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Coronavirus Disease 2019 (COVID-19) is a transmittable disease caused by severe acute 
respiratory coronavirus 2 (SARS-CoV-2). The outbreak of the disease has affected the 
world in a negative manner. The development and on-going vaccination efforts has 
reduced the mortality rate in people with existing comorbidities and lowered virus 
transmission rate. However, there are still the needs for prescribed medicines that can 
be consumed by COVID-19 infected persons. Momordica charantia L. has been used in 
traditional medicines to treat various diseases including anti-diabetic and cancer. 
Pharmacological studies on Momordica charantia L. revealed that the plant stored 
many useful phytoconstituents that might be exploited for producing drug compounds 
to treat COVID-19. Nowadays, computational-aided drug methods are widely used in 
drug discovery process as it requires minimal compound design and improve the 
development pipeline. In this study, molecular docking of five phytochemicals from 
Momordica charantia L. were carried out against SARS-CoV-2 main protease (Mpro). 
The results obtained revealed that some of the phytochemicals showed a better dock 
score compared to the drug molnupiravir. Based on the dock score and the medicinal 
properties of each compound, it is suggested that these compounds can be further 
studied for potential drugs against COVID-19. 
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1. Introduction 
 

Coronavirus disease 2019 (COVID-19) is a type of disease that affect the human respiratory 
system. The transmission of the disease is caused by a new beta coronavirus strain, namely, severe 
acute respiratory syndrome 2 (SARS-CoV-2). On March 2020, the World Health Organization (WHO) 
has declared the COVID-19 outbreak a global pandemic, as the number of infected persons increases 
rapidly within a short time. The symptoms of the disease vary from asymptomatic to severe, which 
in serious cases, could be fatal and lead to death. The most common symptoms seen in patients with 
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mild infection include fever, sore throat, cough and shortness of breath [1]. Patients in severe cases 
often experience organ dysfunction, acute cardiac injury, acute kidney injury and in worst cases, 
death might occur [1]. According to the evidences from COVID-19 outbreak, people with pre-existing 
comorbidities such as hypertension, cardiovascular disease and diabetes are at much greater risk of 
dying from COVID-19 infection [2,3].  

The development of vaccines and ongoing vaccination effort have shown drastic reduction in the 
number of hospitalizations and fatality caused by COVID-19 [4,5]. However, there are still the need 
for drug compounds that can specifically target and inhibit the viral entry of SARS-CoV-2 into human 
body. Resultantly, many FDA drugs have been repurposed to alleviate the symptoms and illness 
associated with COVID-19 infection. Many in-vitro studies and clinical trials have been done to assess 
the efficacy of the repurposed drugs against the deadly SARS-CoV-2. Presently, many therapeutic 
options are available, such as antiviral therapies, monoclonal antibodies, anti-inflammatory drugs, 
and immunomodulators agents [6]. Drugs such as hydroxychloroquine, remdesivir, favirapir and 
molnupiravir have shown a positive result in inhibiting the pathogenicity of the virus [7]. Howbeit, 
adverse side effects were also observed in the patients.  

Researchers have been striving to find safer alternatives to COVID-19 treatments by utilizing 
phytochemicals as the main compounds produced in the drugs against the disease. Momordica 
charantia L. or commonly known as bitter gourd, is a flowering vine in the Cucurbitaceae family and 
has long been used in food and medicines [8]. It is widely grown in tropical and subtropical regions 
of the world such as Malaysia, China, Tropical Africa, Middle East, America and Thailand [8,9]. M. 
charantia contains a wide array of novel and biologically active phytochemicals including proteins, 
flavonoids, triterpenes and steroids that can be used in many disease treatments [8,9]. Medicinally, 
this plant has been used since ancient times as it possesses various pharmacological function such as 
antidiabetic, anthelmintic, antimalarial, contraceptive and laxative [9]. Nowadays, the advancement 
in computational drug methods has permeated all aspects of drug discovery. The techniques in 
computational modelling have cut down research timeline and cost by reducing wet-lab experiment 
for designing certain drugs. Molecular docking is one of the computational methods that enable 
researchers to predict and model the interaction between small molecules and protein at atomic 
level [10]. It is a method designed to understand drug biomolecular interactions, which is essential 
for rational drug design and discovery, as well as mechanistic study by inserting small molecule 
(ligand) into the targeted binding site of the specific region of the DNA/protein (receptor), forming a 
stable complex of potential efficacy and specificity [11,12]. By observing these interactions, the 
behaviour of these molecules in the binding site can be characterized, and fundamental biochemical 
processes can be elucidated [10]. The purpose of docking is to determine the best possible 
conformational poses of protein-ligand, protein-protein or any other type of interactions with 
minimal binding affinity [13]. Determination of accurate binding poses of the ligand to the receptor 
is imperative for deciding its binding affinity, thus qualifying it to be utilized as potential lead 
compounds.  

