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This paper introduces some of the various techniques of vibration control and 
optimization for the purpose of vibration reduction and balancing. Here, in this 
research by comprising three of the most effective variational techniques now, a 
Modified Differential Evolutionary Optimization Algorithm (MDEOA) method is 
suggested to handle the challenge of adjusting the PID controller parameters for the 
Intelligent Active Vibration Control (IAVC) of a Combined Single Link Robotics Flexible 
Manipulator (CSLRFM) in order to reduce the undesired effects of vibration. The 
Crossover Probability Factor (CPF) as the Certain Ratio (CR) and the Mutation Factor 
(MF) of the algorithm are gradually altered during algorithm iteration to enhance the 
method's performance during optimization. On this foundation, the PID controller 
parameter tuning and the issue of CSLRFM mechanical vibrations are addressed using 
the MDEOA method. This research suggests an evolutionary algorithm that 
incorporates the variational techniques mentioned above, which will be combined by 
a certain ratio, and the specific computational procedure.  In this strategy, a Strictly 
Bearish Distributed Exponential Function (SBDEF) has been used as the main target and 
the criteria and indicators for evaluating and measuring the optimal performance of 
differential evolution are the Integral Absolute Error (IAE) rate and the PID controller 
parameter values. According to simulation findings, the technique can be used to 
optimize the PID controller parameters settings for the IAVC of the CSLRFM and a 
reduction in the mechanical vibrations. Simulation results illustrate the effectiveness 
of the proposed MDEOA strategy which is significantly and quite satisfactory about 25 
to 30 (%) better than comparing to the other algorithms in improvement stabilization 
and vibration control of CSLRFM. 
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1. Introduction 
 

For many years, attempts have been made to preserve mechanical vibration factors and regulate 
mechanical vibration, as the structures may be damaged or system performance may be harmed as 
a result of the undesired vibration [1]. Vibration reduction is a serious concern in the usage of flexible 
structures, especially in the robotics and aerospace sectors, which typically utilize lightweight, low-
absorption flexible structures for their vital and fundamental models. A manipulator as a flexible 
structure is a mechanical component made up of many segments that may be applied for a variety 
of tasks [2]. Robotics Flexible Manipulators (RFMs) are in high demand to replace humans in tough 
vocations, routine tasks, and dangerous situations in order to gain and achieve faster, more cost-
effective, and more precise operations. The accurate positioning of the manipulator's tip is 
challenging due to the oscillations. In the 1970s, work on the dynamics, mathematical modelling, 
analysis, and control of the flexible mechanism really got going. Only a few of the feedback control 
techniques that have been studied for accurate positioning and vibration control of single link 
robotics flexible manipulators include Pole Placement (PP) [3], Lyapunov-Based Control (LBC) [4] and 
Integral Resonance Control (IRC) [5]. Since its origin, Artificial Intelligence (AI) techniques including 
Fuzzy Logic (FL), Neural Networks (NN), and process identification and control have been shown 
useful in a wide range of fields and applications [6]. PID controllers are extensively employed in 
process control for industrial processes because of their benefits of simplicity, ease of installation, 
and resilience [7]. This leads to the development of the equivalency issue between a Fuzzy Logic PID 
(FL-PID) controller and a traditional (PID) controller. Flexible structures have been utilized with 
effective vibration control methods and approaches, such as Differential Evolution Optimization 
(DEO), to achieve the required vibration suppression for precise accuracy. The MDE method is used 
in this study effort to maximize the gains of a PID controller for vibration suppression in the flexible 
beam. The PID controller parameter tuning is based on a Modified Differential Evolutionary 
Optimization Algorithm (MDEOA) for the Intelligent Active Vibration Control (IAVC) of a Combined 
Single Link Robotics Flexible Manipulator (CSLRFM). The PID controller is utilized to provide the 
control signal that is delivered to the flexible beam in order to dampen vibrations. The flexible beam 
is treated as a distributed parameter system. In this case, the major purpose is to combine two of the 
most efficient variational approaches now available to address the issue of altering and optimizing 
the PID controller settings of a CSLRFM as the nonlinear system. The goal of the optimization problem 
is to reduce the beam's vibration levels while decreasing the energy used by the active vibration 
control system. The MDE algorithm is used to search for the optimal PID gains that achieve these 
objectives, while considering the constraints and limitations of the system, such as the maximum 
control signal amplitude, the frequency range of the vibrations, and the physical properties of the 
beam. The main target is addressed for the issue of mechanical vibration control for eliminating and 
minimizing the deflection and oscillation angle of the End Effector of the beam for better 
performance in the vibration control and suppression, and keeping the rotation angle at a desired 
and acceptable positional accuracy in a horizontal plane motion. Classical vibration control is the 
process of designing controllers that may lessen or completely get rid of undesirable vibrations in 
mechanical systems using approaches from classical control theory, Figure 1 [8].  
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Fig. 1. Flow chart for types of classical vibration control [8] 

 
Automatic and self-tuning vibration control are advanced vibration control techniques that use 

modern control theory and signal processing techniques to design controllers that can automatically 
adapt to changes in the system dynamics and disturbances, Figure 2 [9].  
 

