
 
Journal of Advanced Research in Applied Sciences and Engineering Technology 31, Issue 2 (2023) 220-233 

 

220 
 

 

Journal of Advanced Research in Applied 

Sciences and Engineering Technology 

 

Journal homepage: 
https://semarakilmu.com.my/journals/index.php/applied_sciences_eng_tech/index 

ISSN: 2462-1943 

 

Prototype Development of Risk Mitigation for Software Anti-Ageing 
System 

 

Thamaratul Izzah Azman1,*, Noraini Che Pa1, Rozi Nor Haizan Nor1, Yusmadi Yah Jusoh1 

  
1 Department of Software Engineering and Information System, Faculty of Computer Science and Information Technology, Universiti Putra 

Malaysia, Serdang, Malaysia 
  

ARTICLE INFO ABSTRACT 

Article history: 
Received 15 January 2023 
Received in revised form 23 June 2023 
Accepted 30 June 2023 
Available online 16 July 2023 

 

 

 

 

 

Constance computer program changes during software maintenance cause program 
structure and its execution to degrade which in the long run reduce the quality of the 
program, driving to the rise of software ageing. Change analysis is essential to assess 
and oversee the effect of changes to handle ageing issue. However, the evaluation of 
risks is still vague. There are also insufficient tools for change analysis amid software 
maintenance for ensuring anti-ageing. This motivates the study to propose risk 
mitigation process as a method to evaluate the risks from software change and 
construct a prototype as a platform to aid change analysis phase during software 
maintenance. The prototype aims to foresee and minimize chances of risks from 
software changes that lead to software ageing. This paper discusses on the 
development of a prototype named Risk Mitigation for Software Anti-Ageing System 
that is designed and developed based on software development lifecycle methodology 
to establish successful development and implementation of the system. The discoveries 
from this study offer assistance for software maintainers to conduct risk assessment 
during change analysis in software maintenance via the digital risk mitigation process 
to ensure software anti-ageing.  

Keywords: 

Risk mitigation; software anti-ageing; 
software ageing; software engineering; 
software maintenance 

 
1. Introduction 
 

Software changes are essential to rectify faults and upgrade the software with new attributes and 
functions. As software advances, new changes for existing software may come along with risks [1,2]. 
The increasing software size and its complexity magnifies software errors to the point where effective 
risk assessment is critical [3,4]. Failure to oversee risks will influence the success of maintenance 
causing software failures, decrease execution performance and diminishes the benefits from the 
computer program leading to early software retirement (Salmeron and Lopez). This situation leads 
to software ageing which is characterized as degradation of computer program execution, 
performance and quality influencing the capacity of the software to function and deliver its services 
normally [5,6]. Parnas [7] highlighted that software ages as a result of software product’s proprietor 

 
* Corresponding author. 
E-mail address: eizahazman@gmail.com 
 

https://doi.org/10.37934/araset.31.2.220233 

mailto:eizahazman@gmail.com


Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 31, Issue 2 (2023) 220-233 

221 
 

failure to alter it to its changing needs or from the outcome of changes made. Impacts from software 
ageing may raises challenges to manage with business operation as it moderates down computer 
program response time to transact commands resulting to postponed works and reduces quality of 
services [8-10].   

In particular, adaptable and flexible software features helps ensuring the software to remain anti-
ageing albeit future software changes [11]. Software anti-ageing portrays computer program that 
keeps up its quality and is adaptable to any future modification permitting it to stay significant in its 
environment [12]. Software ageing from software engineering perspective concerns with assessing 
and overseeing consequences from software change that contributes to software ageing (Russo). It 
is highly crucial for maintainers to examine any risks or threats from software change during change 
analysis phase in software maintenance [13]. In spite of its significance, the assessment of risks is still 
vague during change analysis [14]. There is also scarcity of tool or instrument for aiding maintainers 
during change analysis to ensure software to remain anti-ageing [12,15]. Hence, this drives the 
research to propose risk mitigation process as a strategy to assess risks during change analysis and 
create a prototype as a new tool that aids maintainers for managing and reducing possible threats to 
software ageing during software maintenance for attaining software anti-ageing. The paper structure 
begins with reviewing related literature, method for the study, discussion on the findings and lastly, 
concluded with a summary and further work. 
 
2. Related Literature 

 
Regular changes amid software maintenance bring about risks to deteriorate software structure 

and quality causing software ageing [16,17]. Managing and determining consequences from software 
change are often performed during change analysis in software maintenance [18].  

