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 ABSTRACT 

 

 

 

Synthetic image data generation has gained popularity in computer vision and machine 
learning in recent years. The work introduces a technique for creating artificial image 
data by utilizing 3D files and rendering methods in Python and Blender. The technique 
employs BlenderProc, a rendering tool for generating artificial images, to efficiently 
create a substantial amount of data. The output of the method is saved in JSON format, 
containing COCO annotations of objects in the images, facilitating seamless integration 
with current machine-learning pipelines. The paper shows that the created synthetic 
data can be used to enhance object data during simulation. The method can enhance 
the accuracy and robustness of machine-learning models by modifying simulation 
parameters like lighting, camera position, and object orientation to create a variety of 
images. This is especially beneficial for applications that require significant amounts of 
labelled real-world data, which can be time-consuming and labour-intensive to obtain. 
The study addresses the constraints and potential prejudices of creating synthetic data, 
emphasizing the significance of verifying and assessing the generated data prior to its 
utilization in machine learning models. Synthetic data generation can be a valuable tool 
for improving the efficiency and effectiveness of machine learning and computer vision 
applications. However, it is crucial to thoroughly assess the potential limitations and 
biases of the generated data. This paper emphasizes the potential of synthetic data 
generation to enhance the accuracy and resilience of machine learning models, 
especially in scenarios with limited access to labelled real-world data. This paper 
introduces a method that efficiently produces substantial amounts of synthetic image 
data with COCO annotations, serving as a valuable resource for professionals in 
computer vision and machine learning.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: 

Synthetic image data generation; 
Rendering techniques; BlenderProc; 
COCO annotations  

 
 
1. Introduction 
 

In automated assembly processes with robotic systems, accurately detecting and manipulating 
components in their workspace is a crucial challenge [1,2]. Integrating AI-based instance 
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segmentation methods has become a key solution to overcome these obstacles [3]. Instance 
segmentation is a specific task in computer vision that involves identifying and distinguishing 
individual objects within an image or video, while also classifying each object [4]. This methodology 
primarily depends on the capabilities of deep neural networks, advanced AI models carefully crafted 
to identify patterns and connections in large amounts of input data [5]. 

The effectiveness of deep neural networks in segmentation tasks depends heavily on the quality 
and quantity of training data available to them [6]. Having a varied and extensive dataset helps the 
model understand many different object examples and their unique characteristics, which improves 
its ability to make predictions accurately and generally [7-9]. Acquiring a large, annotated dataset 
containing real-world objects is a difficult task that requires a lot of effort and resources [10]. 

Creating real object data involves a detailed process that includes collecting images or videos, 
accurately annotating objects, and carefully curating balanced and diverse datasets [11,12]. Every 
stage requires meticulous focus on specifics, where manual annotation alone requires numerous 
hours dedicated to outlining exact boundaries around each object and assigning suiTable class labels 
[13]. Obtaining real-world data is hindered by various obstacles, such as privacy restrictions, 
restricted access to certain objects or environments, and the scarcity of specific setups. Ensuring the 
dataset covers different lighting conditions, object orientations, and spatial arrangements increases 
complexity, requiring capturing images or videos under various controlled conditions [14,15]. 

Generating real object data is time-consuming and poses a significant obstacle to creating and 
implementing AI-based instance segmentation models in robotic systems [16]. This bottleneck causes 
inefficient performance in automated assembly processes, leading to reduced efficiency, increased 
error rates, and rising costs [17]. Therefore, finding new methods to speed up the creation of large 
training datasets is crucial for improving the performance of robotic systems in automated assembly 
tasks [18,19]. 

This paper aims to provide a solution to expedite the data acquisition process by automatically 
generating synthetic datasets. This method aims to overcome the limitations of acquiring extensive, 
varied, and labelled real-world datasets for training AI-driven computer vision models, specifically 
instance segmentation models, by utilizing Computer-Aided Design (CAD) data and a compatible 
rendering engine. This paper outlines a methodical strategy for creating synthetic data by utilizing 
CAD data and a corresponding renderer as the central component of the process. The following 
sections will explain the complexities of this process, clarifying the workflow from obtaining the CAD 
model to annotating data, and ending with the post-processing of synthetic data for optimal use in 
various applications. 