In the present study, molecular docking method was used to elucidate the ligand-receptor 
binding mechanism and model the interaction between five phytochemical compounds in M. 
charantia and SARS-CoV-2 main protease.  

 
2. Methodology  
2.1 Preparation of Protein and Ligands for Docking 

 
The 3D structure of SARS-CoV-2 main protease in bound with N3 inhibitor (PDB ID: 6LU7) was 

downloaded from Protein Data Bank. Firstly, all of the water molecules, ions and N3 inhibitor were 
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removed using Pymol software. Then, the structure of the protein was saved in PDB format for 
further analyse. The 3D structure of each phytochemical (rutin, kaempferol, quercetin, luteolin and 
catechin) was retrieved from PubChem in SDF format. Rutin is a compound from the class of flavonols 
that are widely studied for its use in drug design and formulation. Previous studies on rutin revealed 
amazing physiological and pharmacological properties of the compound in mammalia systems either 
in-vitro or in-vivo [14]. Rutin were mainly known for its strong antioxidant property and its role in 
preventing various pathologies [15]. Other biological activities of rutin such as anti-inflammation [16], 
[17] anti-microbial [18] anti-tumour [19] and anti-asthma [20] acted as free radical scavenger that 
contributed to the strong antioxidant property of rutin [14]. Kaempferol is a type of flavonoid 
compound that were found in glycoside form in most plants [21]. Previous studies found that 
kaempferol and its derivatives were profuse with biological properties, including cardioprotective, 
neuroprotective, anti-inflammatory, antidiabetic, antioxidant, antimicrobial, antitumor, as well as 
anticancer properties [21,22].  

 

 
Fig. 1. Flow chart of methodology utilized in present study 

 
Another compound from the subclass flavonol, quercetin, has shown great pharmacological 

activities in mammals and each of the properties were actively studied by researchers in drug design. 
Similar as rutin, quercetin shown a strong antioxidant property due to its ability to scavenge free 
radicals and bind with the transition metal ions [23]. Other pharmacological actions including 
anticancer, antiviral, anti-allergic, metabolic and inflammatory disorder, eye and cardiovascular 
disease, and arthritis were also reported [24]. Luteolin, a derivative compound of quercetin is known 
to possess wide range of pharmacological actions, including anti-inflammatory activity, antioxidant, 
antimicrobial, anticancer and neuroprotective activities [25]. Catechin is a type of phenolic 
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compounds that were found concentrated in many dietary products, plants, and fruits. Catechin is 
known to play important role in molecular mechanisms that involved in angiogenesis, apoptosis, 
extracellular matrix degradation, and multidrug resistance in cancer and related disorders [26]. Each 
of the structures were then converted to PDB format using Online Smiles Translator. The 3D structure 
of reference molecule in SDF format was also downloaded from PubChem and converted into PDB 
format using Online Smiles Translator. 