Technology readiness is significant for any change management in an organization to further 
optimize performance [19]. Therefore, conducting change analysis to ensure this is imperative for a 
successful software maintenance, however, there are few challenges the way changes should be 
handled and administered [20]. One problem arisen is on finding correct and suitable approach for 
maintainers to analyze the risks impact from software changes [13]. The majority of current change 
analysis methods focus on determining the impact of changes in source code [20]. Organizations 
however are more inquisitive on viable management of risks that cover more than fair bugs within 
the code [21]. A study in [2] suggested risk mitigation through architecture evaluation to alleviate 
and reduce the risk of software changes. The strategy guides for decision-making process on future 
software changes through assessing the program design. However, the scope of moderating the risks 
within the study is equivocal because it centered on subjective in-depth understanding of the 
software architecture, which is poorly scalable. This issue of lacking quantifiable scale to measure the 
effect of risks motivates the study to develop a scalable risk mitigation process for change analysis.  

The objective of risk mitigation is to decide strategic method for lessening the effect from risks in 
software [22]. It comprises of four major processes such as identification of risk, risk decision, treating 
the risks and risk monitoring [23]. Risk identification is the first step in risk mitigation where risk is 
recognized through assembling information and data, evaluating important risks area and 
implementing analytical tools to diagnose possible risks [24]. Risk decision is then performed. This 
phase is remarkably crucial where risks are measure according to the degree of its likelihood and 
impact and prioritization of distinguished risks into their consecutive levels [23,24]. Decision makers 
may gauge and estimate risk chances and magnitude by utilizing definitive benchmark established 
[23].  



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 31, Issue 2 (2023) 220-233 

222 
 

Next, risks are treated through risk solution and action according to its magnitude. Risk treatment 
comprises of several treatment options such as avoidance, reduction, transfer, acceptance and 
eliminate [24]. Lastly, treated risks are then monitored to help checking and keeping track of former 
risks. This phase is vital to report, review and oversee action taken on risks [24]. Risks are monitored 
through regular risk profile review, risk reassessment and revising hazard profile with executed action 
[25]. It also helps to observe whether the risk magnitude is successfully reduced to a satisfactory level 
and scrutinizes the effectiveness of mitigation action taken [26].   

Several systems have been developed and proposed by existing studies where it acts as a tool or 
instrument to reduce the effort required to perform risk mitigation and operates as a knowledgebase 
for storing and retrieving risk information. Sun et al., [28] proposed a web-based decision support 
system to aid risk decision-making in predicting risk chances level. It was constructed using decision 
support framework that incorporates sub-systems such as data administration, a defined user 
interface, selection, management and model evaluation. The system performs calculations to 
generate risk levels for risk decision-making in three risk grades: low risk (safe), medium risk, and 
high risk. Orlando et. al., built a web-based risk assessment and clinical decision support programme 
to aid in the adoption of risk-based rules that help reduce costs and improve care quality. It aids in 
the reduction of risk assessment gaps such as risk overestimation and underestimation. 

Researcher in [23] established a risk mitigation mechanism to aid in the reduction of IT 
governance risks. It involves mapping of knowledge for knowledge base and includes several 
software agents for risk estimation in decision-making. It also generates suggestions for risk 
monitoring and facilitates expert collaboration in decision-making. Meanwhile, a web-based virtual 
risk management system built by Sun et al., [28] incorporates risk reduction processes in accordance 
with various virtual enterprises. There is multi-agent utilized in the system. Via knowledge and rules 
of expert, it produces explicit risk mitigation process for aiding decision-making. [29] created a spatial 
decision support framework for software development project risk mitigation. The system 
incorporates diverse modules such as input module, risk assessment module, decision analysis 
module and visualization module. Its goal is to find a feasible and user-friendly way to perform 
decision-making and risk mitigation to ensure project's cost and time requirements are reduced. 

From the literature, the lack of adequate mechanisms or tools in current practice to assist 
maintainers with change analysis during software maintenance to achieve anti-ageing arises a 
significant challenge [12,15]. Notably, maintainers often oversee and handle change analysis report 
using a straightforward web interface database that only allows for browsing and searching for risk 
reports [15]. As a result, there is concern about a lack of competent instruments for change analysis. 
Existing risk mitigation process for change analysis proposed by past researchers appears to be 
ambiguous as it is not scalable and quantifiable as it centered on qualitative assessment for risk 
mitigation [2]. Existing systems are also insufficient to provide a complete risk mitigation process for 
change analysis in software maintenance as few of them are only concentrates on decision-making 
operation. Some of the systems disregard the process of risk identification, excluded 
recommendations for risk action for risk treatment and eliminate plan for risk monitoring. On that 
account, the existing systems are still lacking complete risk mitigation process.  

Therefore, the study captured the requirements from the criteria in the existing systems to 
facilitate the prototype development and outline the functions to be integrated in the new system. 
The purpose of the study is to provide state-of-the-art tool to examine, handle and monitor risks 
associated with software changes using risk mitigation process to keep the software safe from 
negative effect that would jeopardise its quality and performance. 