 
2. Methodology  
2.1 BlenderProc Pipeline 

 
Synthetic data is crucial in computer vision for training and assessing machine learning models, 

especially in cases where real-world data is scarce or poses privacy issues [20]. One method of 
creating synthetic data involves utilizing the BlenderProc pipeline and 3D files [21,22]. BlenderProc is 
a sturdy system created for rendering 3D information in Blender, an open-source software for 3D 
modelling and animation. This method includes executing the rendering process for 3D files and 
acquiring the COCO annotations of the objects in the scene [23]. The pipeline enables the creation of 
high-quality synthetic data for use in different computer vision tasks.  

The BlenderProc pipeline relies on Python scripts to manage and automate the creation of 
synthetic data. Users can tailor the rendering pipeline to their specific requirements, like training 
machine learning models, conducting simulations, or testing algorithms, by utilizing Python's 
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adaptability and user-friendly interface [24]. BlenderProc utilizes Blender for the rendering process, 
taking advantage of its wide array of tools and features for developing, modifying, and rendering 3D 
models and environments [25] Utilizing blend files guarantees compatibility and user-friendliness, as 
BlenderProc smoothly integrates with Blender's proprietary file format [26]. 

 
2.2 Flow Chart 

 
The flowchart for generating synthetic data with BlenderProc consists of essential steps aimed at 

creating authentic and useful datasets for different computer vision applications, as shown in Figure 
1. The first step of the BlenderProc workflow involves loading and manipulating 3D objects in the 
environment. This involves importing 3D models in various formats and carefully adjusting attributes 
such as position, rotation, and scale to intricately compose the scene. Accurately setting camera 
parameters is crucial for creating a realistic and authentic artificial scene. Users can adjust the 
camera's position, orientation, and various settings such as focal length, field of view, and depth of 
field. This allows them to recreate specific visual effects or mimic real-world camera setups, 
ultimately enhancing the quality of the images produced. 

The precise setup of lighting conditions is a crucial part of creating synthetic data. BlenderProc 
allows users to use different types of lighting, including area, sunlight, points, or spotlights, and adjust 
properties like intensity, colour and shadow settings. These adjustments are crucial for creating 
accurate and realistic representations of the 3D environment, which are essential for the success of 
future computer vision projects. Once users have finished setting up the objects, camera, and 
lighting, they start the scene generation process by running the BlenderProc Python script. This script 
generates 3D scenes and produces custom synthetic images designed for various computer vision 
goals. 

After creating a 3D scene successfully, BlenderProc automatically creates COCO annotations in 
JSON format for synthetic images. The annotations provide essential information about objects in 
the scene, including bounding boxes, segmentation masks, and keypoints. They are essential tools 
for training and assessing machine learning models, enhancing the effectiveness and resilience of 
future computer vision projects. When the quality of the 3D scene is not as expected, an iterative 
refinement process begins. Users continuously fine-tune different settings related to objects, 
cameras, or lighting conditions to perfect the scene according to the specific criteria set for the 
computer vision task. 

 
2.3 Concept  

 
The concept behind BlenderProc lies in its aim to automate and streamline the synthesis of image 

data through a modular, customizable, and user-friendly pipeline that seamlessly integrates Blender's 
functionality with the specific requirements for generating synthetic datasets. This methodology 
entails constructing custom pipelines tailored to unique requirements, delineating structure and 
parameters via configuration files (in YAML or JSON format), and leveraging Blender's Python API to 
automate data synthesis. By harnessing Blender's rendering capabilities, BlenderProc generates 
photorealistic synthetic images while facilitating automatic annotation generation in popular formats 
such as COCO or PASCAL VOC. This comprehensive approach not only expedites dataset creation but 
also enhances the realism and diversity of synthetic datasets, catering to various computer vision 
tasks including object detection, segmentation, and classification. 
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Fig. 1. Flow Chart 

 
2.4 Implementation 

 
BlenderProc's implementation process includes coordinating a pipeline and setting up the 

necessary modules to create the desired dataset. To create synthetic images of screws using 
BlenderProc, follow these steps: Start by verifying that the 3D screw files are compatible with Blender 
and meet modelling and texturing standards. Subsequently, proceed to install Blender and 
BlenderProc by adhering to the guidelines provided in the documentation. Next, create a Python 
script utilizing the BlenderProc API to automatically produce synthetic data. Load screw objects, 
adjust their positions and rotations, and create varied environments and perspectives by introducing 
randomized lighting and camera configurations. Enable physics simulation to achieve lifelike 
interactions in the scene. ConFigure rendering settings, enable segmentation masks for objects, 
render the scene, and save the generated data with COCO-format annotations for training and 
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evaluation. These steps result in the creation of the intended synthetic image dataset, shown in 
Figure 2. 