 

 

 
(a) Self-tuning regulator  (b) Self-tuning controller 

Fig. 2. Block diagram of a self-tuning regulator (a) and a self-tuning controller (b) [9] 
 

Active Force Control (AFC) loop corrects for the disturbance force discovered by comparing the 
ideal and real force vectors incorrectly [10]. The following schematic loop, Figure 3, may be used to 
create the AFC controller of the suspension system. where D, F, and derivatives are the estimated 
disturbance Force, measured force, and body acceleration respectively.  
 

 
Fig. 3. AFC scheme loop [12] 
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Active Vibration Control (AVC) consist a set of techniques used to reduce or eliminate unwanted 
vibrations in mechanical systems by applying a control force that is in opposition to the vibration, 
Figure 4 and Figure 5 [11]. 

 

 

 

 
Fig. 4. General idea of AVC system (a) and 
principles of signal operation (b) [11] 

 Fig. 5. Principles of signal operation (b) 
[11] 

 
The principles of natural evolution serve as the foundation for the class of optimization algorithms 

known as Evolutionary Algorithms (EA). Complex optimization issues that are challenging to solve 
using conventional techniques are solved utilizing these algorithms [13]. Differential Evolution (DE) 
is one kind of evolutionary algorithm used to address optimization issues and effectiveness in 
resolving challenging optimization issues [14]. Five variation strategies commonly used by DE [18]. 
Summary of studies related to modifying DE mutation strategy shown in Table 1. 
 

  Table 1 
  Summary of studies related to modifying DE mutation strategy 

No Name Subject Problem 
1 Kaelo & Ali Electromagnetism  Using a complex method of   

concept in mutation factor generating mutation factor     
2 H.-Y. Fan & Lampinen Trigonometric mutation scheme Using random numbers to     

generate a mutation strategy 
3 Lilla et al., DE/rand/1/either-or algorithm generates the     

mutant vectors with a probability  
4 Q. Fan & Yan DE/current-to-gr_best/1 scheme Complex method combines the    

 mutant vector with the crossover  
5 F. Zhao et al., A hybrid algorithm - 
6 Das et al., Neighbourhood-based mutation  Complex methods combine two    

strategy comparing the effect of  strategies: neighbourhood      
based mutation 

7 Gokul et al., Combination of the two  the self-adaptation strategy    
categories of DE modification and modifying DE mutation strategy 

8 Yu et al., Faster convergence mutation  The greedy logic based is a    
strategy that uses random vector strategy 

9 Xiang et al., New DE mutation strategy combines two mutation strategies and   
 that combines DE/current/1 also uses randomization to 

       find the mutant factor 
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2. Methodology  
2.1 Modified Differential Evolution Optimization Algorithm (MDEOA) 

 
The Modified Differential Evolution (MDE) method is a development of the traditional Differential 

Evolution (DE) algorithm with the goal of enhancing its performance in handling challenging 
optimization issues. Das and Suganthan first presented MDE in 2011, and it has subsequently been 
used to solve several optimization issues in other disciplines. The mutation, crossover, and selection 
processes of the MDE algorithm are used to create a population of candidate solutions. In order to 
better adapt to the task at hand, MDE makes several improvements to the DE algorithm, starting 
with a dynamic mutation strategy that adjusts the mutation strategy based on the success of prior 
mutations. Second, self-adaptive control parameters. The crossover operation in MDE adjusts the 
probability distribution using self-adaptive control parameters, which can result in better 
convergence. Third, adaptive mutation rate, which allows for improved exploration and utilization of 
the solution space by adjusting the mutation rate based on the success of prior mutations. In several 
benchmark optimization issues, MDE has been demonstrated to outperform the traditional DE 
technique and other cutting-edge optimization algorithms. Compared to the conventional DE 
technique, MDE may be more difficult to develop and call for more processing resources. The 
difficulty of modifying the PID controller settings for the Intelligent Active Vibration Control (IAVC) of 
a Combined Single Link Robotics Flexible Manipulator (CSLRFM) in order to mitigate the unfavourable 
impacts of vibration is addressed in this research study by combining two of the most effective 
variational approaches currently available. In order to improve the algorithm's performance during 
optimization, the crossover probability factor (CR) and mutation factor are gradually changed during 
algorithm iteration. As the stages of the optimization process, in this article. The definition of the 
optimization issue, including the search space, restrictions, and objective function, comes first. In 
most cases, the objective function is a multi-objective cost function that considers both the 
effectiveness of vibration suppression and the energy usage of the active vibration control system. 
The second stage is to use partial differential equations to represent the flexible beam as a distributed 
parameter system. This model is employed to predict how the beam will behave under various 
operating scenarios and to assess how well the PID controller will manage vibrations. The third stage 
involves setting the control gains to some initial values and implementing the PID controller in 
hardware or software. The MDE technique is then used to conduct an optimization process to find 
the best PID gains that minimize the objective function while meeting the restrictions. By performing 
mutation and crossover operations on the current solutions and choosing the best ones for the 
following generation, the algorithm iteratively creates new candidate solutions. The final step is to 
evaluate the outcomes by updating the control signal applied to the beam using the optimal PID gains 
acquired from the optimization process. By comparing the system's energy use and vibration levels 
before and after the optimization, the performance of the improved PID controller is assessed. The 
optimization procedure can be repeated if necessary to boost the PID controller's performance even 
further. 
 
