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This detailed review underscores the significant potential of floating photovoltaic
(FPV) systems in fostering a sustainable energy future. It evaluates the efficiencies,
applications, and environmental impacts of different FPV technologies, illustrating
that FPVs are a feasible solution to the global energy crisis. The review particularly
highlights hybrid floating photovoltaic (HFPV) systems, which excel in maximizing
energy production while minimizing ecological impacts. It advocates for the adoption
and continuous improvement of FPV technologies, emphasizing that FPVs provide a
way to meet rising global energy demands and align with the imperative for
environmentally sustainable energy solutions.
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1. Introduction

Global resources are being rapidly depleted due to population growth and development
activities [1]. This is primarily because global energy demand is surging, driven by population
expansion and industrialization [2]. Additionally, the ecosystem has suffered significant damage due
to emissions from the combustion of fossil fuels, which are a prevalent source of the world's energy
[3]. Fossil fuels are also projected to be depleted by 2030 [4]. Historically, the world has exploited
resources to generate energy, creating a habitable environment for humans. However, non-RE
sources are not only exhaustible but also contribute to climate change and ecological damage [5].
Thus, relying on non-RE to meet global demand is unsustainable.

Selecting eco-friendly, RE sources is crucial for a sustainable future, particularly to reduce
greenhouse gas (GHG) emissions and protect the environment [6]. Key sources include solar [7],
wind [8], hydropower [9], geothermal [10], and biomass energy [11]. Among these, solar energy
stands out as a prime candidate for global investment [12]. According to the International
Renewable Energy Agency (IRENA) in 2023, solar energy accounted for 30% of all renewable energy
installations in 2022, as illustrated in Figure 1. In the same year, solar energy reached the second-
highest installed capacity among renewable technologies, totalling 1061 GW, just behind
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hydropower at 1392 GW [13]. Figure 2 displays the global installed capacity of solar energy over the
past decade, showing a clear upward trend and indicating consistent growth year over year [13].

Fig. 1. Capacity RE in 2022 Fig. 2. Global solar energy capacity from 2013 to
2022

There are various factors that contribute to the adoption of solar energy as the preferred choice.
Solar energy is the most abundant renewable source, with continuous emission from the sun,
making it a sustainable and inexhaustible option [14]. It also has minimal ecological impact,
maintaining natural balance [15]. Moreover, solar systems are cost-effective for both industrial and
residential applications. Due to these advantages, solar technology has become a major focus of
investment, aiming to replenish depleted energy sources and reduce the greenhouse effect caused
by fossil fuels. As shown in Figure 3, solar energy has the highest increment compared to other RE
sources [16].

PV systems are a notable example of this technology. The Renewables 2022 Global Status
Report by REN21 confirms that PV had the highest growth rate in 2021 among RE sources. As
depicted in Figure 4, there is a continuous and consistent growth pattern observed in PV over the
past decade [13].

Fig. 3. The growth of RE Fig. 4. Global PV capacity through the year from 2013
to 2022

As for Figure 5 [17], it presents a global overview of PV power potential which shows varying
intensity of solar resources. According to the data, daily total PVOUT ranges from as low as 2.0
kWh/kWp in regions with minimal sunlight to more than 6.4 kWh/kWp in the most irradiated areas.

On a continental scale, Africa stands out, with the Sahara Desert displaying potential annual
totals exceeding 2200 kWh/kWp, underscoring the immense solar energy resources available to
African nations. In contrast, Europe shows a wide range, with Southern Europe, particularly the
Iberian Peninsula, boasting annual potentials up to 1700 kWh/kWp, while Northern European
regions like Scandinavia receive less than 900 kWh/kWp.
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The geographic distribution of photovoltaic potential is critical for developing global and
regional strategies for solar energy utilization. For instance, countries with high annual photovoltaic
power potential values could not only fulfil their own energy requirements but also potentially
export solar energy, either through power transmission or manufacturing energy-intensive
products.

This paper aims to demonstrate that PV systems are an excellent example of renewable energy
capable of meeting global demand. However, traditional PV systems face significant challenges due
to extensive land requirements, which has led to the introduction of FPV systems. Hence, this paper
examines the efficiencies, applications, and environmental impacts of various FPV technologies,
demonstrating that FPVs represent a viable solution to the global energy crisis. In addition, to
maximize the energy production and ensure consistence efficiency of FPV system, the
implementation of HFPV systems has been suggested.

Fig. 5. Global photovoltaic power potential

1.1 PV Systems

PV technology converts solar energy into electrical energy through the PV cells [18]. This effect
occurs when photons from light impact a PV cell, transferring energy to the cell's charge carriers
[19]. These carriers, comprised of positively charged holes and negatively charged electrons, are
separated by the cell's internal electric fields. The creation of an electric circuit by connecting a load
to the cell allows for the flow of current. The fundamental mechanism of a PV cell's operation is
illustrated in Figure 6 redrawn and adapted from [20].