 
2.2 Procedures for Molecular Docking 

 
Molecular docking of five phytochemicals from M. charantia against main protease of SARS-CoV-

2 is performed using AMDock [27]. AMDock (Assisted-Molecular Docking) is a graphical tool that 
assist users in docking of protein-ligand complexes using AutoDock Vina and AutoDock4 (Valdés-
Tresanco et al., [27]). Several programs/scripts are readily integrated into AMDock that minimized 
the preparation process while keeping control of the docking environment [27]. The grid box was 
generated using AutoDock Tools to obtain binding position for specific site docking. The grid centre 
for docking was set at X= -12.2, Y=11.5, Z=68.9. The grid dimensions of the box were set at 40 X 54 X 
40. The centre and dimension for the grid box was generated based on the binding site of native 
inhibitor (N3 inhibitor) on the main protease, to optimize the best substrate-binding site and utilize 
important amino acid residues involved in the binding. The structure and details about the N3 
inhibitor were discussed previously [28] and similar method of retrieving grid box coordinates could 
also be found in previous study [29-31]. Firstly, docking was performed with reference molecule to 
validate the docking protocol. Accordingly, the five phytochemicals from M. charantia were docked 
to the target site on SARS-CoV-2 main protease and the binding energy was extracted from the 
software. The interactions between the ligands and target protein were observed and analysed. 

 
2.3 Visualization of Molecular Interactions 

 
The analysis of molecular interactions between the protein-ligand structure was performed using 

LigPlot+ [32]. LigPlot+ is a software for the visualization of multiple ligand-protein interactions and 
generate diagrams that portray all the interactions, including the hydrogen-bond interactions, 
hydrophobic contacts between the ligand(s) and the main-chain or side-chain residues of the protein 
[32]. The system is able to plot related sets of ligand-protein interactions, in the same orientation. 
This feature aids in many research works, especially in drug discovery as it allowed users to analyse 
a series of small molecules binding to the same protein target, a single ligand binding to homologous 
proteins, or in general case where both protein and ligand change [32]. 

 
3. Results  
3.1 Molecular Docking of Phytochemicals from M. Charantia with SARS-CoV-2 Main Protease 

 
The binding energies of five phytochemicals from M. charantia and molnupiravir against SARS-

CoV-2 main protease are summarized in Table 1. From the result, it is revealed that phytochemicals 
in M. charantia exhibited lower binding energy compared to the reference molecule, molunpiravir. 
Lower binding energy indicates that the higher binding affinity of the molecules to target receptors 
[33]. The binding energy of the phytochemicals and reference molecule with SARS-CoV-2 main 
protease was, -8.9 for rutin, -7.8 for kaempferol, -7.5 for quercetin and luteolin, -7.2 for catechin and 
-6.7 for drug molnupiravir (Table 1). The range of binding energy with SARS-CoV-2 main protease 
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towards phytochemicals were from -8.9 to -7.2 kcal mol-1, which was better and significant than the 
binding energy of molnupiravir (-6.7 kcal mol-1). 

 
Table 1 
Docking score of five phytochemicals from M. charantia and molnupiravir with SARS-
CoV-2 main protease 

Classifications Ligands Molecular Weight (g/mol) Binding Affinity (kcal/mol) 
Flavonoid Rutin 610.5 -8.9 
Flavonoid Kaempferol 286.40 -7.8 
Flavonoid Quercetin 302.23 -7.5 
Flavonoid Luteolin 286.24 -7.5 
Flavonoid Catechin 290.27 -7.2 
Reference molecule Molnupiravir 329.31 -6.7 

 
3.2 Visualization of Molecular Interactions between Phytochemicals from M. Charantia and Main 
Protease 

 
The molecular interactions of phytochemicals from M. charantia were analyzed using LigPlot+ 