2.2 Mutation Scheme Modification of MDEOA 

 
Numerous methods exist for enhancing differential evolution algorithms, and almost all of them 

try to compromise between local exploitation and global search capabilities. The DE/rand/1 variation 
strategy is the most widely used and beneficial for sustaining population variety, according to a 
detailed assessment of the most recent literature [16], which also includes all variation strategies for 
the DE algorithm. However, DE/best/2 has the best solution [17,18] which is more useful for 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 52, Issue 1 (2025) 234-258 

239 
 

addressing specific algorithmic technical concerns and accelerating the algorithm's convergence rate. 
Due to the ease with which the variational strategy with the most information might easily fall into 
the local optimum, they all construct a modified differential evolutionary algorithm with two 
variational strategies. Based on the above, this research proposes an evolutionary algorithm that 
combines the two variational approaches stated above in a certain ratio and goes as follows in terms 
of computing process: 

 
Mi

1(time+1) = [N(K)* [(xr2(time)-xr3(time))]] + [xr1(time)]                                                                                            (1)  
 

Mi
2(time+1) = [N(K)*[(xr1(time)-xr2(time))]] + [xbest(time)]                                                                                         (2)     

 
Mi(time+1) = [[(1- ζ)] * [Mi

2(time+1)]] + [[ζ]* [Mi
1(time+1)]]                                                                                    (3)     

 
M1(time+1) = [N(K)*[(x2(time)-x3(time))]] + [x1(time)]                                                                                               (4)     

 
M2(time+1) = [N(K)*[(x1(time)-x2(time))]] + [xbest(time)]                                                                                           (5)     

 
M(time+1) = [[(1- [ζ])] *[M2(time+1)]] + [[ζ]*[M1(time+1)]]                                                                                     (6)     

 
Where the amount of DE/rand/1 in the variation strategy is represented by Gamma in Eq. (3) and 

Eq. (6) the proportion of the two variant strategies in the final variance strategy is altered to better 
balance the global search capability and convergence speed for various issues by adjusting the value 
of [ζ] as Zita. 

 
2.3 Crossover Scheme Modification (CR) of MDEOA 

 
The crossover probability factor (CR) of MDEOA, which also balances the efficacy of local and 

global search, may be used to control each randomly selected mutation vector's involvement in the 
crossover. The crossover probability factor Cr is frequently selected to have a range of [0,1]. The pace 
of convergence will be too slow and the effect of individual disturbances will be amplified if the 
selection is too big. If it is too minimal, the population variety will be reduced and early convergence 
will be simple. In conventional differential evolution, the crossover probability factor CR will pick a 
fixed value that disregards population changes during recurrent development. The population's rate 
of convergence would be accelerated if, as the number of repeats increased, the crossover 
probability factor (CR) gradually increased and the variation factor (VF) gradually decreased. The 
following formula can be used to alter the crossover probability Cr: 

 
CR = Cr = ŋ =1/ [ʎmax/ [ŋ min [ʎmax - ʎ] + [ŋ max * [ʎ]]]]                                                                                                    (7)     

 

2.4 Variance Factor (F) of MDEOA 
 
Variation Factor (VF), which also affects the population's diversity and convergence, is the main 

factor controlling the search phase of the differential evolution process. Population variety increases 
during population evolution when the Mutation Factor (MF) falls, increasing the likelihood that the 
algorithm may depart from the extreme value while slowing convergence. In contrast, population 
diversity rises as Mutation Factor (MF) increases, which makes it more probable for the algorithm to 
"leap out" of the extreme value. The conventional differential evolution method cannot fully leverage 
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the characteristics of each stage of algorithm evolution since the variation factor f normally assumes 
a constant value between [0,2]. As a result, the number of rounds determines how the variation 
factor is calculated in this study. 

 
R(K) = e[[K-1]/ [K-Km-1]]                                                                                                                                                                                                                                                    (8)     
 
N(K) = [[[R(K)] * [(2Nave)]] + Nmin]                                                                                                                                  (9)     

 
In Eq. (8), K stands for the current iteration count while Km for the maximum iteration count. in 

Eq. (9), N(K) stands for the value of the current iteration count's Variation Factor (VF) while Nave and 
Nmin stand for the factor's average and minimum values, respectively. 

