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ABSTRACT 

Lattice Boltzmann mesoscopic (LBM) is applied to solve energy equation of a transient conduction radiation heat transfer problem 
in a two-dimensional cylindrical participating (absorbing, emitting and scattering) medium in the presence of heat 
generation/absorption coefficient. Control volume finite element method (CVFEM) formulation is used to obtain the radiative 
information. To study the effectiveness of the LBM-CVFEM combination on unsteady conduction-radiation problems in cylindrical 
media, the energy equation of the problem is also solved using the finite difference method (FDM) in which the CVFEM is used to 
compute radiative information. The effects of heat generation/absorption coefficient on temperature distributions in the medium 
are studied. Results of the present work are benchmarked against those available in the literature. The hybrid numerical model’s 
results are also compared with those obtained by the FDM-CVFEM combination. All the results presented in this work show that 
the present method is accurate and valuable for the analysis of cylindrically axisymmetric radiative heat transfer problems. 
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1. Introduction 
 

During the past five decades, much effort has been expended to solve coupled unsteady 
coupled conduction and radiation heat transfer problems in semitransparent cylindrical media. The 
motivation for this effort arises from extensive engineering applications, such as industry combustion 
chambers, the design of reactors, heat pipes, rocket propulsion systems, etc. Therefore, research on 
coupled conduction and radiation heat transfer problems in cylindrical media appears to be of 
practical significance.  

For many engineering applications such as boilers, combustors, and rocket propulsion 
systems, axisymmetric assumption is usually made due to its geometric and theoretical simplicity 
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and, thereby, economic benefits because it physically describes three dimensional phenomena with 
two-dimensional procedure. Therefore, substantial efforts are exerted to analyze the axisymmetric 
problems in the field of radiation as well as flow and heat transfer including combustion. During the 
past few decades, numerous methods have been proposed to solve the RTE in the axisymmetric and 
cylindrical geometry. Among others, the Monte Carlo method (MCM) [1], the discrete transfer 
method (DTM) [2,3], the discrete ordinates method (DOM) [4], the finite-volume method (FVM) [5-
10], the collapsed dimension method (CDM) [3], and the control volume finite element method 
(CVFEM) [11-23]. Analyses of coupled conduction-radiation heat transfer in cylindrical media have 
also been reported by many researchers [24-26].  

Over the past few years, lattice Boltzmann method (LBM) has found wide-ranging applications 
in science and engineering [27-29]. This surge in interest is mainly attributed to its ability, direct 
discretization, computational simplicity, ability and efficiency. Unlike other conventional 
computational fluid dynamics (CFD) solvers, such as finite difference method (FDM), Finite Element 
Method (FEM) and Finite Volume Method (FVM), which are based on macroscopic models, the LBM 
is a mesoscopic approach and it describes and captures physics better. This method includes simple 
calculations procedure, efficient implementation for a parallel architecture, and simplicity of 
boundary condition’s implementation, easy and robust handling of complex geometry, and others.  

More recently, the application of LBM has gained momentum in the solution of transient 
conduction-radiation problems [20-23, 27-29]. In the present work, we extend the application of LBM 
in solving both energy equation of a 2-D transient conduction-radiation heat transfer problem in a 
cylindrical enclosure and radiative transfer equation (RTE) in the presence of uniform heat absorption 
or generation effect. 
 
2. Physical Model and Formulation   
 

We consider combined transient conduction radiation heat transfer in a 2D system with a 
homogeneous absorbing, emitting, and scattering participating medium. Figure 1 and 2 depicts the 
system and coordinates. 
 

 

 

Fig. 1. Geometry and coordinates 
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Fig. 2. Schematic of the Cartesian and cylindrical coordinates for the equation of radiative transfer 

 

Equation governing unsteady heat transfer in a finite axisymmetric cylindrical medium, is as 
follow 

 

  (1) 

 
                                                                                (2) 

 
where is the density, is the specific heat and  is the thermal conductivity. 

 represents the radiative heat flux which given by 
 

                                       (3) 
 
where 
 

            (4) 

 
and is the radiative intensity which can be obtained by solving the Radiative Transfer Equation 
(RTE). 

For an absorbing, emitting and scattering grey medium the RTE can be written as 
 

 (5) 

 
where is the radiative intensity, which is a function of position  and direction ;  and  
are absorption and scattering coefficients, respectively;  is the blackbody radiative intensity at 

the temperature of the medium; and is the scattering phase function from the incoming 

direction to the outgoing direction . The term on the left-hand side represents the gradient of 
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the intensity in the direction . The three terms on the right-hand side represent the changes in 
intensity due to absorption and out-scattering, emission, and in-scattering, respectively.    

The radiative boundary condition for Eq. (5), when the wall bounding the physical domain is 
assumed grey and emits and reflects diffusely, can be expressed as 
 

   if                               (6) 

 
 represent  the unit normal vector on the wall and represents the wall emissivity. 