A PV system incorporates a PV module, Maximum Power Point Tracking (MPPT) techniques, a
DC-DC converter, and an inverter. The system's efficiency in converting sunlight into electricity
hinges on the integrated functions of these components. The solar panel converts solar irradiation
into electrical power, while the MPPT technology optimizes electricity extraction from the panel
under certain conditions. The DC-DC converter acts as an intermediary between the PV module and
the load. Due to the irregular nature of solar power, these components, along with the inverter,
serve as vital elements of energy storage systems, analogous to batteries [20].
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Fig. 6. Basic operation of PV cell

1.2 Type of PV Cells

PV technology is globally utilized due to its efficient energy conversion and simple design. PV
devices primarily employ semiconductor materials for electricity generation. These materials are
classified into three generations: silicon-based cells (first generation), known for their stability and
non-toxicity [21], produced using the Czochralski process [4]; thin-film cells (second generation),
which include copper indium gallium selenide (CIGS) and Cadmium Telluride (CdTe) [22], offering
benefits like reduced silicon thickness; and organic materials [23] (third generation), comprising
polymers, Dye-Sensitized Solar Cells (DSSC), and nano solar cells, noted for their cost-effectiveness.
The efficiency comparison of these generations is detailed in Table 1 [20].

Table 1
Comparison of efficiency for three generations of solar cells [20]
Parameters 1st generation 2nd generation 3rd generation

Mono silicon Poly silicon CIGS CdTe Polymer DSSC Nano cells
Efficiency 14%−17.5% 12%−14% 10%−12% 9%−11% ~3%−10% ~10% 7%−8%

Silicon-based cells, favoured in PV due to their superior efficiency and abundant material
availability, are divided into two categories: monocrystalline and polycrystalline solar cells.

i. Monocrystalline solar cells: Monocrystalline solar cells, known for their high efficiency
and spatial economy, are made from single-crystal silicon [24] and have been most widely
used in the PV industry [25]. Produced through the Czochralski process, these cells are
grown in a laboratory to form cylindrical ingots. These ingots are then processed into thin
silicon wafers, enhancing their performance [26]. However, the complexity of their
production process renders monocrystalline solar cells more expensive [24].

ii. Polycrystalline solar cells: Polycrystalline solar cells, constructed from multi-crystalline
silicon, exhibit lower efficiency compared to monocrystalline cells due to grain boundary-
induced crystal defects. Despite this, their lower cost contributes to over half of silicon-
based solar cell production [20]. These cells also perform better at higher temperatures,
having a greater temperature de-rating coefficient than monocrystalline cells [24].

iii. Bifacial solar cells: Bifacial photovoltaic panels, incorporating both monocrystalline and
polycrystalline silicon, are gaining traction for their ability to absorb solar irradiance from
both the front and back, thus enhancing energy generation efficiency [27]. Hence, bifacial
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PV modules can produce more 20% energy compared to equivalent monofacial modules
depending on the installation of PV modules [28].

1.3 Efficiency of PV Cell

The efficiency of power transfer from PV cells is influenced by several factors: solar irradiation
intensity [29] , cell temperature [30] , and shading [31] . Optimal solar irradiation is crucial for
maximum efficiency, as excessive intensity increases cell temperature, inversely affecting efficiency
[32] . According to study that has been carried out by Hamad [33] , it was observed that the
efficiency of the PV module decreases as the module temperature increases, resulting in a 9.62%
reduction compared to the PV operating under standard conditions. Shading, caused by buildings,
trees, or debris like bird droppings, also diminishes panel efficiency. Shading conditions affect the
efficiency of a PV panel due to the series connection of its cells [34]. The non-linear voltage-current
(V-I) characteristics of solar cells depend on these factors. Therefore, identifying the maximum
power point is essential for optimizing power extraction from PV panels [20].

2. Floating Photovoltaic System (FPV)

Traditionally, PV installations are either rooftop or ground-mounted. However, conventional on-
ground photovoltaic (OPV) systems face significant challenges due to their low power density and
extensive land requirements approximately 15,000 m² per 1.0 MW capacity [35]. This substantial
land use competes with other valuable applications like agriculture and commercial development,
posing a considerable challenge for PV system expansion [36].

FPV systems emerge as a superior alternative, offering rapid expansion possibilities without
consuming land resources. Typically, FPV installations are sited on artificial water bodies such as
ponds, reservoirs, and lakes [37] to minimize potential environmental impacts or complications
associated with natural water bodies [38]. Research noted in [39], discusses the environmental
loads on FPV structures in both freshwater and marine environments, highlighting that FPVs in
marine settings must endure greater wind and load pressures than those in freshwater.