 
2.5 Optimization Methodology of MDEOA 

 
The DE method is introduced to address the genetic algorithm's primary drawback, namely the 

absence of local search in this approach. The Selection Operators are where the genetic algorithm 
and the DE algorithm diverge most. However, the DE algorithm gives each response an equal chance 
of being chosen. That is, once a new response is created using a mutation and crossover operator, 
the new answer is compared with the prior value and replaced if it is superior. As a result, the 
likelihood of being chosen does not depend on their merit value. Unlike other algorithms, the 
differential evolutionary algorithm first performs the crossover operator and then the mutation 
operator in such a manner that the mutation operator is applied first and the crossover operator is 
used later to produce a new generation. The mutation operator is used without the need of a specific 
distribution, and the duration of the mutation step is equal to the separation between the present 
members. As a result, the population is first generated using a uniform distribution, whose members 
are scattered throughout the space evenly. As the DE algorithm advances, these members get closer 
to one another, and this convergence eventually produces the best result. It should be noted that a 
large population can aid in the discovery of the ideal solution, which is why the initial population in 
this case is generated as shown in Figure 6, Figure 7 and Figure 8. 

 

   
Fig. 6. Number of initial 
populations as a uniform 
distribution with allowable 
distance = 0.01. in MDEOA 

Fig. 7. Number of initial 
populations as a uniform 
distribution with allowable 
distance = 0.1. in MDEOA 

Fig. 8. Number of initial 
populations as a uniform 
distribution with allowable 
distance = 0.3. in MDEOA 

 
The scale factor's proper value is one of the key considerations in this method; if it is set to be small, 
the jump operator's step sizes will be shorter and more time will be required for searching. 
Additionally, the differential evolution method fails to evaluate appropriate solutions when the scale 
factor is big. Therefore, it is crucial to calculate this coefficient with considerable care. After the 
mutation, crossover is carried out in a fashion that generates a random number between 0 and 1; if 
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the produced number is less than the crossover rate, the desired element in that member of the 
population is removed from the mutation part; otherwise, the desired element is removed from the 
member's starting value. This procedure is continued until all of a member's members are either 
selected from the modified part or from their original value. The newly created matrix is then 
compared to the old matrix, and if the new matrix is more affordable, it takes the place of the original 
matrix. Every person in the population receives this treatment. The error (IAE) rate and the PID 
controller parameter values in this method serve as the criteria and indicators for assessing and 
monitoring the optimal performance of differential evolution. As a result, Figure 9 shows that a 
distributed exponential function has been employed to get the best performance in this technique, 
which is a continuous distribution, has the following probability density function, 

 
ƒ (x; ʎ) = ʎ e (-ʎx)

 , x ≥0                                                                                                                                                                                                                                                 (10)     
 

ƒ (x; ʎ) = 0 , x <0                                                                                                                                                                                                                                                                (11)    
 

where the parameter (ʎ) is the inverse of the mean (mathematical expectation) of the distribution 
and this distributed exponential function is a strictly descending function so that it can perform the 
objective function which is the optimization and minimization of the error rate with the optimal 
performance of the algorithm, Figure 10. 

 

 

 

 
Fig. 9. Distribution exponential function of 
MDEOA. 

 Fig. 10. Distribution exponential function and 
mutation scheme of MDEOA. 

 
 If the created population's members can be positioned on this exponential distribution function 

and the concentration of population production is concentrated at the lower end of the distribution 
function, then the error rate as the goal function will be as low as feasible in the differential evolution 
strategy and algorithm provided in this research. is feasible, bringing PID control parameter values 
closer to their ideal values and ultimately resulting in proper performance. The accuracy of the topic 
is demonstrated by Figure 11, Figure 12, Figure 13, Figure 14, Figure 15 and Figure 16. 
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Fig. 11. Concentration of members on distribution 
exponential function of MDEOA 

 Fig. 12. Concentrated of members on 
distribution exponential function of MDEOA 

 

 

 

 
Fig. 13. Concentrated of members of MDEOA  Fig. 14. Position concentrated of members of 

MDEOA 
 

 

 

 
Fig. 15. Points concentrated of members of 
MDEOA 

 Fig. 16. Optimized and concentrated members 
on DEF as target function 
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2.6 Flowchart of MDEOA 
 
The flow chart of MDEOA algorithm is shown as Figure 17. 

 

 
Fig. 17. Flowchart of MDEOA 

 
2.7 Evaluating of MDEOA 

 
According to the findings in Figure 18 to Figure 26, the modified DE (MDEOA) was evaluated using 

MATLAB in two different ways for this study. First, Liang investigated the effectiveness of the 
suggested method using three mathematics issues from CEC'14. The total number of iterations for 
all experiments was 30, with a 200-iteration cap. The settings for each experiment are shown in Table 
2 to Table 4. The MDEOA and Classic DE methods' MATLAB code has been altered, and both 
algorithms utilized the same initialized population. The results were then shown as graphs using the 
MATLAB plot function with the best fitness value, best location, and iteration. The identical 
mathematical problem parameters were then provided to the algorithms. PlatEMO, a MATLAB 
evolutionary optimization platform developed by Cuate for testing optimization algorithms, was 
utilized to evaluate the improved DE. PlatEMO is a well-known practical program that allows users to 
test 345 optimization problems, choose an algorithm from 176 methods, change the parameter 
values, and obtain static and graphical data to assess the effectiveness of the algorithms in solving 
the preset various mathematical problems by Tian. 