 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 31, Issue 2 (2023) 220-233 

223 
 

3. Methodology 
 
This section discusses on the method adopted and step taken for the study. For prototyping 

purposes, software development lifecycle (SDLC) methodology is applied such as requirement 
analysis, software design, software implementation, software testing and software maintenance [30, 
31]. It offers structural sequence of steps and tasks to be conducted for each phase of the 
development. Figure 1 shows five phases involved in software development lifecycle (SDLC) 
methodology. 
 

 
Fig. 1. Software Development Lifecycle (SDLC) 

 
For the first phase of prototype development, the study carries out software requirement analysis 

through literature review. Requirement analysis is crucial in ensuring successful software project 
development as it concerns with determining the needs for the project [32]. Requirements are 
function description of software should incorporate in its computer program that involve with system 
response to inputs and its behaviour in a particular circumstance [33].   

Software design is related with the development of prototype architectural design through use 
case diagram, class diagram and software system architecture. These diagrams are designed to 
overview the prototype’s functions, behaviour and its environment. To portray processes flow in the 
prototype, graphical user interface (GUI) map is built. Once the prototype coding is completed 
according to the prototype design, it is then run in local host for implementation phase. Its interfaces 
are presented to demonstrate the processes embedded. Lastly, the prototype undergoes system 
testing to ensure the system operates as it is intended to be. Testing process starts from unit testing 
until the overall system performance where three experts were engaged in the process that includes 
two software developers and one software project manager. The findings for each phase in software 
development lifecycle (SDLC) will be discussed in the next section.  

 
4. Findings and Discussion 
4.1 Requirement Analysis 

 
To achieve the objective of the study, literature review was conducted to gather and capture the 

requirements needed for the development of system. The study had identified and assembled the 
requirements for prototype development from existing risk mitigation systems in the literature. Table 
1 depicts the comparison of the criteria in each risk mitigation systems. Based on Table 1, the study 
discovered that risk mitigation processes in most of the systems are incomplete. The systems built in 
[23, 27, 29, 34] excluded risk identification feature in their systems. This is possibly because manual 
process of risk identification through meetings or brainstorming may be adopted to determine the 
probable risks. Moreover, the system developed by Roya et. al., disregard risk treatment feature to 
specify risk best suggestion and action plan for the identified risk. Hence, because of this comparison, 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 31, Issue 2 (2023) 220-233 

224 
 

the processes in the existing systems are still incomplete in depicting the entire risk mitigation 
process. 
 

 Table 1 
 Criteria comparison between existing systems  
Criteria/ Existing Systems [27] [34] [23] [29] [28]  

Risk identification     ✓ 
Manage risks information  ✓ ✓  ✓ 
Risk decision ✓ ✓ ✓ ✓ ✓ 
Risk database  ✓ ✓ ✓ ✓ ✓ 
Risk best suggestion and action plan  ✓ ✓  ✓ 
Report generation ✓ ✓ ✓ ✓ ✓ 
Comment   ✓   

Authentication   ✓ ✓  

Monitor risks   ✓   

 
There are four processes in risk mitigation that includes risk identification, risk decision, risk 

treatment and risk monitoring [23,35]. Thus, a set of the requirements for the prototype built in this 
study should include those four risk mitigation processes. Table 2 describes several prototype 
requirements in which the functions in the prototype are developed according the requirements 
listed below. 

 
  Table 2  
  Prototype requirements 

Requirements Description Source 

Identify risk Providing function for risk identification [28] 
Risk decision Providing function to perform risk decision [23, 27, 28, 34] 
Risk best practice 
suggestion 

Providing function that suggests best 
practice suggestion for risk treatment 

[23, 29, 34] 

Monitor risk Providing function for monitoring risks [23] 
 

Risk report Providing function that generate risk report [23, 27, 29, 34] 
Manage 
information 

Providing function for managing information 
about the risk (e.g risk name, risk 
description, risk suggestion) 

[23, 28, 34] 

 
4.2 System Design 

 
From the requirements described, the study constructed the prototype design to illustrate its 

behaviour, functions, and environment. It includes constructing the use case diagram, class diagram 
and system architecture. Figure 2 depicts the prototype’s use case diagram. The use case diagram is 
used to visualise the prototype's functions and the key users involved in executing those functions. 
Two main users involved in this system include maintainer and staff. Both maintainer and staff may 
register and authenticate themselves before being directed into the system. Maintainer may perform 
complete features of risk mitigation process such as identifying risk for risk identification, identify risk 
impact and probability to conduct decision-making process for risk decision, retrieve plan action for 
risk treatment, monitor risk and view risk report as well as managing risk information. Meanwhile, 
staff can only access a limited number of functions in the system, such as displaying risk data and 
generating risk reports. 