 

 
Fig. 2. The 3D Files for Simulation 

 
3. Results and Discussion 

 
The BlenderProc pipeline is an advanced tool that utilizes Blender, an open-source 3D modelling 

and animation software, to create synthetic image data. We performed 2500 simulations in this study, 
introducing random factors to create a varied and extensive dataset, suiTable, for training and 
assessing machine learning models. 

 
3.1 Simulation Results 

 
The simulation process involves randomly placing objects in the scene to ensure that each 

rendered image has a distinct arrangement of objects. Applying physics to objects creates natural 
interactions that lead to realistic training scenarios. Moreover, camera movement is randomized in 
these simulations. The camera moves dynamically along the y-axis and rotates within a range of -5 
to 5 degrees. Illustrated in Figure 3, The intentional changes in the camera's position and orientation 
help capture scenes from different angles and perspectives, enhancing the dataset with essential 
variability for effective model training. 
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(a) 

 
(b) 

Fig. 3. The camera is being adjusted to have Euler rotation of (a) 5 
Degree (b) -5 Degree 

 
The synthetic data generation process involves integrating random lighting conditions, as shown 

in Figure 4. BlenderProc enables the randomization of light positions, types of light sources, and 
intensity in Figure 5, creating various lighting scenarios for synthetic images. Increasing the variety of 
lighting conditions improves the dataset's ability to perform well in different environments. 
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Fig. 4. The lighting setting 

 
The type of lighting is set to "AREA,” which means that the lighting is only focused on certain 

areas. The intensity of the lighting is being set to a value between 200W and 800W. The position of 
the lighting is fixed or can also be random around the camera and the objects. 

 

   
(a) (b) (c) 

Fig. 5. Pictures of generated image data (a) First generated image, (b) Second generated 
image and (c) Third generated image 

 

   
(a) (b) (c) 

Fig. 6. COCO visualization of (a) First generated image, (b) Second generated image and 
(c) Third generated image 
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3.2 Number of Screws in the Generated Data 
 
Table 1 specifies that the camera must identify a total of 24 screws during the rendering process. 

The screws' positions on the table are randomized using a Python script and the BlenderProc pipeline.  
 

Table 1 
Table of number of screws 

 Number occurs 

Screws X20 X25 X30 X35 

M4 1272 1264 1295 1211 
M5 1272 1312 1248 1290 
M6 1227 1312 1242 1300 
M8 1236 1233 1244 1259 
M10 1286 1247 1270 1265 
M12 1260 1301 1266 1281 

 
Figure 7 displays a histogram illustrating the distribution of the number of screws in each 

generated image. The figures above clearly show that the positions of the screws were randomized 
during the simulation. As a result, only specific screws are visible in the camera view, while others 
are hidden because of their random placement. Due to the inherent randomness in the screws' 
positions, only a portion of the screws is anticipated to be visible in each image captured by the 
camera. Additionally, the camera's continuous Y-axis movement will not show all screws at once. This 
observation highlights the importance of evaluating the effectiveness and influence of the 
randomization technique on the quantity of screws present in each produced image, as determined 
from the data sheet. 

 

 
Fig. 7. Histogram 

 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 62, Issue 1 (2026) 158-169 

166 
 

The table and histogram summarize the occurrences of different types of screws in 2500 
simulations. The screws are identified by their diameter, indicated by "M," followed by a number 
(M4, M5, M6, M8, M10, and M12), and their length, measured in millimetres (20, 25, 30, and 35). 
The x-label on the graph represents the screws' specifications by combining the diameter and length 
(e.g., M4x20), while the y-label shows the frequency of each screw type. 