[32] and superimposition images of the phytochemicals and molnupiravir on main protease targeted 
site were generated using Pymol. Rutin showed the most interactions with main protease of SARS-
CoV-2. As seen on Figure 2a, rutin interacted with MET165A, ARG188A, HIS164A, CYS145A, LEU27A, 
THR25A and GLN189A through hydrophobic contacts. Hydrogen bonds with HIS163A, SER144A, 
GLU166A, THR190A, HIS41A, THR26A, GLY143A, ASN142A, PHE141A and LEU141A were also 
observed. Superimposition analysis of rutin with reference molecule, molnupiravir revealed that the 
compound interacted with 12 same residues that matches with the drug (Figure 3a). The visualization 
of molecular interactions between kaempferol with Mpro through LigPlot+ showed that kaempferol 
interacted with MET165A, GLU166A, HIS163A, ARG188A, ASP187A, MET49A, HIS164A and CYS145A 
through hydrophobic contacts (Figure 2b). Kaempferol formed hydrogen bonds with residues 
GLN189A, SER144A and LEU141A that maintains strong affinity with the target protein. Among 11 
residues, interactions with 8 of the residues matches with that to the reference molecule (Figure 3b). 
Quercetin showed hydrophobic interactions with eight amino acid residues, in which two of the 
residues are the catalytic dyad, HIS41A and CYS145A (Figure 2c). The compound also forms hydrogen 
bonds with LEU141A, HIS163A and SER144A. Superimposition analysis of quercetin with molnupiravir 
showed that the compound interacted with 8 residues that matches to the drug (Figure 3c). Luteolin 
interacted with GLU166A, GLN189A, HIS164A, MET165A and catalytic residues CYS145A and HIS41A 
through hydrophobic interactions (Figure 2d). Hydrogen bonds with THR190A, ARG188A, ASN142A 
and GLN192A residues were also observed during the binding of luteolin with Mpro (Figure 2d). 
Among interactions with 10 of the residues, 7 of it matches with that to the drug molnupiravir (Figure 
3d). As seen in Figure 2e, the compound catechin was observed to have hydrophobic interactions 
with PRO168A, GLN189A, HIS164A, ARG188A, MET165A, ASP187A and a catalytic residue HIS41A. 
Catechin also formed hydrogen bonds with GLN192A, GLU166A and THR190A. Superimposition 
analysis of catechin with reference molecule revealed that the compound interacted with 6 residues 
that matches with the drug molnupiravir (Figure 3e). 
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a) Molnupiravir with main protease b) Rutin with main protease 

 
 

c) Kaempferol with main protease 
 

d) Quercetin with main protease 
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e) Luteolin with main protease 

 
 

f) Catechin with main protease 

Fig. 2. Visualization of molecular interactions between SARS-CoV-2 main protease and five 
phytochemicals from M. charantia using LigPlot+. (a) rutin, (b) kaempferol, (c) quercetin, (d) luteolin, (e) 
catechin and (f) reference molecule, molnupiravir. The purple lines denote the ligand structure, the 
brown lines denote the structure of amino acid residues. The molecular interactions are represented as 
dashed lines and arcs. The green dashed lines between atoms depict hydrogen bonds, and the numbers 
above these lines denote the length of the bond. Concurrently, the arc with spokes radiating toward the 
ligand atoms indicate hydrophobic contacts 
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a) Position of molnupiravir on 6LU7 active site 

 
b) Super imposition of molnupiravir and rutin 

 
c) Super imposition of molnupiravir and kaempferol 

 
d) Super imposition of molnupiravir and quercetin 

 
e) Super imposition of molnupiravir and luteolin 

 
f) Super imposition of molnupiravir and catechin 

Fig. 3. Superimposition images of reference molecule (molnupiravir) and phytochemicals from M. 
charantia on main protease (6LU7) targeted site. a) Position of molnupiravir on 6LU7 active site, b) 
superimposition of rutin with molnupiravir, c) kaempferol with molnupiravir, d) quercetin with 
kaempferol, e) luteolin with molnupiravir, f) catechin with molnupiravir. The light-yellow surface-bound 
structure represent main protease (6LU7), the green stick in the binding site represented the drug 
molnupiravir and the different coloured sticks represent the phytochemicals. The yellow dashed lines 
indicate molecular interaction of the ligands with main protease 