 
3. Numerical methods   
 

The CVFEM is used to discretize the RTE. In the CVFEM, the spatial and angular domains are 
divided into a finite number of control volumes and control solid angles. The direction of propagation 

 is defined in Cartesian spatial coordinates ( ) as shown in figure 1. 
 

  (7) 
 
In cylindrical spatial coordinates ( ),  is expressed as 
                  

 (8) 
 
where 
 

  (9) 
  
The total solid angle is subdivided into control solid angles as depicted in figure 2, 

where  
 

        (10) 
 

  (11) 
 
The control solid angle is given by (Fig. 2): 

 

  (12) 
 

is the radius of the cylinder and  is its height. 
For the energy equation, the detail may be referred in References [20,23,27,29]. The kinetic 

equation in the LBM for a two dimensional enclosure is given 
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For a 2-D cylindrical geometry and taking into account the single time relaxation model of the 
Bhatanagar–Gross–Krook (BGK) approximation, the discrete Boltzmann equation is given by  

 

                               (14) 

 
where  is the relaxation time and  is the equilibrium distribution function.  

In heat transfer problems, the relaxation time  for the D2Q9 lattice (Fig. 3-4) is computed 
from  
 

                                                                        (15) 
  
The nine velocities and their corresponding weights in the D2Q9 lattice are the following: 

 

                                                                            (16)           
 

  ;          (17) 

 

                                                      (18) 

                                            (19) 
 
It is to be noted that in the above equations,   and the weights satisfy the relation

. 

                        

Fig. 3. Discretisation in axisymetric configuration 
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                      (20) 

 

 
Fig. 4. Propagation in the LBM  

 
 

In case of heat transfer problems, the temperature is obtained after summing  over all 
direction, i.e, 
 

                                                                        (21) 

 
To process Eq. (20), an equilibrium distribution function is required. For heat conduction 

problems, this is given by 
 

                                                                       (22) 
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where the divergence of radiative heat flux is given by: 
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Equation (23) is the equivalent form of the energy equation Eq. (1) in the LBM formulation, 

taking into account the presence of the volumetric radiation and the axisymmetric configuration.              
The boundary conditions are based on the properties of the known and unknown populations on 
each side as shown on figure 5. To express these conditions the bounce-back concept in the LBM in 
which particle fluxes are balanced at any point on the boundary was used.  

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5.  Boundary conditions with known and unknown populations 

 

 
Fig. 6. Arrangement of lattices and control volumes in the domain 
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4. Results and discussion 
4.1 Case 1:  Transient heat conduction in an infinite cylinder 

 
The problem of determining the distribution of temperature in a infinite cylinder in the 

presence of heat generation is considered [30-34]. The temperature must satisfy the partial 
differential equation 
 

                                                     (25) 
 

The cylinder is of radius , the faces are kept at  temperature and the flow of heat results from 
the initial distribution of temperature inside the cylinder. 

The analytic solution of the problem is given by: 
 

                                                      (26) 
 
where 

 

                                                (27) 
 

 
Fig.7.  Non-dimensional temperature (case1) 
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Case 2:  Transient heat conduction radiation in axisymmetric cylinder with heat 
generation/absorption 

 
After a grid and direction independency tests, in figure 100, we present steady state 

isotherms for a conduction-radiation parameter , For an extinction coefficient , a 
scattering albedo . First, the effect of an uniform heat generation is depicted in figure 8(a) 
and this,  for g*=0,3,5. In figure 8(b),  we highlight a heat absorption source on a transient conduction 
radiation axisymetric cylindrical participating medium. 

The bottom surface at a high temperature ) and the remaining surfaces 

( and ) at a lower temperature . The study reveals that control 
volumes/lattices and directions are sufficient to achieve the grid and ray 
independency. 
 

  
N=0.1, g*=0, ω=0.5, β=1 N=0.1, g*=2, ω=0.5, β=1 

 

 
N=0.1, g*=5, ω=0.5, β=1 

 
Fig. 8(a).  Dimensionless steady state isotherms (case1) 
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N=0.1, g*=-5, ω=0.5, β=1 

 

  
N=0.1, g*=-3, ω=0.5, β=1 

 
Fig. 8(b).  Dimensionless steady state isotherms 

 
 
5. Conclusions 
 

In this work, the usage of the LBM to solve transient conduction-radiation problem was 
extended to a 2-D cylindrical enclosure. The CVFEM was used to compute the radiative information 
required for the energy equation. To compare the performance of the LBM-CVFEM hybrid method, 
the problems were also solved using the FDM-CVFEM combinations. The study shows that internal 
heat generation modifies significantly temperature fields. The increase in the value of the heat 
generation parameter leads to increase in the temperature inside cavity also increases and hence 
that negates the heat transfer from the heated surface. 

On the other hand, the presence of heat source within the enclosure causes an increase in 
the fluid temperature, leading to a reduction radiative heat transfer on the hot wall. while heat 
absorption produces lower temperature distributions inside the cylinder. 
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