 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 31, Issue 2 (2023) 220-233 

225 
 

 
Fig. 2. Use case diagram of Risk Mitigation for 
Software Anti-Ageing system 

 
A class diagram is constructed to outline the relationship between classes in the prototype. UML 

class diagram helps describing relationships and attributes between variables for system design [36]. 
Each class in the class diagram is constituted of three tiers: class name (upper tier), class attributes 
(middle tier) and class methods (bottom tier) [37]. Figure 3 portrays the prototype’s class diagram. 
The class diagram includes six classes: maintainers, staff, risk information, risk mitigation, risk 
monitoring, and risk report. Environment in the system is illustrated through the class diagram where 
a maintainer may conduct risk mitigation and risk monitoring as well as manages risk info and risk 
report and on the other hand, staff may view only risk info and risk report. 

System architecture is intended to depict the overall structure and behaviour of a system. It 
incorporates system components such as hardware and software components, network components 
and database component with its environment. Figure 4 depicts the prototype’s system architecture. 
It constitutes three layers of environment such as client layer, service layer and database layer. Users 
communicate with the device via hardware components such as a monitor and software components 
such as a browser through a web-server in the client layer. Risk Mitigation for Software Anti-Aging 
System is a service layer that includes its own functions through an application server. Finally, the 
database layer includes database components that store the system's data and information. 

 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 31, Issue 2 (2023) 220-233 

226 
 

 
Fig. 3. Class diagram of Risk Mitigation for Software Anti-Ageing system 

 

 
Fig. 4. Risk Mitigation for Software Anti-Ageing 
system architecture 

 
4.3 Prototype Implementation 

 
The prototype undergoes several steps of designing its UI, coding and run it locally on a XAMPP 

server. The system is coded on Eclipse IDE using CSS, PHP and Javascript scripting and runs on XAMPP 
local host server. After the completion of prototype coding, the prototype is implemented to realize 
its architectural design. The functions and features in the prototype were based on the requirements 
captured and specified in the previous section. A prototype named Risk Mitigation for Software Anti-
Ageing system is then successfully constructed. The study illustrates the system interface using a 
graphical user interface (GUI) map to provide an overview of the system's flow as in Figure 5.  

 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 31, Issue 2 (2023) 220-233 

227 
 

 
Fig. 5. Graphical User Interface (GUI) map 

 
The GUI map is intended to depict the navigations of each function and interaction within the 

system interface starting from the dashboard. There are five main tabs in the dashboard (homepage) 
that includes ‘Manage Risk Info’, ‘Risk Mitigation’, ‘Settings’, ‘About’ and ‘Contact’. Features such as 
viewing risk information, updating, printing, and downloading risk information can be done in 
‘Manage Risk Info’ tab. ‘In Risk Mitigation’ tab risk mitigation process is performed such as 
determining potential risk for risk identification, estimating risk occurrences, detection and severity 
for making risk decision, acquiring risk grade and acceptability, getting suggestion action plan for risk 
treatment and lastly generating risk mitigation report. Risk mitigation report also can be viewed, 
downloaded, printed under this tab. For risk monitoring, the report shall be monitored through risk 
reassessment feature under risk mitigation tab, which then generated risk monitoring report. On the 
other hand, ‘Settings’ tab allows users to update their username, name, and password. ‘About’ and 
‘Contact’ tabs are also provided in the system for general information. 

Figure 6 depicts the screenshot of system dashboard, which is constructed to be the main 
homepage of the system. The vertical navigation menu in the system comprises of ‘Dashboard’ tab, 
‘Manage Risk Info’ tab, ‘Risk Mitigation’ tab, ‘Settings’ tab and ‘Log Out’ tab meanwhile horizontal 
navigation menu includes ‘About’ and ‘Contact’ tabs. 

 

 
Fig. 6. Dashboard of the system 

 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 31, Issue 2 (2023) 220-233 

228 
 

‘Risk Mitigation’ tab is primary feature in the system. It offers maintainer with the functions to 
determine risks for risk identification, measure risks exposure and its magnitude for risk decision and 
retrieving risk suggestion advice for treating the risks as well as monitoring the former risks through 
risk reassessment. Risk mitigation process is initiated once maintainer select risk mitigation form for 
risk identification, refer Figure 7. 

 

 
Fig. 7. Risk Mitigation page 

 
The system prepared a set of checklists that consists software change risks that could influence 

software ageing as shown in Figure 8. The checklist helps the maintainer to capture and differentiate 
possible risks that they want to evaluate and determine their effect based on their knowledge and 
judgment. The checklist includes a list of risk categories, risk names, and risk descriptions to aid in 
weighing their arguments. 