Table 2 provides a comprehensive review of literature on FPV systems published over the last
seven years, covering topics from the basic materials used in solar cells to advanced HFPV systems.
These reviews assess the advantages and challenges of FPV and HFPV systems compared to
traditional OPV installations, encapsulating the evolving dialogue in solar energy solutions.

Table 2
Recent 7 years review articles on FPV system
Objectives Subsections Year Ref.
Review the development of marine floating
photovoltaic systems.

Summarizes the latest progress in research and
applications of FPVs, including design concepts, hybrid
usage, structural considerations, and challenges.

2023 [40]

Discuss the recent research of FPV as well as
the benefits and drawbacks of the new
technology

Advantages and disadvantages of FPV and potential for
hybrid with other technologies.

2022 [41]

Provide the benefits and technical potential
of HFPV especially for hydropower systems.

Comparing the benefits between FPV and HFPV using
global datasets and analysing the technical potential of
HFPV.

2020 [38]

Pro Provide an overall overview of the
existence of FPV in terms of parts, the
advantages and disadvantages and

Discuss the basic components in FPV system and analysis
of FPV including benefits, drawbacks and

2020 [42]
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Table 2. Continued
Recent 7 years review articles on FPV system
Objectives Subsections Year Ref.
disadvantages and environmental effect. future scope FPV.
Present the overview of different technologies
FPV by showing advantages and limitations.

Compare difference FPV technologies which are high
density polyethylene (HDPE) (Ciel et Terre) and
galvanized steel (Solaris Synergy) using PVsyst.

2020 [43]

Review the development of FPV technologies in
terms of electrical and mechanical structure.

Discuss the FPV components, important design factors
and parameters to compare with OPV.

2020 [44]

Review and analysis factors influencing the
efficiency of PV systems.

Overview basic material used for solar cells and
various of MPPT techniques in maximize the efficiency
of PV system.

2019 [20]

Analysis of different aspects of FPV systems as
power generation systems.

Comparison of OPV and FPV in terms of module
efficiency and efficiency gain, allocation of FPV system
and review of electrical aspects.

2019 [45]

Compare the various cooling techniques for
solar panels by analysing the advantages and
disadvantages of the techniques.

Basic technique (water and air cooling) and new
technique (phase-change materials, heat pipes and
nano-fluids).

2018 [46]

Discuss the timeline of concepts and FPV
projects that has been established worldwide

Components of FPV system and various FPV
installations worldwide.

2017 [47]

2.1 Types of Water Environment of FPV
2.1.1 Freshwater

Examples of freshwater are lake, river and natural basins which have calm waters [48] and low
salt concentrations. Freshwater offers numerous benefits compared to marine water for PV
applications, including fewer corrosion issues, diminished impact from waves and wind, and
restricted algae growth [49].

2.1.2 Marine water

The ocean, with its high salt concentrations, serves as a prime example of a marine water
environment. Placing systems in such demanding conditions necessitates a complex design process
tailored for marine applications, ensuring sustained and reliable operation throughout their entire
lifecycle, especially under extreme conditions like saltwater corrosion and biofouling [39]. The
ecological impacts of marine PV systems are influenced by the project design and various
environmental factors, such as geography, water depth, distance from shore, and local hydro and
oceanographic conditions [50]. Key considerations for these systems include resistance to harsh
conditions, reliability, maintainability, overall power performance, modularity, and environmental
impact [51].

2.2 Components of FPV System

The components for the FPV system share the same components with the OPV system such as
PV panels and measuring station to gather all the data for analysis except the FPV system has
additional floating structure and platform to support PV panels on water bodies.
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2.2.1 PV panel

The materials selected for the PV cells in a FPV system correspond to those employed OPV.
Most silicone-based are extensively employed in manufacturing processes within the solar cell
industry. Both types of crystalline silicon wafers are recognized as dominant substrate materials for
the fabrication of solar cells [52].

2.2.2 Supporting structure

Usually, the supporting structures for PV panels are made of steel or aluminium. However, for
FPV especially in marine water, corrosion factor needs to be considered. Hence, the suitable
materials for FPV supporting structure are fibre-reinforced polymer (FRP) which also can withstand
extreme conditions such as wind and waves. These FRP have outstanding characteristics which are
lower density and high corrosion resistance compared to metallic materials which are heavier and
prone to corrosion [39]. However, according to economic feasibility analysis results, FRP is more
expensive compared to aluminium and high durability steel. In [53] study, it also shows that for 500
kW FPV installation, the number of high durability steel structural members is less required
compared to aluminium and FRP which are 38.19 times lower compared to aluminium and 30.27
times lower than FRP. Hence, it was concluded that the most cost-effective material for a 500 kW
FPV power plant is high durability steel. Designated pathways were also built by connecting a series
of these platforms that allowed access for maintenance, operation and cleaning of the solar panels
[38].