 

 

 

  
Fig. 18. The CDEOA in the optimization of Rastrigin function with the parameters as shown in Table 2 
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Fig. 19. The CDEOA in the optimization of Sphere function with the parameters as shown in Table 2 

 

 

 

  
Fig. 20. The CDEOA in the optimization of Sum Squares function with the parameters as shown in Table 2 

 

 

 

  
Fig. 21. The MDEOA in the optimization of Rastrigin function with the parameters as shown in Table 2 

 

 

 

  
Fig. 22. The MDEOA in the optimization of Sphere function with the parameters as shown in Table 2 
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Fig. 23. The MDEOA in the optimization of Sum Squares function with the parameters as shown in Table 2 

 
  Table 2 
  Results comparison of 3 mathematical problems using the CDEOA and MDEOA 

Fixed   CDEOA MDEOA 
Parameters Set 

  

F=0.5, C=0.9, Rastrigin 
Function 

Sphere 
Function 

Sum square’s 
Function 

Rastrigin 
Function 

Sphere 
Function 

Sum square’s 
Function D=2, NP=50, 

Maximum 
Iteration 

200 200 200 200 200 200 

Minimum 
Iteration 

30 10 10 15 5 5 

Maximum 
Fitness 

3.1 0.23 0.25 10.5 0.4 0.3 

Minimum 
Fitness 

0 0 0 0 0 0 

 
 Table 3 
 Results percentage of the CDEOA improvement over   
 MDEOA in minimum iteration 
Function Minimum Iteration Improvement in CDEOA 
Rastrigin 50% 
Sphere 50% 
Sum square’s 50% 

 
  Table 4 
  Results percentage of the CDEOA improvement over   
  MDEOA in maximum fitness 

Function Maximum Fitness Improvement in CDEOA 
Rastrigin 29.50% 
Sphere 57.50% 
Sum square’s 83% 

 
The results from Table 2 to Table 4 will be evaluated using the improvement calculation to 

understand how much the difference between the modified DE and the other algorithms. The 
improvement percentage is calculated using the following formula where (I) is the improvement, (Va) 
is the value before, (Vb) is the value after. 

 
I = (Va/Vb) x 100                                                                                                                                                              (12)   
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(a) Minimum Iteration  (b) Maximum Fitness 

Fig. 24. Results comparison of the CDEOA and MDEOA in the optimization of Rastrigin function 
 

 

 

 
(a) Minimum Iteration  (b) Maximum Fitness 

Fig. 25. Results comparison of the CDEOA and MDEOA in the optimization of Sphere function 
 

 

 

 
(a) Minimum Iteration  (b) Maximum Fitness 

Fig. 26. Results comparison of the CDEOA and MDEOA in the optimization of Sum square’s function 
 
2.8 Control Block Diagram Framework of MTRS 

 
The combination of the Combined Plant (CP) and the NGCAM as the Combined Actuator (CA) has 

been considered as the Mechatronics Test Rig System (MTRS) with three degrees of freedoms (θ1), 
(θt) and (θg) which the input and output is the angular position with (θt) as the main output of the 
system. The suggested (AVC-DEO-PID) control scheme is employed in this research study to assess 
system performance in vibration control when the RFM is to be acted with the disturbance. Here, the 
MATLAB simulations, control strategies, results, and data analysis for the MTRS has been investigated 
and carried out for the general circuit situation and performance assessment of the MTRS 
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respectively in different models and situations based on mathematical and dynamical modelling, 
equations of motion. Figures 27 and 28, and the overall block control structure of MTRS are all 
examples of this. A Proportional, Integral and Derivative (PID) is used as the primary controller to 
regulate the gyroscope. After the controller has analysed the command data and sent the command 
set to the flywheel motor driver through communication, the traditional and intelligent control 
framework communicates the flywheel speed command to the controller wirelessly. The flywheel 
motor receives its energy from the motor driver. the MTRS's traditional and intelligent control 
scheme, which employs a gyroscopic effect brought on by a combination of a flywheel's angular 
momentum and a gimbal's rate of tilt. The control block can be attached as a NGCAM for the system's 
vibration control and employed in a new intelligent control framework block. The flywheel's tilt 
motion regulates the gyroscopic force acting in the yaw direction [19-23]. 
 

