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 ABSTRACT 

 
This work presents a novel method for training an ensemble regressor. The main idea 
of the work is to expose the meta-unit, as well as individual regressors, to all categories 
of data in the training set. This ensures that the ensemble is able to handle any input it 
receives because it has seen something like it before. However, in order to do this, we 
first need to categorize the training data into classes. We perform the categorization by 
using a random forest and then analysing its output to find similarities in the data. We 
then train the ensemble using a subset of each category of the data. This ensures that 
it has no surprises when it works on the actual data. We process the output of the 
random forest using several different techniques to determine the best way to cluster 
the data. Our results indicate that using the proposed technique can result in an R2 of 
99.9% compared to an R2 of 98.7% for no categorization of the training data of the meta 
unit. Proving that the concept results in better performance. 
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1. Introduction 
 

This paper presents a novel method for data preparation for training a stacked ensemble 
regressor [1]. Typically, the ensemble is trained on a large random sample of data and it is hoped that 
it has seen enough samples to ensure that it operates properly when presented with inputs during 
actual operation. But there are several issues with this approach, first, if the sample is not large 
enough, then the ensemble may not see all possible types of data in its input. This is especially true 
if one of the types of data in the input is rarer than the rest. In this case, the likelihood of it appearing 
in a small random sample is small. In addition, even if the sample is large, it is still possible for a rare 
category of data to be either underrepresented or missing in the training of the ensemble. 

Therefore, we propose a novel method for training the ensemble that ensures that it sees 
samples of all the categories of data in the training set available. This means that even under-
represented data will be present in the training set to some extent – certainly to a larger extent than 
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if we relied on a random sample. It is our contention that such a mechanism will ensure better results 
by making sure that the ensemble sees no “surprises”. The hypothesis that we propose can be stated 
as follows: 

Hypothesis. By training the ensemble on all categories of data in the training set, we ensure  
that the results of the regressor will be more accurate. 

To test our hypothesis, we develop several different methods of categorizing the data in  
the training set by using several different distance metrics and clustering algorithms, we test all these 
techniques against each other and against a baseline where no categorization is performed in order 
to ascertain their relative performance. The purpose of these experiments is not to get the absolute 
best regression results in the domain being tested, but rather to ascertain the relative performance 
of the different techniques of training the meta-unit. Getting the absolute best regression results 
 is orthogonal to the purpose of this work, and can be achieved by using more accurate or diverse 
component regressors or getting more data for training. We consider such issues out of scope of this 
work. The rest of the paper is organized as follows 
 
1.1 Literature Review 

 
In this section of the paper, we review the literature on the topics most relevant to our work, 

namely: 
 

i. Ensemble Regressors 
ii. Distance Metrics 

iii. Clustering Algorithms 
 
1.1.1 Ensemble regressors 

 
In this part of the paper, we overview the concept of ensemble regression and describe the 

different techniques used in the literature to do this. We conclude the section by specifying the type 
of ensemble regression we propose to use to test the hypothesis proposed in this work. 

Ensemble regression, like ensemble classification, is the use of several different regression 
techniques – henceforth referred to as base regressors – and combining their results using some 
technique to obtain a result that is better than can be achieved by any of the base regressors on their 
own. 

There are two benefits to this technique over using base regressors on their own. First, if the base 
regressors are diverse – i.e., if they are not prone to make errors in the same way – the ensemble 
can “cancel out” the errors of regressors in certain regions of the dataspace, by giving weight to the 
regressors that perform well in that region when combining the results. This means that errors can 
be smoothed out, providing an end result that is better than the base regressors would have been 
able to produce on their own. 

Of course, if the regressors are not diverse, their errors will re-enforce, producing an aggregate 
result that is worse than individual regressors. Regressor diversity is orthogonal to this work, 
interested readers can find out more about it here [2]. 