2.2.3 Floating system

The floating system is functioning by ensuring the buoyancy and stability of the electricity-
generating system using pontoons [54]. For the floating part, high density polyethylene (HDPE) is
usually used for FPV systems [55]. Besides HDPE is a buoyant material that allows it to float on
water, it is also known for its durability to high temperature and water exposure. Given prolonged
exposure to ultraviolet (UV) radiation, it is crucial to evaluate the impact of UV exposure on the
system [56]. The principal limitation in this context is the influence of natural UV radiation, leading
to the gradual deterioration of plastic materials over time [57]. Polyethylene is usually made from
maintenance-free plastic materials that are resistant to UV light and non-hazardous [58]. In marine
applications, the floats are anticipated to endure higher loads and the impacts of corrosion from
saltwater as well as biofouling [59]. These characteristics are essential for long term performance of
an FPV system.

2.2.4 Anchoring system

In addition, FPV systems also need anchoring systems to prevent drifting and ensure stability
[60] The selection of the anchoring system is primarily determined by the geometry of floating
structure as well as the direction and intensity of the external actions [61]. Recently, synthetic fibre
rope such as polypropylene, nylon and polyester has been used as a mooring line among the FPV
industry [43]. As the purpose of the anchoring system is to minimize the movement of floating
systems, a proper design needs to be built to find the right balance between the mooring line,
neither too tight nor too slack [43].

According to [39], anchoring systems for marine water can be classified into four types which
are catenary, compliant, taut, and rigid moorings. The catenary anchoring system utilizes chains
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that leverage their own weight to offer a spring rate to the anchored float. Compliant anchoring,
categorized as catenary anchoring, employs floats and weights to modify the arrangement of
mooring lines. A taut anchoring system uses buoyancy surplus to maintain tension in the anchoring
lines, restricting vertical motion. This configuration minimizes vertical displacement, a potential
concern for significant water level fluctuations, particularly considering the constrained freeboard
of FPV structures. A rigid anchoring system comprises an anchored rigid structural component that
permits vertical movements while limiting horizontal movements. Although this solution is optimal
for maintaining station-keeping, it is economically viable only in shallow waters.

2.2.5 Electrical parts

Solar panels generate electricity in the form of direct current (DC), which is a continuous flow of
electric charge in a single direction. However, most household appliances and the electricity grid
use alternating current (AC), where the flow of electric charge periodically reverses direction.
Hence, an inverter is used to make the electricity produced by solar panels compatible with the AC-
based systems. An inverter is an electronic device that converts the DC electricity generated by
solar panels into AC electricity.

In addition, a network of cables and electrical elements is necessary to convert and convey
electricity from FPV facilities to the shore [62]. The wiring can be conducted either above the
water's surface or underwater. Next, the transformer plays a crucial role in converting the high-
voltage electricity generated by the PV panel into a usable form. This electricity is then transmitted
through the system and distributed to power various industrial or residential appliances. While
most electrical components are situated above water to minimize risks, it remains essential to
waterproof them. In addition, there is a combiner box in the FPV system which acts as protection
from overcurrent, undercurrent and other electrical hazards [62]. Figure 7 shows the schematic FPV
system redrawn and adapted from [38].

Fig. 7. The schematic of FPV system [38]

2.3 Difference Between FPV And OPV System

Table 3 outlines the differences between FPV and OPV systems in terms of installation,
components, performance, and cost. The primary distinction between these two types of PV
systems lies in their installation locations. Given the scarcity of land resources, installing PV systems
on water bodies is beneficial, offering advantages such as water conservation and a cooling effect
that enhances efficiency [63]. For structural support, FPV systems are mounted on floating
platforms made of materials such as plastic and stainless steel or galvanized steel, in contrast to the
stationary racks used in land-based systems [38]. In terms of cost, FPV systems tend to be slightly
more expensive than OPV systems due to the need for additional components like the floating
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structure. Despite the higher initial cost, FPV systems are financially advantageous in the long run
due to their increased efficiency and contribution to water conservation.
Table 3
Summarize difference between FPV and OPV system
Classification Floating photovoltaic On ground photovoltaic
Installations and
location

Installed on bodies of water. Does not compete
with other activities. Easy to find sites.

Installed on land. Compete with other
activities such as agriculture, industry and
residence.

Platform and fixed
structures

Mounted on floating platforms constructed
with polyethylene and stainless steel [38].

Fixed structure.

Environmental
considerations

Benefits for water conservation by reducing
water evaporation and reducing algae growth.
Might be affect aquatic life [62].

Smaller environmental footprint but land use
considerations.

Cooling type Cooling effect of water. Natural air cooling.
Efficiency Less shade from surroundings will increase the

penetration of sunlight to photovoltaic panels
Shading from buildings, mountain and tree
will decrease the penetration of sunlight to
photovoltaic panel.

Land use Frees up land for other purposes Requires land.
Stability and
durability

Face of changing water conditions and weather
events

Withstand wind, weather and seismic
condition.