 

 
Fig. 8. Risk Identification page 

 
The maintainer will be guided to the risk decision page once the risks have been identified as in 

Figure 9.  The frequency of occurrence, identification, and severity of identified risks will be quantified 
using an array of values to quantify its probability and effect. Each defined risk will be rated according 
to its "occurrence of failure," which indicates the likelihood that the risks will occur as a consequence 
of a particular cause, "severity," which indicates the magnitude of the potential risks' impact on the 
process of performing changes when they occur, and "detection," which indicates the likelihood that 
a potential failure from the risks will be detected by using a 5-point scale ranging from ‘1’ denoting 
low frequency to ‘5’ denoting high frequency. The failure mode estimation analysis technique is used 
to make decisions by multiplying risk occurrence, severity and detection frequency. As a result, a Risk 
Priority Number (RPN) is produced, which aids in assigning the effect of the identified risks to their 
level of exposure and magnitude. 

 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 31, Issue 2 (2023) 220-233 

229 
 

 
Fig. 9. Risk Decision page 

 
The risk grade and acceptability are then retrieved, and risk treatment advice is provided based 

on the Risk Priority Number (RPN) value. The value of the Risk Priority Number (RPN) is defined using 
a score benchmark adopted from [38]. Based on the RPN value, a risk grade and acceptability are 
allocated with different colours to reflect the degree of severity and acceptability. Figure 10 depicts 
a risk mitigation report that includes the identified risks, RPN value, risk grade and acceptability, and 
risk treatment advice. The risk treatment advice is created automatically from the knowledgebase 
(the system's database) based on the risk grade and acceptability value. These suggestions came from 
interviews with a number of experts in the field. Experts were asked to define appropriate 
recommendation advice for each risk based on five RPN value categories. If risk treatment requires 
future adjustments, the knowledgebase's risk treatment advice can be updated through the ‘Manage 
Risk’ tab. 

 

 
Fig. 10. Risk Report page 

 
‘Risk Mitigation’ tab also incorporates feature to reassess treated risks for risk monitoring 

purposes.  
Risk reassessment involves revisiting previously defined and mitigated risks and applying a similar 

strategy of multiplying risk occurrence, detection, and severity frequencies to determine a new risk 
grade and acceptability level. Figure 11 illustrate the risk reassessment results for the risk monitoring 
report, which include the previously identified risk, the old and new RPN value, new risk grade and 
acceptability, as well as new risk treatment recommendations based on the new RPN value. 

 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 31, Issue 2 (2023) 220-233 

230 
 

 
Fig. 11. Risk Monitoring report page 

 
4.4 Prototype Testing 

 
The objective of prototype testing is to ensure that the system and its processes operate smoothly 

and completely. For testing purposes, three testers were involved in conducting unit testing to 
inspect the codes for each of the functions in the prototype and perform the overall system interface 
testing for evaluating the whole system performance and its compliance with specified requirements. 
The testers discovered no errors that affect the system's operation based on the prototype testing 
results, and the overall system interface testing was found to operate smoothly in accordance with 
its navigations without any response pause, glitch, or loading failure. Figure 12 depicts one of the 
prototype testing results. 

 

 
Fig. 12. Unit testing report 

 
Overall, using the software development lifecycle approach, a prototype of Risk Mitigation for 

Software Anti-Aging System was successfully developed. The system developed in this study 
addresses the issue raised by [12,15] regarding the lack of tools or mechanisms to aid in change 
analysis for ensuring software anti-ageing. The system serves as a platform or tool for software 
maintainers to execute risk mitigation process during change analysis in software maintenance to 
ensure software in an anti-aging state after performing software change. It incorporates a complete 
and in sequence risk mitigation process embedded in the system to cater the insufficient risk 
mitigation processes in the existing risk mitigation systems. The system also offers a scalable and 
quantifiable measurement of risk compares to risk mitigation suggested by Knodel and Matthias [2] 
which concerns on qualitative evaluation that is quite ambiguous. It also includes numerical 
information on the risks that presents clear risk interpretation to assure the accuracy of its 
information. Risk mitigation process that is scalable reduces bias in the interpretation of risk 
magnitude as it offers a more rigid and straightforward information on risk decision compared to 
qualitative approach. Quantifiable approach provided in the system also allows specific and fixed 
data results for risk report, providing maintainers with a more accurate value of the risks magnitude. 
This helps restraining the chances of ambiguous and misinterpretation of risk exposure and its 
magnitude. In general, the system built in this study is useful and valuable for maintainers in 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 31, Issue 2 (2023) 220-233 

231 
 

providing a digitalized risk mitigation process to handle risk of software change during change 
analysis in software maintenance for achieving software anti-ageing.  
 
