numerical solution is compared with the 
exact solution by Wu et al. [28]. 
 
2.6 Initial and Boundary Conditions 
 

For the dam-break case, the initial condition is prescribed for the upstream, ℎ9  , and 
downstream, ℎ:, water depths. The flow rate is set to zero for the whole domain during the start of 
the simulation. An open boundary condition is used at both ends, where water is allowed to escape 
from the domain. The initial and boundary conditions can be summarized as follows 
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ℎ(𝑥, 0) = {ℎ9	if	𝑥 ≤ 𝑥#
ℎ: 	if	𝑥 > 𝑥#

𝑞(𝑥, 0) = 0
𝜕ℎ
𝜕𝑥
(0, 𝑡) =

𝜕ℎ
𝜕𝑥
(𝐿, 𝑡) =

𝜕𝑞
𝜕𝑥
(0, 𝑡) =

𝜕𝑞
𝜕𝑥
(𝐿, 𝑡) = 0

 (17) 

 

where 𝑥# is the location of the dam and 𝐿 is the length of the domain. 

2.7 Error Analysis 
 

The error between numerical result and analytical solution calculated based on 𝐿!-norm [29]. The 
error can be calculated by the quadrature rule for the integral. The integral of equation can be 
summarized as follows: 

 

‖𝑢 − 𝑢;‖.#
! =HH+𝑢N𝑥<O − 𝑢;N𝑥I<O/

!
=$

<+"

𝑤�<|𝐽|
=

)+"

 
(18) 

where 𝑢 is the exact solution, 𝑢;  is the numerical solution, 𝑥I<  	is the Gauss point, 𝑤�<  is the Gauss 
weight and 𝐽 is the Jacobian.  
 
3. Results and Discussion 
3.2 Wet Bed Dam Break Case 

A convergence study was carried out to ensure that the solution is mesh independent.                                      
Table 1 shows the summary of 𝐿!-norm error of the water depth and flow rate for the wet bed dam-
break with different mesh sizes. Fig. 4 presents the convergence plot for the wet bed dam-break case. 
The water depth and flow rate errors show reduction as the element size decreases. From the plot, 
the convergence rates for both water depth and flow rate are given as first order. The correlation 
coefficient, 𝑅2 values is close to 1 for the water depth and flow rate results, highlighting the accuracy 
of the numerical solution. 

Fig. 5 shows the water depth results for different time steps between the numerical result and 
analytical solution with close-up views of the water depth given by Fig. 5(b) and  Fig. 5(c). Overall, the 
agreement between the numerical and analytical solution is excellent. At the discontinuous region, 
slight differences between the numerical and analytical solution can be observed. However, the 
numerical solution shows no over-shooting and under-shooting of the result. 

Fig. 6 shows the results of the flow rate for different time steps between the numerical result and 
analytical solution. The numerical results agree with the exact solution, particularly for the region 
away from the discontinuity. Fig. 6(b) and Fig. 6(c) show the zoomed in view of the result. The same 
deviation can be found on the flow rate curves, especially at the initial state of the curves and the 
peak of the curves. Far from the discontinuous region, excellent agreement of the result without any 
overshoot and undershoot is observed.  
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                                     Table 1  
                                     𝑳𝟐-norm error for wet bed dam break 

Element Size, m Water depth error Flow rate error 
24.00 0.0914 0.2670 
12.00 0.0480 0.1323 
6.00 0.0213 0.0483 
3.00 0.0093 0.0217 
1.50 0.0052 0.0154 

 

 
Fig. 4. Convergence plot of wet bed dam break case 

 

 
Fig. 5. Water depth between the numerical and analytical solution at different time step for 

wet bed dam break over (a) entire domain (b) 100m<x<275m (c) 325m<x<500m 

    (b) 

    (c) 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 27, Issue 2 (2022) 1-15 

10 
 

 
Fig. 6 Flow rate between the numerical and analytical solution at different time step for 

wet bed dam break over (a) entire domain (b) 100m<x<275m (c) 325m<x<500m 
 
3.3 Dry Bed Dam Break Case 

 
Table 2 shows the summary the solution error while Fig. 7 presents the convergence plot for the 

dry bed dam-break case. Similar to the wet dam break case, the error of the solution reduces with 
the decrease in element sizes. The convergence rates of the water depth and flow rate are first order. 
The correlation 𝑅2 values is close to unity, showing excellent agreement between numerical result 
and analytical solutions.  