There are three main methods for ensemble construction, namely: 
 

i. Bagging: Bagging [3], or Bootstrap Aggregating, is a technique used to create ensemble 
regressors. It works by creating multiple bootstrap samples from the training data and 
then training a separate regression model on each sample. It typically, but not necessarily, 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 55, Issue 2 (2026) 1-13 

3 
 

uses homogeneous weak regression models. Final predictions are obtained by either 
averaging or taking a weighted average of the results of each individual regression model. 
Find the weights is in itself an interesting problem. In [4], we show how this can be done 
using generative adversarial networks (GANs). 

ii. Boosting: Boosting [5] is another method for creating ensemble regression models. But in 
contrast to bagging, the individual regressors are trained iteratively, with each model 
being trained on the region of the dataspace that was mis predicted by the previous 
model. This way, it is ensured that no part of the dataspace is left uncovered by some 
regressor that is good at it. Aggregation is performed by calculating a weighted average 
of the result of individual regressors with the weight assigned to each regressor 
dependent on its performance. 

iii. Stacking: Finally, we discuss stacking [1]. In this method, we have two stacked layers 
 of regressors. The first layer consists of the base regressors. These regressors may be 
heterogeneous in the sense of being completely different models, or the same model 
trained on different data. In all cases, the output of this first layer is considered the input 
of the second layer. They are, in that sense, “meta-features” that are input to another 
regressor. This other regressor, which constitutes the second layer of the stack, is the 
meta-unit mentioned several times in this paper. It is a regressor that uses the output of 
the regressors in the first layer as its input and is trained to produce the correct prediction 
based on these input meta-features. This technique is more computationally intensive 
than the averaging and weighted averaging typically used in bagging and boosting, but it 
offers the opportunity to produce better results by learning complex, possibly nonlinear, 
relationships between the output of the base regressors and the correct prediction. It is 
this type of ensemble that we consider in this work. Choosing the members of the 
ensemble to ensure good results is an interesting problem, in [6,7] we present one 
possible method for doing this. 

 
1.1.2 Distance metrics 

 
Before reviewing the literature on difference metrics, we first need to establish what we will be 

determining the difference for. As will be seen in section 3, we will run our training sample through 
a random forest, and then generate a probability density function of possible classification of each 
data point. The way we do this will be further clarified in section 3, but for now it suffices to know 
that we need to find the distance metrics between probability density functions. Therefore, the rest 
of this section will survey the techniques used in the literature to find the distance between two 
probability density functions. 

 
i. Kullback-Leibler (KL) Divergence: This [8-10] is a measure of the distance between two 

probability distributions, where the KL divergence between two PDFs f and g is given by: 
 

𝐷𝑘𝑙(𝑓 ∥  𝑔 ) =  ∫ ⬚
⬚

⬚
 𝑓(𝑥) 𝑙𝑜𝑔 (

𝑓(𝑥)

𝑔(𝑥)
) 𝑑𝑥                                                                                                         (1)        

 
where ∥ denotes “divergence from” and log is the natural logarithm. While this is an easy 
metric to calculate, it is not, strictly, speaking, a distance metric. For a function to be 
considered a distance metric, it needs to obey the following rules 
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• Non-negativity: The distance between any two points must be non-negative, i.e., d(x, 
y) ≥ 0 for all x and y. 

• Identity of indiscernible: The distance between a point and itself must be zero, i.e., 
d(x, x) = 0 for all x. 

• Symmetry: The distance between two points should be the same regardless of the 
order in which they are compared, i.e., d(x, y) = d(y, x) for all x and y. 

• Triangle inequality: The distance between any two points should be less than or equal 
to the sum of the distances between those points and a third point, i.e., d(x, y) ≤ d(x, 
z) + d(z, y) for all x, y, and z ,The KL divergence violates the symmetry and triangle 
inequalities of a distance metric and is hence not a true metric, but rather a 
dissimilarity measure. We do not use this measure in our work for that reason. 

ii. Jensen-Shannon (JS) Distance: This [11,12] distance metric is a symmetric and smoothed 
version of the Kullback-Leibler (KL) divergence, which overcomes some of the limitations 
of the KL divergence as a distance metric. Given two probability density functions (PDFs) 
p(x) and q(x), the JS distance is defined as:   

 

𝐷𝑗𝑠(𝑝 ∥  𝑞 ) = √  
1

2
𝐷𝑘𝑙(𝑝 ∥  𝑚 ) +

1

2
𝐷𝑘𝑙(𝑞 ∥  𝑚 )                                                                                     (2) 

 
where m(x) = 1/2[p(x) + q(x)] is the average PDF of p and q, and DKL is the KL divergence. 
The JS distance is a symmetric version of the KL divergence because it is the average of 
the KL divergence between p and m, and between q and m. The square root is added for 
normalization and to ensure that the JS distance satisfies the non-negativity and identity 
of indiscernible properties of a distance metric. The JS distance has several advantages 
over the KL divergence as a distance metric. Firstly, it is a true distance metric that satisfies 
the symmetry and triangle inequality properties. Secondly, it is bounded between 0 and 
1, where 0 indicates that p and q are identical, and 1 indicates that p and q have no 
overlap. Lastly, it is less sensitive to small differences between p and q than the KL 
divergence, and it has a smoother gradient that makes it more amenable to optimization 
and numerical computation. 