5. Conclusion 

 
In conclusion, the issue of incorporating risk assessment for change analysis during software 

maintenance is resolved by proposing a risk mitigation process for managing and mitigating risks. 
Concerns about the insufficient of tool for support of maintainers during change analysis to achieve 
software anti-ageing are also addressed by developing a prototype of Risk Mitigation for Software 
Anti-Ageing system. Concerns regarding the lack of a tool to assist maintainers during change analysis 
in order to achieve software anti-ageing are also addressed through the development of the 
prototype. The prototype was designed and developed to incorporate four major processes in risk 
mitigation and requirements reviewed from existing risk mitigation systems. It performs several 
functions, including determining risks for risk identification, quantifying risk likelihood and impact for 
making risk decision, retrieving suggestion advice for risk treatment, reassessing risks for risk 
monitoring, generating risk reports and managing risk information. Generally, the prototype’s 
implementation leads to a new process and tool for change analysis during software maintenance as 
a new way to combat software ageing. It also contributes to promote a convenient risk mitigation 
tool through scalable and quantifiable approach for assisting maintainers in handling and tackling the 
risks of software change for ensuring software state as anti-ageing. In the future, the study shall 
conduct a qualitative study with software practitioners to validate the prototype's usability and 
usefulness in practice, as well as verifying the quality of programmes built in the system.  

 
Acknowledgement 
This research work is funded and supported by Malaysian Education Ministry, granted under Putra 
Graduate Initiative Grant, Universiti Putra Malaysia (GP-IPS/2018/9644600). 
 
References 
[1] Cotroneo, Domenico, Antonio Ken Iannillo, Roberto Natella, and Roberto Pietrantuono. "A comprehensive study 

on software aging across android versions and vendors." Empirical Software Engineering 25 (2020): 3357-3395. 
https://doi.org/10.1007/s10664-020-09838-3 

[2] Knodel, Jens, and Matthias Naab. "Mitigating the Risk of Software Change in Practice." Interpretation 110 (2014): 
01. 

[3] Boranbayev, A. S., S. N. Boranbayev, Assel M. Nurusheva, K. B. Yersakhanov, and Erzhan Nurakhanovich Seitkulov. 
"Development of web application for detection and mitigation of risks of information and automated 
systems." Eurasian Journal of Mathematical and Computer Applications 7, no. 1 (2019): 4-22. 

https://doi.org/10.32523/2306-6172-2019-7-1-4-22. 
[4] Xiang, Jianwen, Caisheng Weng, Dongdong Zhao, Jing Tian, Shengwu Xiong, Lin Li, and Artur Andrzejakb. “A New 

Software Rejuvenation Model for Android.” 2018 IEEE International Symposium on Software Reliability Engineering 
Workshops (ISSREW), October 2018. https://doi.org/10.1109/issrew.2018.00021. 

[5] Yahaya, Jamaiah H., Aziz Deraman, and Zuriani Hayati Abdullah. "Evergreen software preservation: The anti-ageing 
model." In Proceedings of the International Conference on Internet of things and Cloud Computing, pp. 1-6. 2016. 
https://doi.org/10.1145/2896387.2896436 

[6] de Melo, Matheus D'Eça Torquato, Jean Araujo, I. M. Umesh, and Paulo Romero Martins Maciel. "Sware: an 
approach to support software aging and rejuvenation experiments." Journal on Advances in Theoretical and Applied 
Informatics 3, no. 1 (2017): 31-38. https://doi.org/10.26729/jadi.v3i1.2441 

[7] Parnas, David Lorge. "Software aging." In Proceedings of 16th International Conference on Software Engineering, 
pp. 279-287. IEEE, 1994.  

[8] Oliveira, Felipe, Jean Araujo, Rubens Matos, Luan Lins, André Rodrigues, and Paulo Maciel. "Experimental 
evaluation of software aging effects in a container-based virtualization platform." In 2020 IEEE International 

https://doi.org/10.1007/s10664-020-09838-3
https://doi.org/10.1145/2896387.2896436
https://doi.org/10.26729/jadi.v3i1.2441


Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 31, Issue 2 (2023) 220-233 

232 
 

Conference on Systems, Man, and Cybernetics (SMC), pp. 414-419. IEEE, 2020. 
https://doi.org/10.1109/SMC42975.2020.9283358 

[9] P., Shruthi, and Nagaraj G. Cholli. “An Analysis of Software Aging in Cloud Environment.” International Journal of 
Electrical and Computer Engineering (IJECE) 10, no. 6 (December 1, 2020): 5985. 
https://doi.org/10.11591/ijece.v10i6.pp5985-5991. 