Fig. 8 and 9 show the water depth and flow rate results for the dry dam break case at various 
time steps. Although the case starts with portion of the domain completely dry, the DGFEM can 
provide a stable and accurate solution. The result shows that the agreement between the numerical 
and exact solutions is excellent for region far from the discontinuity. Focusing on the discontinuous region, as 
shown in Figs. 8 (b) and 8(c), slight discrepancies can be observed. Owing perhaps to the slope limiter scheme, 
the model is able to prevent any over shooting and under shooting of the result.  
 

Table 2                                
                                 𝑳𝟐-norm error for dry bed dam break 

Element Size, m Water depth error Flow rate error 
24.00 0.0049 0.0125 
12.00 0.0027 0.0063 
6.00 0.0011 0.0029 
3.00 0.0005 0.0014 
1.50 0.0002 0.0006 

 
 
3.4 The Importance of Positivity Preserving Scheme 

 
Previous section shows excellent agreement between the numerical result and analytical solution 

with no instability issue. The stability of the numerical solution is partly achieved due to the inclusion 
of the positivity-preserving scheme. This section examines the result of the model without the 
positivity-preserving scheme to highlight the importance of the scheme in providing stable solution. 
Results for the water depth and flow rate without the positivity-preserving scheme as compared to 

    (b) 

    (c) 
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analytical solution are presented in Fig. 10 and Fig. 11. The plot is produces at a time step of 𝑡 = 1s, 
just before at the solutions blows. It can be seen that over and under-shooting of the solution clearly 
evident at the discontinuous region as shown in Fig. 10 (b) and (c). Negative water depth starts to 
develop at the downstream part. The solution is becoming more severe for the flow rate as the value 
starts to become exceedingly large at the downstream section (Fig. 11 (b) and (c)). As the error 
increases for each time step, the solution become unstable and blows [8]. The plot of maximum error 
for water depth and flow rate is given by  Fig. 12. The plot shows that the solution blows after 𝑡 = 1s.   
 

 
Fig. 7. Convergence plot of dry bed dam break case 

 

 
Fig. 8. Water depth between the numerical and analytical solution at different time step 

for dry bed dam break over (a) entire domain (b) 100m<x<275m (c) 350m<x<600m 
 

 

    (b) 

    (c) 
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Fig. 9. Flow rate between the numerical and analytical solution at different time step for 

dry bed dam break over (a) entire domain (b) 100m<x<275m (c) 350m<x<600m 
 

 
Fig. 10 Water depth between analytical and numerical (without positivity-preserving scheme) over 

(a) entire domain (b) 280m<x<320m (c) 280m<x<320 at time step of 𝒕 = 𝟏s 
 

 
Fig. 11 Flow rate between analytical and numerical (without positivity-preserving scheme) over (a) 

entire domain (b) 280m<x<320m (c) 280m<x<320m at time step of 𝒕 = 𝟏s 
 

    (b)     (c) 

    (b) 

    (c) 

    (b) 

    (c) 
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Fig. 12 Maximum error of with and without positivity-preserving scheme (PP) before blow-out for 

(a) water depth and (b) flow rate 
 

Without any stabilization scheme, the numerical model produces an unphysical, negative 
water depth especially when the bed is dry. The generation of negative water depth is problematic 
since the calculation of the numerical flux required the evaluation of the square root of the water 
depth (the term f𝑔ℎ). The thin water layer technique used in this study is proven to be critical to 
achieve a stable solution. The scheme always ensure that each element is wet and prevent any over 
and under-shooting of the solution that could potentially generate a negative water depth [30]. 
 
4. Conclusions 
 

In this paper, an improved DGFEM has been successfully developed for the solution of a 1D dam-
break by combining the thin water later and min-mod stabilization techniques. With the stabilization 
techniques, comparison between numerical and analytical solution shows excellent agreement for 
wet and dry dam break cases. With the stabilization techniques removed, the solution of the dry dam 
break quickly blows, highlighting the importance of preserving the positivity of the water depth.   
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