iii. Earth Mover Distance Metric (EMD): The Earth Mover’s Distance (EMD) [13-15], also 
known as the Wasserstein distance, is a metric used to measure the distance between 
two probability distributions. It was first introduced in the field of computer vision, but 
has since found applications in other fields such as statistics, information theory, and 
natural language processing. Assuming that you have two piles of dirt, each representing 
a probability distribution. The EMD is the minimum amount of work required to transform 
one pile into the other. In other words, it is the minimum amount of dirt that needs to be 
moved from one pile to the other, with each movement incurring a certain cost. The EMD 
is computed by first constructing a flow network between the two probability 
distributions. Each element of the first distribution is associated with a source node, and 
each element of the second distribution is associated with a sink node. The cost of moving 
dirt from a source node to a sink node is given by the distance between the two elements. 
The goal is to find the minimum cost flow from the sources to the sinks. The EMD has 
several desirable properties as a distance metric. It is symmetric, meaning that the 
distance between two distributions is the same regardless of which distribution is treated 
as the source and which is treated as the sink. It also satisfies the triangle inequality. 
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iv. Hellinger Distance Metric: The Hellinger distance [16] is a distance metric that measures 
the similarity or dissimilarity between two probability distributions, and is closely related 
to the Total Variation (TV) distance. 

 
Given two probability distributions p and q with probability density functions p(x) and q(x), the 

Hellinger distance between them is defined as: 
 

𝐷𝐻(𝑝, 𝑞) = √  
1

2
 ∫ ⬚

∞ 

−∞
(√𝑝(𝑥)   − √ 𝑞(𝑥) )⬚2 𝑑𝑥                                                                                    (3) 

 
The Hellinger distance can be interpreted as the L2 norm of the difference between the square 

roots of p(x) and q(x), which reflects the geometric distance between their probability density 
functions in a Hilbert space. 

The Hellinger distance has several useful properties as a distance metric. It satisfies the non-
negativity, identity of indiscernible, symmetry, and triangle inequality properties, which ensure that 
it is a valid and consistent measure of dissimilarity between probability distributions. Moreover, it is 
bounded between 0 and 1, where 0 indicates that p and q are identical, and 1 indicates that they are 
orthogonal. These are the three-distance metrics we will use in our work. 
 
1.1.3 Clustering algorithms 
 

In this part of the paper, we discuss some of the clustering algorithms that can be used together 
with the distance metrics discussed in the previous section to divide the data into categories or 
clusters. 

 
i. K-means clustering: This [17] is a simple and widely used clustering algorithm that 

partitions data points into k clusters, where k is a user-defined parameter. It works by 
iteratively assigning data points to the nearest cluster centre (centroid) and updating the 
centroids based on the mean of the assigned points. 

ii. Hierarchical clustering: This [18] is a family of clustering algorithms that build a hierarchy  
of nested clusters by iteratively merging or splitting clusters based on some similarity 
metric. There are two main types of hierarchical clustering: agglomerative, which starts 
with each data point as a singleton cluster and iteratively merges them into larger clusters, 
and divisive, which starts with all data points in a single cluster and iteratively splits them 
into smaller clusters. There are many different clustering algorithms available, but these 
are the two we have selected to test in this work, mainly because of their popularity in 
the literature and ease of implementation. 

 
Another interesting paper that, while not directly related to time series analysis, gives a very 

strong overview of the latest models in machine learning techniques is [19]. The paper focuses on 
brain computer interfacing, but it’s a very thorough review of the literature of machine learning. In 
addition, the authors in [20] propose a very interesting predictive model that incorporates both 
statistical and machine learning algorithms. Finally, another interesting paper in the field of machine 
learning is [21], which discusses the use of machine learning algorithms for magnetorheological 
elastomer carbonyl iron particle concentration estimation. 
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1.3 Dataset Used 
 