[10] Chen, Pengfei, Yong Qi, Xinyi Li, Di Hou, and Michael Lyu. “ARF-Predictor: Effective Prediction of Aging-Related 
Failure Using Entropy.” IEEE Transactions on Dependable and Secure Computing, 2016, 1–1. 

https://doi.org/10.1109/tdsc.2016.2604381. 
[11] Yahaya, Jamaiah, and Aziz Deraman. "Towards the anti-ageing model for application software." In Proceedings of 

the World Congress on Engineering, vol. 2. 2012. 
[12] Abdullah, Zuriani Hayati, Jamaiah Yahaya, Siti Rohana Ahmad Ibrahim, Sazrol Fadzli, and Aziz Deraman. "The 

implementation of software anti-ageing model towards green and sustainable products." International Journal of 
Advanced Computer Science and Applications 10, no. 5 (2019). https://doi.org/10.14569/IJACSA.2019.0100507 

[13] Rahman, Marfizah A., Rozilawati Razali, and Fatin Filzahti Ismail. "Risk factors for software requirements change 
implementation." International Journal of Advanced Computer Science and Applications 10, no. 3 (2019). 
https://doi.org/10.14569/IJACSA.2019.0100316 

[14] Rahman, Marfizah Abdul, Rozilawati Razali, and Dalbir Singh. "A Risk Model of Requirements Change Impact 
Analysis." J. Softw. 9, no. 1 (2014): 76-81. https://doi.org/10.4304/jsw.9.1.76-81 

[15] Borg, Markus, Krzysztof Wnuk, Björn Regnell, and Per Runeson. "Supporting change impact analysis using a 
recommendation system: An industrial case study in a safety-critical context." IEEE Transactions on Software 
Engineering 43, no. 7 (2016): 675-700. https://doi.org/10.1109/TSE.2016.2620458 

[16] Mahmud, Hoger. "A Simple Software Rejuvenation Framework Based on Model Driven Development." UHD Journal 
of Science and Technology 1, no. 2 (2017): 37-45. https://doi.org/10.21928/uhdjst.v1n2y2017.pp37-45 

[17] Catolino, Gemma, Fabio Palomba, Andrea De Lucia, Filomena Ferrucci, and Andy Zaidman. "Enhancing change 
prediction models using developer-related factors." Journal of Systems and software 143 (2018): 14-28. 
https://doi.org/10.1016/j.jss.2018.05.003 

[18] Wang, Yibin, Maksym Petrenko, and Václav Rajlich. "Evaluating Heuristics for Iterative Impact Analysis." arXiv 
preprint arXiv:1907.08730 (2019). 

[19] Shwedeh, Fanar, Norsiah Hami, Siti Zakiah Abu Bakar, Fadhilah Mat Yamin, and Azyyati Anuar. "The Relationship 
between Technology Readiness and Smart City Performance in Dubai." Journal of Advanced Research in Applied 
Sciences and Engineering Technology 29, no. 1 (2022): 1-12. https://doi.org/10.37934/araset.29.1.112 

[19] Isong, Bassey, and Obeten Ekabua. "Towards Improving Object-Oriented Software Maintenance during Change 
Impact Analysis." In Proceedings of the International Conference on Software Engineering Research and Practice 
(SERP), p. 1. The Steering Committee of The World Congress in Computer Science, Computer Engineering and 
Applied Computing (WorldComp), 2013. 

[20] Lehnert, Steffen. "A review of software change impact analysis." (2011). 
https://doi.org/10.1145/2024445.2024454 

[21] Shihab, Emad, Ahmed E. Hassan, Bram Adams, and Zhen Ming Jiang. "An industrial study on the risk of software 
changes." In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software 
Engineering, pp. 1-11. 2012. https://doi.org/10.1145/2393596.2393670 

[22] Shahzad, Basit, Yousef Al-Ohali, and Abdullah Azween. "Trivial model for mitigation of risks in software 
development life cycle." International Journal of the Physical Sciences 6, no. 8 (2011): 2072-2082. 

[23] Jnr, Bokolo Anthony, Noraini Che Pa, Rozi Nor Haizan Nor, and Y. J. Josoh. "Knowledge mapping and multi-software 
agents-based system for risk mitigation in IT organizations." Journal of Software Engineering and Intelligent 
Systems 1, no. 1 (2016): 61-80. https://doi.org/10.15282/ijsecs.3.2017.1.0023  

[24] Aloini, Davide, Riccardo Dulmin, and Valeria Mininno. "Risk assessment in ERP projects." information systems 37, 
no. 3 (2012): 183-199. https://doi.org/10.1016/j.is.2011.10.001  

[25] Avdoshin, Sergey M., and Elena Y. Pesotskaya. "Software risk management." In 2011 7th Central and Eastern 
European Software Engineering Conference (CEE-SECR), pp. 1-6. IEEE, 2011. https://doi.org/10.1109/CEE-
SECR.2011.6188471 

[26] Firdose, Salma, and L. Manjunath Rao. "3LRM-3 Layer Risk Mitigation Modelling of ICT Software Development 
Projects." International Journal of Electrical & Computer Engineering (2088-8708) 6, no. 1 (2016). 
https://doi.org/10.11591/ijece.v6i1.9026 