 
Fig. 27. AVC-DEO-PID control block diagram framework of MTRS 

 

 
Fig. 28. Closed loop control system block diagram with AVC and DE optimization of MTRS 

 
3. Results 
3.1 MATLAB Simulation, Control, Results and Data Analysis 

 
Create the simulation model in accordance with the equation; the parameters for the differential 

evolution simulation are: the dimension of population number is D; the population size is NP; the 
maximum and minimum values of the variance factor are Nmax and Nmin, respectively, with the 
average value Nave. The crossover probability factor has a maximum value of ŋmax and a minimum 
value of ŋmin utilizing an average value of ŋave. Following 100 generations of evolution, the corrected 
results are shown in Table 10. 
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3.2 PID Control Design and Simulation of MTRS 

 
The simulations of the closed loop system for a Single Link Robotics Flexible Manipulator Model 

(SLRFMM) consist of a Flexible Manipulator Model (FMM) with a Servo Direct Current Motor Model 
(SDCMM) both as a system Combined Plant (CP) and a Gyroscope Model (GM) with a Direct Current 
Motor Model (DCMM) both as a Combined Actuator (CA) have been performed and obtained for the 
performance assessment of the system model with PID controller tuning by Ziegler Nichols method 
where the input signal to the system is a step function. In this simulation the system input (I2) is a 
step function as a voltage (u = v) and the real output is in three (O1 = θt) as an angular position, (O2 = 
θ̇t = ω) as an angular velocity and (O3 = θẗ = α) as an angular acceleration known as vibration. The 
system input (I1) is a step function as an angular position, the real output as angular position (O1 = 
θt), their derivatives as angular velocity (O2 = θ̇t = ω) and angular acceleration known as vibration (O3 
= θẗ = α). The simulation block diagram of the system model is represented in continuous time 
domain model in MATLAB & SIMULINK with the input/output signal graphs which has been shown in 
Figure 29, Figure 30, Table 5 and Table 6.    
 

 Table 5 
 Tuned parameters coefficients of PID controller of MTRS [24] 
MTRS Parameters Unit Description PID Reference 1, [24] 
KP Cte.   Proportional  0.6744 0.2033 
KI Cte.   Integral  0.6051 0.9333 
KD Cte.   Derivative  3.3624 0.0538 
N Cte.   Cte.   75 - 

 

 
Fig. 29. The PID control block diagram simulation of MTRS 
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(a) Angular position as input (1) of MTRS  (b) Angular velocity as output (2) of MTRS 

 

 

 

 
(c) Gyroscope Euler angles as inputs  (d) Gyroscope outputs 

Fig. 30. The PID control signal graph simulation results of MTRS 
 

 Table 6 
 Performance criteria of PID controller of MTRS [25,26] 
TRS Parameters Unit Description PID Reference 2, [25] Reference 3, [26] 

 
TR (ms) Rise Time 1.755 1.157 4.07 

 

TP (s) Peak Time 2.532 1.5 5.272 
 

TS (s) Settling Time 5.851 2.185 10.7 
 

MP (%) Overshoot 0.532 1.5 0.819 
 

ESS (/s) Steady State Error 0.02 0.0298 0.0982 
 

 
3.3 AVC-PID Control Design and Simulation of MTRS 

 
Here, the input/output signal graphs for AVC-PID control simulation results of MTRS has been 

evaluated and shown in Table 7. 
 

Table 7 
Tuned parameters coefficients of AVC-PID controller of MTRS [19,20] 
MTRS Parameters Unit Description AVC-PID Reference 4, [19] Reference 5, [20] 
KP Cte. Proportional 0.6796 7.1 4 
KI Cte. Integral 0.6052 0.0061 0.03 
KD Cte. Derivative 3.3804 70.46 0.006 
N Cte. Cte. 75 - - 
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3.4 AVC-DEO-PID Control Design and Simulation of MTRS 

 
For the performance evaluation of a Single Link Robotics Flexible Manipulator Model (SLRFMM), 

Differential Evolution Optimization (DEO) simulations of a closed loop system model with PID 
controller have been carried out and created in continuous time.  

The optimization run test results are displayed in Figure 31, Figure 32, Figure 33, Figure 34 and 
Figure 35 run tests comparison in Figure 36 according to the system optimization parameters as Table 
8, Table 9 and Table 10.  

DE strategies are essential for stochastic global optimization, which is highly dependent on 
control parameters, and have a significant and significant influence on DE performance.  

Deterministic optimization (DE) is a population-based metaheuristic method for producing 
numerical solutions to optimization problems. 
 
3.4.1 Run test 1 

 

 

 

  
Fig. 31. The optimization results of MTRS for run test 1, with kP=kI=kD=44.0332 

 
3.4.2 Run test 2 

 

 

 

  
Fig. 32. The optimization results of MTRS for run test 2, with kP=kI=kD=23.0551 
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3.4.3 Run test 3 

 

 

 

  
Fig. 33. The optimization results of MTRS for run test 3, with kP=kI=kD=23.0284 

 
3.4.4 Run test 4 

 

 

 

  
Fig. 34. The optimization results of MTRS for run test 4, with kP=kI=kD=22.7323 

 
3.4.5 Run test 5 

 

 

 

  
Fig. 35. The optimization results of MTRS for run test 5, with kP=0.4539, kI=1.8310, kD=3481.2 
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3.4.6 Run tests comparison 

 

 

 

 
(a) Run tests 1 to 5 comparison of MTRS  (b) Run tests 1 to 4 comparison of MTRS 

 

   
(c) IAE convergence comparison 
of run tests 1 to 5 

(d) IAE convergence 
comparison of run tests 1 to 4 

(e) IAE convergence and 
error of run test 5 of MTRS 

Fig. 36. The optimization run tests comparison results (a), (b), (c), (d) and (e) of MTRS 
 

 Table 9 
 DEO coefficients of MTRS 
Run Test Ibest Fbest Time 
Run Test 1-30 Times 19 1152 475.226 
Run Test 2-30 Times 39 - 1063.8 
Run Test 3-30 Times 25 - 1818.4 
Run Test 4-30 Times 69 - 2756.5 
Run Test 5-30 Times 36 - 777.6 

 
The preceding trials/tests were carried out to demonstrate the constancy of the best parameters. 