We obtained the closing price of each month for a total of 135 companies listed in the Egyptian 

stock market from the years 2007 to 2017, we excluded financial companies as their behaviour tends 
to be different from non-financial companies. The total data collected amounted to about 1500 
vectors of stock prices. We frame our regression problem as an attempt to predict one month ahead 
– i.e., given the closing price for the last 12 months, predict the value of the “13th” month. The system 
we propose is trained on the data for different companies, over different years. The rationale behind 
this is to develop a model that can extract general information from the data that can be applied to 
any company at any point in time. We do not construct a model for each company individually, 
because, even though this may produce better results, we are attempting to see if we can come up 
with a general model that models the price behaviour of any company in the Egyptian stock market 
 
2. Methodology 

 
In this section of the paper, we describe the proposed system. As previously mentioned, we are 

going to use the stacked regression approach. In this approach, there are two layers of regressors, 
the first consists of the base regressors and the second is the meta-unit that will aggregate the results 
of the individual regressors. The base regressors will be trained on the same portion of the data set, 
with their diversity being driven by the fact that they are different – i.e., we are going to use an 
ensemble regression system with heterogeneous base regressors. The base regressors that we will 
use in this work are: 

 
i. A fully connected network model  

ii. A convolutional neural network model  
iii. A support vector regressor model 
iv. A random forest models 
v. A linear regression models 

 
For both the meta-unit and the individual regressors, we propose a different method  

of selecting data to train them. Traditionally, they would be trained on a random sample of the 
training set. The idea is that if the sample is random enough and large enough, it will include all the 
information that is needed to correctly perform the regression. However, we argue that it is possible 
to obtain better results by exposing the meta-unit, and the individual regressors, to all examples of 
possible categories in the dataset. The Hypothesis given in Section I attempts to formalize this claim. 
In order to do this, we first need to have an idea of what categories exist in the data. There are many 
different ways to do this, but we chose a method that will allow us to encapsulate the probabilistic 
nature of the data while categorizing it. Specifically, we use a random forest [22] to divide the data 
into categories. One way to do this is to simply take the majority vote of the trees in the random 
forest. This is an easy technique that is not computationally expensive, but we believe that it would 
not yield good results. Another way would be to consider the vote of each tree in the random forest 
a vote, and then to construct a histogram of the frequencies of votes (see Figure 1). For example, if 
there are ten trees in the random forest and four of them vote that the input belongs to class A, then 
the histogram entry for this particular sample will have a frequency of four in class A. These 
frequencies can then be normalized to create a probability density function representing the 
likelihood that that particular sample belongs to a specific class (see Figure 2). To further elucidate 
this idea, consider Figures 1 and 2.  
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In Figure 1, four of the trees in the random forest classified the input sample as belonging to Class 
A, 2 classified it as belonging to Class B, 3 classified it as belonging to Class C and 1 classified it as 
belonging to Class D.  
 

 
Fig. 1. Frequency plot 

 
Figure 2 shows the result of normalizing the frequency histogram to obtain a probability density 

function (PDF) for this sample. It is our contention that comparing the PDFs of two samples will 
provide a better idea of their similarity than a simple majority vote from the random forest. We can 
state this in a semi-format way as follows: 

 
i. Theorem 1: Comparing the PDFs of the likelihood of two samples belonging to certain 

classes will provide a better measure of their similarity than using one class label for each 
sample based on majority votes.  

ii. Proof: Consider three samples submitted to a random forest, assume that there are ten 
trees in the random forest and that they classified the samples as follows: 

 
Sample 1: 4 2 3 1  
Sample 2: 3 4 2 1 
Sample 3: 6 1 1 2  

 

 
Fig. 2. Probability density function 
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Consider that the first number is the number of votes for Class A, the second for Class B and so 
on. This means that a simple majority vote would place sample 1 in Class A, sample 2 in Class B, and 
sample 3 in Class A. So, a majority vote would place sample 1 and sample 3 in the same category, 
while placing sample 2 in a different one. It is our intuition that this clustering is incorrect, from the 
votes of the trees in the random forest it seems that samples 1 and 2 have much more in common 
with each other than they do with sample 3. It would make more sense to place sample 1 and 2 in 
the same category, while placing sample three in another. It is this intuition that has motivated us to 
use the distance between the probability density functions of the likelihood of each sample belonging 
to certain classes as the metric for clustering the samples rather than just considering the majority 
vote. Given this basic intuition, we cluster all data according to the similarity of their PDFs, we then 
use a portion of each cluster as training data. This training data is further subdivided into a portion 
that is used to train the base regressors and a portion that is used to train the meta-unit. We can 
summarize the proposed work in the following brief algorithm.  
 