[27] Mukhlash, Imam, Ratna Maulidiyah, and Budi Setiyono. "Web-based decision support system to predict risk level 
of long term rice production." In Journal of Physics: Conference Series, vol. 890, no. 1, p. 012143. IOP Publishing, 
2017. https://doi.org/10.1088/1742-6596/890/1/012143 

https://doi.org/10.1109/SMC42975.2020.9283358
https://doi.org/10.14569/IJACSA.2019.0100507
https://doi.org/10.14569/IJACSA.2019.0100316
https://doi.org/10.4304/jsw.9.1.76-81
https://doi.org/10.1109/TSE.2016.2620458
https://doi.org/10.21928/uhdjst.v1n2y2017.pp37-45
https://doi.org/10.1016/j.jss.2018.05.003
https://doi.org/10.37934/araset.29.1.112
https://doi.org/10.1145/2024445.2024454
https://doi.org/10.1145/2393596.2393670
https://doi.org/10.15282/ijsecs.3.2017.1.0023
https://doi.org/10.1016/j.is.2011.10.001
https://doi.org/10.1109/CEE-SECR.2011.6188471
https://doi.org/10.1109/CEE-SECR.2011.6188471
https://doi.org/10.11591/ijece.v6i1.9026
https://doi.org/10.1088/1742-6596/890/1/012143


Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 31, Issue 2 (2023) 220-233 

233 
 

[28] Sun, Xianli, Min Huang, and Xingwei Wang. "Web and multi-agent based virtual enterprise risk management 
system." In 2011 Chinese Control and Decision Conference (CCDC), pp. 902-906. IEEE, 2011. 
https://doi.org/10.1109/CCDC.2011.5968311 

[29] Olyazadeh, Roya, Zar Chi Aye, and Michel Jaboyedoff. "Development of a prototype for spatial decision support 
system in risk reduction based on open-source web-based platform." In Conference Paper. 2013. 

[30] Ruparelia, Nayan B. "Software development lifecycle models." ACM SIGSOFT Software Engineering Notes 35, no. 3 
(2010): 8-13. https://doi.org/10.1145/1764810.1764814 

[31] Ali, Firkhan Ali Hamid, Mohd Khairul Amin Mohd Sukri, Mohd Zalisham Jali, Muhammad Al-Fatih, and Mohd Azhari 
Mohd Yusof. "Web-Based Reporting Vulnerabilities System for Cyber Security Maintenance." Journal of Advanced 
Research in Applied Sciences and Engineering Technology 29, no. 3 (2023): 198-205. 
https://doi.org/10.37934/araset.29.3.198205 

[32] Pileggi, Salvatore F., Antonio A. Lopez-Lorca, and Ghassan Beydoun. "Ontology in software engineering." In ACIS 
2018-29th Australasian Conference on Information Systems. 2018. https://doi.org/10.5130/acis2018.bp 

[33] Sommerville, Ian. "Software engineering (ed.)." America: Pearson Education Inc (2011). 
[34] Orlando, Lori A., R. Ryanne Wu, Rachel A. Myers, Adam H. Buchanan, Vincent C. Henrich, Elizabeth R. Hauser, and 

Geoffrey S. Ginsburg. "Clinical utility of a Web-enabled risk-assessment and clinical decision support 
program." Genetics in Medicine 18, no. 10 (2016): 1020-1028. https://doi.org/10.1038/gim.2015.210 

[35] Raj Sinha, Pankaj, Larry E. Whitman, and Don Malzahn. “Methodology to Mitigate Supplier Risk in an Aerospace 
Supply Chain.” Supply Chain Management: An International Journal 9, no. 2 (April 1, 2004): 154–68. 
https://doi.org/10.1108/13598540410527051. 

[36] Noviarini, Diena, Mutia Delina, Ananda Mochammad Rizky, Umi Widyastuti, Osly Usman, and Akhmad Yamani. 
"Early Warning System for Fire Catcher in Rain Forest of Sumatera Using Thermal Spots." Journal of Advanced 
Research in Fluid Mechanics and Thermal Sciences 103, no. 1 (2023): 30-39. 
https://doi.org/10.37934/arfmts.103.1.3039 

[37] Elsayed, Eman K., and Enas E. El-Sharawy. "Detecting Design Level Anti-patterns; Structure and Semantics in UML 
Class Diagrams." J. Comput. 13, no. 6 (2018): 638-654. https://doi.org/10.17706/jcp.13.6.638-654 

[38] Zeng, Sai X., Chun M. Tam, and Vivian WY Tam. "Integrating safety, environmental and quality risks for project 
management using a FMEA method." Engineering Economics 66, no. 1 (2010). 

 

https://doi.org/10.1109/CCDC.2011.5968311
https://doi.org/10.1145/1764810.1764814
https://doi.org/10.37934/araset.29.3.198205
https://doi.org/10.5130/acis2018.bp
https://doi.org/10.1038/gim.2015.210
https://doi.org/10.37934/arfmts.103.1.3039
https://doi.org/10.17706/jcp.13.6.638-654