The proposed algorithm's performance on the system has been assessed. The result of the IAE criteria 
is used to determine good performance in this case. In the current study, the algorithm was run (30) 
times on the system independently for each run-in order to compare the results of different runs and 
determine the average output performance of (DE).  
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All combinations of control parameter values are evaluated to identify the influence of population 

size (NP), differential weight (N) and crossover (ŋ). The problem dimension (D) has been considered 
in this case. The differential weight range is set to (0.1) to (3), the crossover range is set to (0.1) to 
(3), the population size parameters are set to (50) to (100) and the generation number is set to (10) 
to (100). As a result, like other evolutionary algorithms, the output is based on a random chance to 
get better results and as indicated in Figure 37, Table 8, Table 9, Table 10 and Figure 38 to Figure 41 
and Table 11 to Table 13, the output of (DE) is always unclear.  

 
3.5 Simulation Performance Evaluation of MTRS 

 

 

 

 

(a) Test of MTRS with CDEOA and MDEOA 
 

 (b) Test of other system with CDEOA and MDEOA 

 

 

 

(c) Controller comparison of Input, PID and AFC-DEO-PID  (d) Controller comparison of Input, PID, FL, FL-PID 
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(e) Controller comparison of Input, PID, FL, FL-PID, AFC-
FL-PID and AFC-DEO-PID 

 (f) Angular position response of closed loop system with 
controller 

Fig. 37. The simulation performance evaluation results (a), (b), (c), (d), (e) and (f) of MTRS 
 

Table 11 
Tuned parameters coefficients of PID, AVC-PID and AVC-DEO-PID controller of MTRS 
MTRS Unit Description PID AVC-PID AVC-DEO-PID Reference Reference 
Parameters 4 [19] 5 [20] 
KP Cte.   Proportional  0.674 0.6796 0.4539 7.1 4 
KI Cte.   Integral  0.605 0.6052 1.831 0.0061 0.03 
KD Cte.   Derivative  3.362 3.3804 3481.2 70.46 0.006 
N Cte.   Cte.   75 75 75 - - 

 

 

 

 
Fig. 38. Results comparison of PID, AVC-PID 
and AVC-DEO-PID controller of tuned 
parameters coefficients of MTRS 

 Fig. 39. Results comparison of PID, AVC-PID 
and AVC-DEO-PID controller of performance 
criteria of MTRS 
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Fig. 40. Results comparison of OLS, CLS, PID, 
FL, FL-PID and AVC-FL-PID controller of 
performance criteria of MTRS 

 Fig. 41. Results comparison of OLS, CLS, 
PID, FL, FL-PID and AVC-FL-PID controller 
of performance criteria of MTRS 

 
  Table 12 
  Performance criteria of PID, AVC-PID and AVC-DEO-PID  
  controller of MTRS 

MTRS 
Parameters 

Unit Description PID AVC-
PID 

AVC-DEO-
PID 

TR (ms) Rise Time 1.755 1.737 0 
TP (s) Peak Time 2.532 2.4817 0 
TS (s) Settling 

Time 
5.851 5.6754 0.125 

MP (%) Overshoot 0.532 0.5111 0 
ESS (/s) Steady 

State Error 
0.02 0.0198 0 

 
Table 13 
Performance criteria of OLS, CLS, PID, FL, FL-PID and AVC-FL-PID controller of MTRS 
MTRS 
Parameters 

Unit Description OLS CLS PID FL FL-
PID 

AVC-FL-PID 

TR (ms) Rise Time Inf  Inf  1.755 6.745 5.321 5.0549 
TP (s) Peak Time Inf  Inf  2.532 9.321 6.132 5.9254 
TS (s) Settling Time Inf  Inf  5.851 Inf 6.231 5.6079 
MP (%) Overshoot Inf  Inf  0.532 0.109 0.399 0.3074 
ESS (/s) Steady State 

Error 
Inf  Inf  0.02 0.127 0.014 0.0093 

 
Computational Thinking (CT) and Data Science (DS) are methods of problem-solving that use a 

variety of approaches and abilities to comprehend and approach complicated problems 
methodically. It covers ideas like as abstraction, pattern recognition, decomposition, and algorithm 
design. It entails taking organised and unstructured data and applying scientific procedures, systems, 
algorithms, and methodologies to extract information and insights. Together, (CT) and (DS) provide 
strong approaches and instruments to tackle challenging issues, particularly in the field of 
optimisation. When creating and utilising optimisation strategies in a variety of sectors, (CT) and (DS) 
are essential. They make it possible to see patterns, break down difficult issues into smaller, more 
manageable chunks, and develop effective algorithms for locating the best answers. These 
techniques are crucial in sectors where optimisation may result in major gains in efficacy and 
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efficiency, including supply chain management, healthcare, finance, and transportation, summary as 
Table 14 and Table 15 [27]. 