The M4 screws have the following combinations: M4x20 has 1272 instances, M4x25 has 1264, 
M4x30 has 1295, and M4x35 has 1211. In the same way, M5 screws have four different sizes: M5x20 
(1272 times), M5x25 (1312 times), M5x30 (1248 times), and M5x35 (1290 times). These are the 
number of times that M6 screws happen: 1227 times for M6x20, 1312 times for M6x25, 1242 times 
for M6x30, and 1300 times for M6x35. M8 screws come in four different sizes: 1236 times for M8x20, 
1233 times for M8x25, 1244 times for M8x30, and 1259 times for M8x35. 

The last number in the table is 1265. M10x20 appears 1286 times, M10x25 1247 times, M10x30 
1270 times, and M10x35 1265 times. M12 screws come in four different sizes: M12x20 (1260 times), 
M12x25 (1301 times), M12x30 (1266 times), and M12x35 (1281 times). 

The data provides a detailed summary of the distribution of various screw types according to their 
diameter and length, as well as their frequency of occurrence. This information is useful for 
understanding the frequency and utilization of these screws in different applications. 

 
3.3 Data Comparison to Real Data 

 
Real data acquisition involves using a similar randomization process for the screwspositions. 

Following this, the screws in the images are manually labelled or plotted using online labelling tools. 
Figure 8 displays pictures of the first, second, and third real images, demonstrating that the real 
images are not significantly different from the generated synthetic image data. Acquiring real data is 
a more time-consuming process than generating synthetic data. 

 

   
(a) (b) (c) 

Fig. 8. Pictures of (a) First real image, (b) Second real image and (c) Third real image 

 
3.4 Discussion 

 
It is crucial to critically analyse the process of creating synthetic image data with BlenderProc to 

progress the field and improve its effectiveness. Examining the data is crucial for ensuring accuracy, 
enhancing authenticity, maximizing model efficiency, recognizing constraints, and promoting 
innovation [23]. 

One aspect that requires more research is the velocity and effectiveness of the artificial data 
creation process. The simulation time is slow despite attempts to optimize CPU thread utilization, 
suggesting possible inefficiencies. A thorough study is required to investigate hardware elements like 
CPU and GPU performance, as well as memory and storage capacities. Software optimizations in 
BlenderProc, such as codebase efficiency and rendering settings, need to be carefully examined to 
find areas for enhancement and improve simulation speed [28,29]. 
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Additionally, a thorough examination of parameters concerning the simulation's camera settings 
and lighting conditions is necessary to create synthetic data that closely mimics real-world situations. 
By analysing parameters such as field of view, camera distance, sensor size, and focus distance, one 
can adjust camera settings to enhance the realism of image generation [30]. Examining various types 
of light, intensities, and their effects on shadows and reflections is essential for generating artificial 
data with improved realism and visual accuracy [31]. Researchers can optimize and innovate in the 
fields of computer vision and machine learning by exploring these areas and understanding their 
impact on the process of generating synthetic data. 

 
4. Conclusions 

 
This study has examined the use of synthetic image data generation methods with BlenderProc, 

a robust Python tool for producing and manipulating 3D files. We used BlenderProc's flexibility to 
create a variety of intricate scenarios with random object and camera placements, along with 
different lighting conditions. We used this method to generate a comprehensive dataset of artificial 
images for additional analysis and testing. 

The data was annotated using the popular COCO JSON format, making it simple to integrate with 
current tools for analysis and visualization. We gained valuable insights into the spatial and 
contextual relationships within the synthetic images by visualizing the JSON files. Conducting multiple 
simulations allowed us to gather a varied and inclusive dataset, which was beneficial for identifying 
the frequency of specific objects, like screws, in the dataset. 

We conducted a comprehensive evaluation of the JSON files to assess the effectiveness of our 
synthetic image data generation method, gaining a clear understanding of its benefits and limitations. 
This study shows that BlenderProc has the potential to be a powerful tool for creating synthetic data. 
It also emphasizes the significance of well-designed simulations in generating strong and dependable 
datasets. Future research in this area may focus on improving generation methods and exploring 
additional applications of synthetic image data in various fields. 
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