Costing Slightly expensive due to additional parts such
as mooring and anchoring. However, still
financially superior due to water conservation
and increasing efficiency over its lifespan.

The cost is less expensive than floating
photovoltaic.

2.4 Efficiency Influences Floating Photovoltaic System

As the factors influencing the efficiency of PV cells have been discussed, there are some
difference factors that can affect the efficiency between FPV and OPV. Firstly, the cooling effect
factor [64]. FPV systems can benefit from the presence of water which will reduce the temperature
of solar cells to improve its performance. Meanwhile, OPV systems can rely on natural air cooling
which may not be as effective as water cooling in FPV systems. According to the studies, there is an
average 10% energy increment in FPV compared to OPV due to the water-cooling effect that
increases PV efficiency [65].

Second, the selection of PV materials also impacts the efficiency of FPV systems. High-efficiency
solar cells, low-emissivity coatings, and transparent materials can significantly increase power
generation by maximizing solar absorption [62]. Additionally, employing an advanced monitoring
and control system enhances FPV efficiency, as it allows for regular tracking of energy production
and system performance to optimize functionality [62].

Table 4 summarizes journal articles from the past six years that focus on the experimental
aspects of FPV systems. These articles cover a broad spectrum of topics, from investigations into
the cooling effect and performance enhancements to comparisons between FPV and OPV systems.
Various solar cell types, including monocrystalline, polycrystalline, and bifacial, have been studied
for their efficiency and electricity generation capabilities. However, research on FPV systems in
marine water remains relatively sparse.
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Table 4
Recent years journal article on FPV system in experimental parts
Configurations analysis Type of solar

cells
Location of
FPV

Results Research gap Year Ref.

Testing and analysing
electrical performance
and thermal
performance on the
FPV and OPV systems
with different tilt
angles, along with the
study of water
evaporation.

Monocrystalline
and
polycrystalline

Water basin FPV systems can help
in reduction of water
evaporation.
Efficiency of FPV is
higher compared to
OPV due to the water-
cooling effect.
The FPV system
produces the most
energy during optimal
tilt angle.

Design a measurement
station equipped with
online data transmission
to a database and
waterproof sensors to
perform year-round
experimentation.

2022 [35]

Design, manufacturing
and installation of the
first FPV systems in
Turkey.

Polycrystalline Lake System components,
wave height
calculation and wind
climate of the site can
be used to design new
systems in other parts
of Turkey.

Testing should be
conduct under marine
water.

2022 [66]

Comparing and
analysing the electrical
and thermal
performances of FPV
and OPV systems with
similar nominal
capacities.

Polycrystalline Water basin FPVS generates up to
2.33% more daily
energy than the OPVS
and highest energy at
optimal tilt angle.

Implementation of a
fully automated
measurement.
Perform detail financial
analysis and the impact
of FPV structures on
water conservation over
the course of a year
under real environment.

2021 [67]

Measuring the cooling
impact and making
comparisons across
various climate
conditions in the
Netherlands and
Singapore.

Monocrystalline,
polycrystalline,
bifacial

Lake and
reservoir

The increase in energy
output due to the
cooling effect of FPV
systems compared to
reference PV systems
is around 3% in the
Netherlands and up to
6% in Singapore.

For a fair comparison,
panels need to be
subjected to the same
conditions.

2021 [68]

Comparing the
performance of the
partially submerged
photovoltaic (PSPV)
system with different
submerged lengths to
that of the OPV
systems.

Polycrystalline Water basin By increasing the
submerged length to
10 cm, PSPV generates
more daily electricity
compare to OPV up to
18.2%.

Use an instrument that
is fully automated to
avoid any uncertainty in
data and testing for a
year.

2021 [69]

Comparing two types of
FPV (monofacial and
bifacial)

Monofacial and
bifacial

Lake Bifacial can produce
energy up to 6.75 %
compare to monofacial

Compare with OPV
under marine water.

2020 [70]

Compare the output
power between FPV
and OPV

Polycrystalline Pier Power generated by
FPV is higher than OPV
with 51.6 W and 42.9
W respectively.

Conduct the testing over
a long time period.

2020 [71]

Investigate the
practicality of deploying
large scale FPV systems
on inland water surface
compare to reference
system on rooftop

Monofacial and
bifacial

Reservoir Water surface does
offer some benefits to
increase efficiency of
PV panels such as
better wind ventilation
and cooler ambient

The various risks need to
be managed effectively
to ensure reliable
operation and long
lifetime.

2018 [72]
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temperature.

2.5 Advantages of FPV

FPV systems are increasingly favoured over OPV systems due to their multiple advantages
concerning both performance and environmental impact. A primary benefit of FPVs is that they do
not require land for installation, as they are mounted on water bodies like reservoirs, ponds, or
lakes [73]. This aspect significantly reduces installation costs by eliminating the need to purchase or
lease land [51]. Furthermore, utilizing water surfaces for FPV installations frees up land for other
uses such as agriculture or urban development, which is particularly advantageous in regions where
land resources are scarce [72]. In essence, FPV systems offer a sustainable alternative by leveraging
water bodies under abundant sunlight, thus conserving valuable land resources [48].