 
4. Discussion 

 
SARS-CoV-2 main protease is one of the targeted proteins for the development and design of 

drugs and vaccines. Main protease is an attractive drug target as it plays pivotal role in post-
translational processing of replicase polyproteins [31]. Computational and mechanistic studies of 
SARS-CoV-2 main protease revealed that the main catalytic residues in the active site of the main 
protease are CYS145 and HIS41 [31,34]. During main protease catalysis, His41 deprotonates CYS145 
thiol, which then reacts with the carbonyl of the scissile amide, giving out an acyl-enzyme 
intermediate [34]. Previous study revealed that the catalytic dyad involved in the maturation of the 
virus, thus making it an attractive target site protein [35]. Docking of the five phytochemicals from 
M. charantia and reference drug, molnupiravir, were performed using AMDock. AMDock is a 
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graphical tool that assisted in molecular docking with AutoDock VINA and AutoDock4. External 
programs including OpenBabel, PDB2PQR, AutoLigand, and ADT scripts were integrated in AMDock 
that ease users for the preparation of input structure files, definition of the search space, and it also 
offers several alternatives and different degrees of user supervision [27]. The pH for docking 
environment was set as default at 7.4. The pH value can be set for determining the protonation states 
of the protein and ligand. In present study, the pH value for protonation of both ligand and receptor 
were set at default, pH 7.4. The particular pH value was selected to emulate the actual pH value in 
human body. Most biological processes are pH dependent and greatly affected by the pH of the water 
phase, which includes subcellular translocation [36,37], functional pH dependence [36,38], and 
structural conformations correlated with its function [36,39,40]. Previous studies reported that 
changes in pH were observed to exhaustively influenced protein-protein [36,41,42], protein-ligand 
[36,43-45], protein-membrane [36,46] and peptide-membrane linkage [36,43-45]. The input files 
needed for docking were prepared automatically using AMDock, which includes protonation of 
titratable residues, merging of non-polar hydrogens and removal of ion/water [27]. The protein was 
kept rigid during the docking process, and the ligands were flexible. AMDock provided users with few 
options to define the box centre and dimensions (search space):  

 
i. “Automatic” 

ii. “Centre on Residue(s)” 
iii. “Centre on Hetero” 
iv. “Box” 

 
The “Box” option was used in this study to define the search space on the protein. This option 

allows users to define their own desired box centre and dimensions [27]. The “Box” option was used 
for defining the search space of the SARS-CoV-2 main protease (PDB ID: 6LU7) active site. As 
mentioned in the procedures for molecular docking, the grid box coordinates were generated based 
on the binding location of the native inhibitor, N3 [28] on SARS-CoV-2 main protease. Thus, the “Box” 
option was chosen to set a desired coordinate, that specifically focuses on the active site of the main 
protease. Current study revealed that the five phytochemicals from M. charantia, namely rutin, 
kaempferol, quercetin, luteolin and catechin have higher binding affinity compared to reference 
drug, molnupiravir. Binding affinity is the degree of binding conformation between the ligand and 
protein. Simultaneously, binding energy is referred to the energy released due to the formation, or 
rather, interaction of the ligand and protein is termed in form of binding energy. The lesser the 
binding energy, the better binding affinity of the ligand and protein [47,48]. In this study, the protein 
was kept rigid and the ligands were let flexible, to generate different conformations during the 
docking process. The ones with the best docking score were chose for study. 

Molnupiravir is an oral antiviral drug, which has been reported to exert inhibition against SARS-
CoV-2 and other RNA viruses, and showed a high barrier to the development of resistance [49,50]. 
Antiviral drugs such as molnupiravir usually act as nucleoside analogues that stop RNA chain 
polymerization, and targets the virus polymerases [49]. Initially, molnupiravir was issued as a possible 
treatment for influenza viruses, encephalitic alphaviruses, dues to its inhibitory effect in cell cultures 
[51]. This drug has been seen as a promising drug candidate for the treatment of COVID-19 infection 
as results from clinical trials shown positive outcomes in the tested patients. Previous studies 
revealed that molnupiravir impedes the replication of many viruses, including SARS-CoV-2, inhibit the 
replication of SARS-CoV-22 in human lung tissues, obstruct the transmission of SARS-CoV-2 in ferrets, 
and reduces SARS-CoV-2 RNA counts in COVID-19 patients [49]. In this study, molnupiravir was used 
as a reference molecule for docking against SARS-CoV-2 main protease. Molnupiravir with main 
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protease showed docking score of -6.7 kcal/mol. Five phytochemicals from M. charantia namely, 
rutin, kaempferol, quercetin, luteolin and catechin were used for docking against main protease of 
SARS-Cov-2. Amongst these phytochemicals, rutin and kaempferol showed the lowest binding energy 
with main protease, -8.9 and -7.8 kcal/mol, respectively, and bind firmly to the receptor’s catalytic 
residues. The low binding energy indicates that the compounds have high binding affinity with the 
main protease of SARS-CoV-2. For our phytochemical compounds to be selected as potential 
inhibitors of SARS-CoV-2 main protease, they must bind to the active site and interact with catalytic 
residues presented in the active site. Therefore, molecular interactions of the selected five 
phytochemicals from M. charantia were analyzed with LigPlot+ [32].  