 
 
2.1 The Regressors 

 
In this section of the paper, we will briefly overview the architecture of regressors used in this 

work. We used grid search to optimize their hyper-parameters. 
 

i. Fully Connected Network The fully connected network used in this work consists of three 
layers. The first layer contains 20 neurons, with input dimension equal to 12. It is 12 
because the network takes the price of a certain stock in the 12 preceding months and 
outputs the price in the 13th month. All neurons use the relu activation function. The 
second layer contains 12 neurons, they also use the relu activation function. Finally, the 
output layer has one neuron with a linear activation function to actually output a stock 
price. The network was trained using MSE as the loss function and the adam optimizer. It 
was trained for 1000 epochs. 

ii. The convolutional network Our convolutional network has six layers. The first is a 
convolutional layer and has 60 neurons, with an input size of 12 each. It uses a kernel of 
size 4 and the relu activation function. The second layer is also convolutional and has 20 
neurons, and the rest of its parameters are the same as the first layer. The next layer is a 
MaxPool layer, with a pooling size equal to 2. This is followed by a flattening layer. After 
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the flattening layer, we have a fully connected dense layer with 12 neurons that uses the 
relu activation function. Finally, we have a dense layer with one neuron and a linear 
activation function to actually output a stock price. The network was trained using MSE as 
the loss function and the adam optimizer. It was trained for 1000 epochs. 

iii. Support vector regressor We used an SVR with C = 1.0, cache size set to 200, epsilon set 
to 0.4 and the linear kernel. 

iv. Random Forest We used a random forest with ten trees, and a maximum depth of 5. 
v. Linear Regression We used the standard linear regression model from the sklearn library 

in python. 
vi. The meta-unit Our meta-unit is a fully connected network with three layers. The first has 

20 neurons, the second has 12 and the final layer has one. Again, the first two use the relu 
activation function, while the last uses the linear activation function to actually output a 
stock price. The same loss function and optimizer is used as in the other neural networks 
mentioned in this work. 

 
3. Results 

 
In this section of the paper, we describe the experiments conducted and the results obtained. In 

order to test our hypothesis, we tested several different combinations of distance metrics with 
clustering algorithms. There are many permutations, and listing them all here would needlessly 
expand the size of this submission. So instead, we will focus on the three best combinations of 
clustering algorithms and distance metrics used. These techniques are:  

 
i. Hellinger distance metric with agglomerative clustering 

ii. Hellinger distance metric with KNN clustering 
iii. Jensen-Shannon distance metric with agglomerative clustering  

 
These combinations produced the best results. In order to reach those results, we first ran the 

distance metrics mentioned in this paper. We then ran them with grid search hyperparameter 
optimization and recorded the silhouette scores. We recorded data at 0.6, 0.8 and 0.9 silhouette 
scores for each of these algorithms. And then we tested each of these combinations with the 
different clustering algorithms. Thus, we tested three distance metrics, combined with two clustering 
algorithms at three levels of silhouette scores for a total of 18 different partitions of the data for 
training the individual regressors, training the meta-unit and testing. We also tried affinity 
propagation [23], but it did not produce very good results in our case, so we discarded it early in our 
research. For the Hellinger distance metric with agglomerative clustering, the best result was 
obtained with a silhouette score 0.6. Here is a table summarizing the results from this score. The 
table contains the sum of squared errors and the r2 of the five individual regressors as well as the 
result of the ensemble. As can be seen in Table 1, the ensemble greatly improves results. It drives r2 
to almost one, we had to use three decimal places to be able to show it without rounding to one. You 
will also notice that the sum of squared errors went down to single digits. Next, we present the results 
of the Hellinger distance metric used with KNN clustering. For this combination, the best results were 
obtained at the 0.8 silhouette score. Table 2 summarizes the results for this experiment. Finally, we 
present the results for the Jensen-Shannon distance metric combined with agglomerative clustering. 
The best results for this combination were obtained at the 0.8 silhouette score. Table 3 depicts the 
results for this experiment. 
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Table 1 
Results for Hilliger vs Agglomerative clustering at 0.6 silhouette 
Regressor Convolutional Fully connected  Linear regression Random forest SVR Ensemble 

Sum of squared errors 474 389 474 1105 359 7 
r² 0.9 0.927 0.904 0.694 0.93 0.999 

 
Table 2 
Results for Hilliger vs KNN clustering at 0.8 silhouette 
Regressor Convolutional Fully connected  Linear regression Random forest SVR Ensemble 