As previously mentioned, FPV systems offer benefits in improving efficiency through water
cooling, which enhances PV performance [74]. Water cooling is advantageous as it reduces
radiation reflection and maintains a lower temperature for FPV panels, enhancing their operational
efficiency [64]. A study by Tina et al., [75] revealed that FPV systems yield 10% higher energy than
OPV systems. Further research, such as the analysis conducted at Kaylana Lake [76], found that
annual energy generation from FPVs increased by 2.48%, while the module temperature decreased
by 14.56%. Therefore, FPVs demonstrate higher efficiency compared to OPVs, largely due to the
natural cooling effects of water [75, 77]. This cooling mechanism not only lowers temperatures but
also helps stabilize PV performance, leading to consistent and reliable energy output [62].

Next, FPV can eliminate the solar panel shading from its surroundings [75]. It is because its
installation on water bodies which is an open area compares to OPV where it is usually installed on
the ground or rooftop. There will be some obstacles for photovoltaic panels to absorb the sunlight
such as buildings and this will affect the efficiency of photovoltaic panels [78]. Hence, the FPV can
increase their efficiency by reducing the shading factor.

In terms of environmental benefits, FPV can help in reduction of water evaporation by creating
a shading effect on the water surface beneath panel [64, 74, 75]. This shading decreases the direct
exposure of the water to sunlight and lowering the temperature along with the rate of evaporation.
Hamza Nisar has conducted a small-scale FPV test bench under three different situation pond
simulators which are fully exposed, partially covered, and fully covered. According to this study, FPV
systems reduce water evaporation by approximately 17% when partially covered and
approximately 28% when fully covered [35]. The FPV system at the Kaylana Lake in Jodhpur also
estimated that annually, 191.174 million litres of water will be saved from evaporation [76].

As the sunlight penetration to the water has decreased, the growth of algae also has decreased.
Hence, the water quality also can improve with reduction of algae growth [79]. As the quality of the
water improves, the cost of purification to meet drinking water standards will reduce [80]. However,
it is still uncertain whether aquatic life also will be affected with reduction in sunlight penetrating.

2.6 Disadvantages of FPV

While FPV systems offer significant advantages, they also present distinct disadvantages and
limitations. One such disadvantage is the potential negative impact on aquatic life; FPV systems can
obstruct sunlight penetration into water bodies, potentially affecting the growth of aquatic
organisms. As noted by Pimentel et al., [81] the anchoring and mooring systems of FPVs can
temporarily harm benthonic communities and alter the lakebed's geomorphology by increasing
suspended sediments.
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Moreover, FPV systems face challenges with wind exposure. Winds over open water bodies, like
seas, tend to be stronger due to the lack of natural barriers such as buildings or trees. Consequently,
FPVs require robust mooring systems to withstand heavy gusts, often necessitating numerous
mooring points to maintain stability [67].

Financially, installing an FPV system is approximately 15% more expensive than an OPV system
due to the additional components required, such as floating structures and mooring systems [82,
83]. These structures must be corrosion-resistant and strong enough to support the weight of PV
panels. Maintenance costs are also higher as servicing systems on water is more challenging.
Despite these higher initial and maintenance costs, as highlighted by a study conducted at Kaylana
Lake in India [76], the FPV systems offer long-term financial benefits through water conservation
and enhanced efficiency, outweighing their higher capital investment.

Additionally, FPV systems can be impacted by environmental factors such as dust accumulation
and bird droppings, which can obstruct the PV panels and reduce their efficiency [59]. According to
previous study [84], the efficiency of a PV panel significantly decreases when dust accumulation
covers up to 50% of the panel. While water can wash away some contaminants, consistent
maintenance is essential to manage the accumulation and ensure optimal energy production, as
emphasized by the Solar Energy Research Institute of Singapore (SERIS) during their evaluation of
the world's largest floating solar testbed [85].

3. Hybrid Photovoltaic System

As has been discussed before, the efficiency of a PV cell can be influenced by a few factors, such
as the amount of solar irradiation falling on the panels, temperature, and shading. Besides, FPV
systems can increase their efficiency by being combined with other existing renewable energy
sources to form a HFPV system [86]. The solar PV system itself already has advantages over solar
energy, as it is the most abundant source of renewable energy among others. However, solar
power has its own weakness, which is that this source is not continuously available for conversion
into electricity. This is also known as an intermittent energy source. Usually, solar energy is
intermittent during the night or bad weather as the Sun emits less energy compared to the daytime
and good weather when the Earth is exposed to direct sunlight.