Rutin is a flavonol, found abundantly in many plants, including M. charantia. Previous analysis on 
this compound revealed that it exhibited various pharmacological activities such as prevention of 
neuroinflammation on the nerve cells, anticataract and ophthalmic effect, antibacterial activity, 
antiviral activity and many more [52]. Rutin also been used to treat various chronic diseases including, 
cancer, diabetes, hypertension, and hypercholesterolemia [53]. In this study, rutin showed the lowest 
binding energy with main protease, suggesting that it can bind stably and have better affinity with 
the protein. The high binding affinity of rutin with main protease might be due to the numerous 
molecular interactions between the protein-ligand complex. Protein-ligand interaction is also an 
equally crucial parameter that deciding a drug’s aptness for further studies [48]. A compound must 
interact with essential amino acids of the enzyme via hydrogen bonds and hydrophobic interactions 
in order to inhibit the enzyme [54]. Rutin interacted with both of the catalytic dyad either through 
hydrophobic contacts or hydrogen bonds. This study also analyzed superimposition of the five 
phytochemicals with reference molecule, molnupiravir. The result revealed that rutin bind with the 
most residues that matches with that of the drug molnupiravir, suggesting that it binds with major 
amino acids responsible for the inhibition of main protease catalysis. Kaempferol is a naturally-
occurring compound in many vegetables and fruits [55] including M. charantia or bitter gourd. 
Kaempferol has been demonstrated to exhibit various pharmacological activity against many 
diseases, including cancer [55,56]. Kaempferol showed better binding affinity compared to the drug 
molnupiravir at the active site of SARS-CoV-2 main protease. As seen in the diagram, kaempferol 
interacted with one of the catalytic residues in main protease, CYS145A, suggesting it as potential 
drug targets to inhibit the viral activity of SARS-CoV-2 Mpro. The other three phytochemical 
compounds namely, quercetin, luteolin and catechin showed a docking score of -7.5 kcal mol-1, -7.5 
kcal mol-1 and -7.2 kcal mol-1, respectively. These three phytochemicals showed comparably better 
binding affinity to the active site of SARS-CoV-2 main protease than the drug molnupiravir. 
Visualization of molecular interactions between quercetin, luteolin and catechin with main protease 
revealed that these compounds interacted with the important residues in the catalytic site, including 
CYS145A and HIS41A. Current study also included superimposition of molnupiravir with the selected 
five phytochemicals from M. charantia. As seen in Figure 3, the five phytochemicals showed better 
binding conformation to the main protease active site, compared to reference molecule, 
molnupiravir. This discovery suggesting that these phytochemicals can be potential drug candidate, 
targeting SARS-CoV-2 main protease. 

 
5. Conclusions 

 
To summarize, molecular docking of five phytochemicals from M. charantia or bitter gourd with 

SARS-CoV-2 main protease revealed that these compounds have better binding affinity with the 
protease compared to reference molecule, molnupiravir. The analysis of the molecular interactions 
between the five phytochemicals with SARS-CoV-2 main protease revealed that the selected 
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compounds interacted with either both of the catalytic residues (CYS145A and HIS41A) or at least 
one catalytic residue detected by AutoDock VINA integrated in AMDock. Thus, it is suggested that 
these compounds can be potential inhibitors and drug targets of the main protease. Further in-vitro 
study should be conducted to evaluate the properties of these phytochemicals for the development 
of drug target against SARS-CoV-2 main protease. 
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