Sum of squared errors 479 702 453 809 361 5 
r² 0.887 0.809 0.896 0.763 0.919 0.999 

 
Table 3 
Results for Jensen-Shannon vs Agglomerative clustering at 0.8 silhouette 
Regressor Convolutional Fully connected  Linear regression Random forest SVR Ensemble 

Sum of squared errors 364 566 443 640 347 13 
r² 0.920 0.859 0.938 0.837 0.924 0.998 

 
These are the best results obtained from the proposed method. As mentioned before, we 

conducted several experiments, but the three above produced the best results. Let us now look at 
the result of the baseline method that does not use categories, but rather hopes that if the training 
set is large enough it will contain all relevant examples. Table 4 shows the results obtained for this 
experiment. It is obvious that for the results of the ensemble, the proposed method produces better 
results. In terms of r2 the proposed algorithm is always better. The sum of squared errors for the 
Jensen-Shannon vs Agglomerative Clustering is slightly higher, but this is only one method, the other 
two produce better results in both parameters – r2 and sum of squared errors. However, it is 
interesting to note two things. First, the sum of squared errors in the no categories case is better 
than in the proposed method for individual regressors that make up the model. While the opposite 
is the case for r2. We believe this is due to the fact that the location of errors occurs in different 
places. That is, in the proposed method, the individual regressors make errors for stocks with large 
values, this means that a relative error in them will result in larger sum of squared errors. The no 
categories method appears to make errors, for individual regressors, in low valued stocks. Thus, 
resulting in lower sum of squared errors. But the higher r2 implies that the proposed individual 
regressors are still explaining the variability in the data better. Of course, the ensemble in the 
proposed method produces much better results than the no categories method. In fact, the ensemble 
in the no categories method does not provide much improvement on, for example, the convolutional 
individual regressor. This reinforces the hypothesis of this paper. Specifically, we get a better meta-
unit when it sees, during training, all examples of data that it may encounter when running. In the 
python code for our work, we plot the actual values of the stock’s vs the predicted values of the 
stocks for each of the individual regressors as well as for the ensemble regressor. In order to save 
space, we will depict only two of them here. The two plots displayed will be one of the individual 
regressors using the proposed method and the ensemble regressor using the proposed method. The 
purpose of these two charts is to show how the ensemble improves on the individual regressors and 
very closely matches the actual value of the stocks.  
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Table 4 
Results for no categories 
Regressor Convolutional Fully connected  Linear regression Random forest SVR Ensemble 

Sum of squared errors 9 27 15 20 13 9 
r² 0.987 0.956 0.979 0.971 0.981 0.987 

 

As can be seen, Figures 3 and 4 show the results of Random Forest individual regressor and the 
ensemble regressor for the Hillinger vs Agglomerative experiment at 0.8 silhouette score. Notice the 
blue spikes in Figure 4, especially in the large spike slightly after 40 on the x-axis. The difference 
between the blue spike and the orange spike is what is contributing to the value of the sum of 
squared errors for this regressor. Compare it to Figure 4 where the difference between the predicted 
and actual values are barely visible. Similar graphs are present for all the experiments we conduct, 
they all follow the same pattern as the charts displayed here. 
 

 
Fig. 3. Random forest, Hilliger vs Agglomerative at 0.8 silhouette 

 

 
Fig. 4. Ensemble, Hilliger vs Agglomerative at 0.8 silhouette 
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4. Conclusion 
 
In this work, we proposed a novel method for training ensemble regressors. The novelty lies in 

the way we partition the data set into categories. The purpose of this partitioning is to make sure 
that all the individual regressors, as well as the meta-unit in the ensemble regressor, see all the 
categories of data that they might be exposed to during testing. We do this by proposing a novel 
method for clustering the data based on the probability density function of their belonging to certain 
categories as generated by a random forest. The proposed method uses distance metrics to calculate 
the distances among the probability density functions of each point in the data-set. We then cluster 
according to different clustering algorithms, and make sure that all regressors see examples from 
each cluster during training. Our results indicate that the proposed method produces better results 
in terms of both r² and sum of squared errors, indicating that exposing the regressors to all categories 
of data produces better results. In the future, we propose to test the proposed algorithm on more 
complex data-sets. In particular, we would like to see the behaviour of the proposed algorithm in the 
presence of unbalanced data – we believe it will perform even better as it will ensure that scares 
categories are well represented in the training and testing data. 
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