Therefore, to ensure the constant efficiency of the FPV system, the hybrid system has been
suggested [87]. According to Lee et al., [38] hybrid systems can predict the net economic benefits
from the combination of multiple generation technologies compared to the cost and/or value
associated with comparable independent, stand-alone technologies. HFPV systems integrate solar
PV technology with various other renewable energy sources such as wind [88], hydropower [89],
biogas [90] and geothermal [91]. This hybrid PV system can help alleviate challenges related to the
intermittent and uncertain nature of solar irradiance [92]. Solar irradiance varies across different
hours of the day, months of the year, and locations on Earth.

Besides resolving the problem of solar energy intermittency, these HFPV systems have also
offered additional benefits in terms of cost, performance, and efficiency compared to stand-alone
FPV systems [38].

3.1 Optimizing Efficiency

Enhancing system operation at various time scales is essential for optimizing efficiency. As the
solar energy is an intermittent energy, the variability and unpredictability of solar PV generation
stem from factors such as changing weather conditions. Meanwhile, hydropower systems, given
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ample resources, possess the capability for precise generation control and can effectively
compensate for shortfalls and balancing intermittent solar photovoltaic generation [93].

At the seasonal or monthly scale, the availability of solar and hydropower resources, however,
tends to be asynchronous, posing challenges for coordinated energy generation and distribution.
During dry seasons, higher quality solar resources are typically prevalent, whereas the rainy season
may bring about the availability of solar resources with lower quality. In contrast with hydropower
systems, the high quality of hydropower energy is highest during the rainy season compared to the
dry season. Operationally, this means the hybrid system is designed to export power from the PV
system when the sun is shining, simultaneously allowing the reservoir to either recharge or store
resources for periods when solar energy is not available [38]. Hence, water resources and solar
energy can compensate for each other when used in tandem as a hybrid [94].

According to study by [95], the potential worldwide capacity for combining FPV systems with
hydropower installations is projected to be between 4,400 to 5,700 GW (equivalent to 6,270 to
8,039 TWh per year of generation). This estimation applies to the installation of FPV systems on
reservoirs designated for hydropower and reservoirs with multiple purposes. From Figure 8, it
shows that the total for dispatchable energy from the hybrid systems is higher than the total for
dispatchable energy from stand-alone systems as it is equal to the total energy generation of the
two systems [38]. The projected capacities show an upward trend with an increase in the
percentage of the reservoir area covered by FPV systems.

Fig. 8. Energy generation potential and total dispatchable energy for stand-
alone systems and hybrid systems redrawn and adapted from [38]

3.2 Reducing the Curtailment of Solar PV

Reducing the curtailment of solar PV means minimizing or reducing the amount of unused or
wasted solar energy generated by a PV system. This happens when the generated solar power
exceeds demand needed or when grid constraints prevent the integration of the produced
electricity. The aim of reducing the curtailment of solar PV is to maximize the utilization of solar
energy during peak production periods to ensure the higher percentage of the generated power
contributes to the overall energy supply. So, the curtailment of solar PV can be reduced by utilizing
solar energy during its peak production hours, thereby preserving hydropower resources for
deployment during periods when solar resources are not accessible.

3.3 Reduce Electric Grid Connection Cost
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By combining solar PV with other renewable energy such as hydropower, the cost for electric
grid connection can be reduced [96]. For example, FPV needs transmission structure to generate
electricity. By combining an FPV system with hydropower, it allows for an FPV system to connect
with existing transmission structure (transmission lines, transformer and others) [97] and reduce
any additional costs [98]. According to the cost evaluation, it has been determined that the
additional 35% expenses related to the floating platform in the FPV system will be compensated by
the existing grid infrastructure of the HFPV system when compared to both standalone FPV systems
and OPV systems [99]. This can be advantageous for both parties since hydropower, solar resources,
and appropriate FPV water bodies might not be situated in proximity to load centres or existing
transmission systems. Moreover, in the future, expanding FPV capacity within a system is often
more feasible and cost-effective through the upgrade of existing infrastructure than creating new
interconnections.

3.4 Resource Conservation

Implementing FPV systems on hydropower reservoirs can significantly reduce water
evaporation, thereby enhancing the available resources for hydropower generation. The FPV
systems shade the water, limiting the amount of sunlight that reaches the reservoir surface, which
reduces the solar radiation absorbed by the water which is one of the primary drivers of
evaporation [100].

Additionally, the physical presence of FPV panels acts as a barrier, reducing air flow over the
water and minimizing wind-driven evaporation. Together, the shading and decreased air movement
substantially lower the overall rate of evaporation from the reservoir. Based on study by [95], they
estimate that integrating FPV systems with hydropower globally could reduce water evaporation by
approximately 74 billion cubic meters, increasing water availability by about 6.3%. This integration
is also projected to generate an additional 142.5 TWh of electricity from FPV systems installed on
these reservoirs.