Machine learning (ML) in Algorithm Optimization has revolutionized various fields by enabling 
systems to learn from data and make informed decisions. One significant application of ML is in the 
optimization of algorithms themselves. This involves improving the performance, efficiency, and 
effectiveness of algorithms by leveraging ML techniques such as Hyperparameter Tuning, Algorithm 
Selection, Parameter Optimization, Adaptive Control, Surrogate Modelling, which significantly 
enhances algorithm optimization by providing methods for them. These techniques lead to more 
efficient, effective, and adaptive algorithms across various fields, from deep learning to scientific 
simulations [28]. 
 
  Table 14 
  Computational thinking activities of ISTE in practical [27] 

No Title Ref. 
1 Formulating, organizing, analysing, modelling, abstractions, algorithmic 

thinking, automating, efficiency, generalizing, transferring 
ISTE (2011) 

2 Creativity, algorithmic thinking, critical thinking, problem solving, 
cooperation 

ISTE (2015; Oden et al.,) 

3 Data analysis, abstract thinking, algorithmic thinking, modelling, 
representing data, breaking problems into components, automation 

ISTE (2016) (Computational 
Thinker Definition) 

 
  Table 15 
  Computational Thinking items [27] 

No Title Ref. 

1 Abstraction, Algorithms, Automation, Problem Decomposition, Parallelization, 
Simulation 

Barr & Stephenson 
(2011) 

2 Abstraction, Algorithms, Automation, Problem Decomposition, Generalization Wing (2006, 2008, 2011) 
3 Abstraction, Algorithmic Thinking, Decomposition, Evaluation, Generalization Selby & Woollard (2013) 
4 Abstraction, Automation, Analysis Lee et al., (2011) 
5 Abstraction, Algorithms, Decomposition, Debugging, Generalization Angeli et al., (2016) 

 
4. Conclusions 

 
In this study, a superior differential evolution approach is proposed for configuring the CSLRFM 

mechanical vibrations control parameters. The method combines two excellent mutation algorithms 
and may adjust the combination's balance to better meet the demands of problem-solving as 
needed. The typical differential evolution algorithm has a constant value for the mutation factor, but 
the algorithm also uses crossover probability factors that change with the number of iterations to 
make up for this shortcoming. The proposed MDEOA is utilised to modify the CSLRFM mechanical 
vibrations' control parameters. According to the simulation results, it performs better dynamically 
and steadily than the classic PID algorithm and standard differential evolution algorithm due to its 
benefits of reduced overshoot, rapid reaction, and quick adjustment times. It is compared to other 
algorithms to demonstrate that the parameters optimised by the MDEOA method have greater 
control performance in PID. In this research, As the objective, to investigate a new tuning method 
using a New Graphical Combined Actuator Model (NGCAM) and a Modified Differential Evolution 
Optimization Algorithm (MDEOA) both as a new approach to compute gains and optimizing the 
Intelligent Active Vibration Controller (IAVC) parameters in order to control the mechanical vibration 
of the CSLRFM and eliminating and minimizing the deflection and oscillation angle of the End Effector 
of the beam for better performance in the vibration control and suppression and keeping the rotation 
angle at a certain time, the flexible arm has a constant rotational angular position without vibration 
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and in a desired and acceptable positional accuracy in a horizontal plane motion. The feasibility of 
the proposed NGCAM with MDEOA and the proposed controller is validated by simulations using 
MATLAB & SIMULINK program. The DE optimization simulation results demonstrate that with the 
optimised controller parameters coefficients, (Kp), (Ki), and (Kd), the system will provide a suitable 
response, and the research aims and performance are acceptable with the parameters. As a result, 
DE's output is always unpredictable. It is obvious from the optimised system's tables and comparison 
graphs, as well as the observed reduction in IAE, that the recommended DE optimization was 
successful in increasing the system's vibration control performance. The angular position is variable 
in this case, but at a specific moment, it is constant with a specific angular velocity, and the angular 
acceleration is zero. The system results based on the intelligent active vibration controller with the 
proposed NGCAM with MDEOA for minimizing the error function according to the performance 
criteria and simulation findings, the technique can be used to optimize the PID controller parameters 
settings for the IAVC of the CSLRFM and a reduction in the mechanical vibrations. Simulation results 
illustrate the effectiveness of the proposed MDEOA strategy which is significantly and quite 
satisfactory about 25 to 30 (%) better than comparing to the other algorithms in improvement 
stabilization and vibration control of CSLRFM. 
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