Lee et al., [38] proposes three hybridization models with varying costs and performance
benefits: co-location hybrid, virtual hybrid, and full hybrid systems. Each of these systems offers
distinct approaches to integrating FPV with hydropower technologies.

i. Co-location hybrid systems: These systems integrate two or more technologies, each
optimized individually to achieve operational efficiencies. The primary goal of this
integration is to realize cost savings.

ii. Virtual hybrid systems: For these systems, two or more technologies are cited separately
but the operations are optimized cooperatively to improve the performance.

iii. Full hybrid systems: These systems employ co-optimized planning and operation to
enhance both cost efficiency and performance. Typically, these systems consist of a
dispatchable technology paired with one or more variable renewable energy sources.
Such combinations are designed to optimize benefits in terms of cost savings and
improved performance metrics.

Table 5 lists journal articles from the past four years that focus on HFPV systems. It details the
methodologies used to analyse these systems, which include both computer-based simulations and
experimental techniques. Most commonly, FPV systems are integrated with hydroelectric power,
leveraging the plentiful resources available from this type of energy. The articles encompass a
variety of research objectives, from evaluating the capacity of hybrid systems to investigating their
broader impacts.
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Table 5
Recent 4 years journal article of HFPV system
Hybridization Objective Method Location Year Ref.
Hydropower
reservoir

Analysed the 47.5 MW grid-
connected PV plant located
on the floatation system at
Da Mi hydropower reservoir
in Binh Thuan province.

Detail of electrical analysis
including DC to DC converters,
AC inverters to the transmission
network, and PV module
connectivity configurations.

Da Mi
hydropower
reservoir

2023 [101]

Hydroelectric
power plants

Examine the 100.74 kW FPV
mounted on the reservoir of
the 120 MW Santa Clara
hydroelectric power plant
on impact of atmospheric
weather conditions.

Starting with a visual
examination of the mechanical
condition of the floating
modules, followed by a
thorough investigation of the
anchoring system and
computer simulations.

Santa Clara
hydroelectric
power plant,
Brazil

2023 [102]

Wind Determine the potential to
use dam space to build
HFPV wind systems in the
MENA region.

Design Horizontal Axis Wind
Turbines (HAWTS) fitted on the
top of dam and analysis using
PVSYST simulator.

Wadi Al Mujib
dam, Jordan

2022 [103]

Wind Determine the possibility of
combining an offshore
floating solar farm into an
established Dutch offshore
wind farm located in the
North Sea.

Combine the FPV solar farm
with wind farm by adding cable
pooling to increase the
efficiency.

Borssele
Offshore Wind
Farm

2021 [83]

Hydroelectric
power plants

Assess the potential impact
of implementing the FPV
system in the primary
hydropower reserves of
Egypt.

By using the Helioscope
software, the addition of 5 MW
FPV for each dam has been
analysed.

High Dam and
Aswan
Reservoir,
Egypt

2021 [104]

Hydroelectric
power plants

Estimating how much
energy and water can be
generated by FPV systems in
Indian reservoirs and the
advantages of HFPV
Hydropower Electric Power
Plants.

The Helioscope software is used
to create a numerical analysis
of electrical and meteorological
data of the FPV system in the
reservoir.

Vaigai
reservoir,
India

2020 [99]

Wind To minimize the impact of
wind variability on power
output through the
integration with solar PV
systems.

Using Power Smoothing (PS)
index to achieve smoother
power output between wind
and solar energy.

Asturias,
Northern
Spain

2020 [105]

4. Conclusions

This paper provides an extensive overview of FPV systems, including their components,
advantages, and drawbacks. It evaluates the environmental effects and efficiency of FPV systems
compared to OPV systems and discusses HFPV systems that integrate solar with other renewable
energy sources to enhance efficiency. Key conclusions drawn from the study include:
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i. FPV systems are instrumental in advancing renewable energy technologies to meet global
energy demands.

ii. According to the Renewables 2022 Global Status Report, solar energy is experiencing the
fastest growth among renewable energy sources.

iii. Among solar cell technologies, first-generation cells, including monocrystalline and
polycrystalline, demonstrate higher efficiency compared to second and third-generations.

iv. The efficiency of PV cells is influenced by factors such as solar irradiation intensity, cell
temperature, and shading.

v. The primary factor enhancing the efficiency of FPV systems over OPV systems is the
cooling effect provided by water.

vi. Continued research on factors affecting PV panel efficiency is essential for maximizing
energy production.

vii. FPVs are predominantly installed in freshwater environments to minimize corrosion and
mitigate the impacts of waves and wind.

viii. The durability of FPV systems in harsh environments must be researched to facilitate
further development of FPV technology.

ix. A significant advantage of HFPV systems is their ability to optimize efficiency by exporting
power from PV during periods of high solar radiation, while simultaneously allowing the
reservoir to recharge or store resources during times of low solar radiation.
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