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 ABSTRACT 

 
Potholes are defects on the surface of roads, streets, or pavements brought on by 
depressions or holes, which are hazardous for vehicles and pedestrians, whether small 
divots or huge craters. Various methods have been explored to improve the accuracy 
of potholes detection. Existing approaches have advantages and disadvantages. This 
paper presents the proposed method of pothole detection utilising Doppler Radar 
signal's Power Spectrum Density (PSD) together with the Decision Tree classification 
algorithm. While continuous waveform (CW) radar is able to identify moving targets, it 
cannot localise the exact depth of the reflector, which is the prominent characteristic 
of potholes. In addition, the target's reflected signal is likely to be masked by nearby 
harmonics. Since the radar is moving despite the target of interest, mounting it on a 
moving vehicle offers a different perspective. This paper explores the potential of 
Doppler radar's signal for pothole detection while comparing two Machine Learning 
(ML) techniques. A commercially over-the-shelf (COTS) K-LC2 Doppler radar was 
employed to acquire pothole and non-pothole raw datasets. Doppler signal was hardly 
distinguished between pothole and non-pothole, either in the time or frequency 
domain. Hence, Doppler signals were converted to power spectral density (PSD), and 
PSD's features were extracted. Extracted features were applied with the coarse 
Decision Tree (DT) and K-Nearest Neighbours (KNN) classification algorithms. The result 
exhibits a better accuracy of 91.2% for 80:20 distribution by using the Decision Tree. 
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1. Introduction 
 

In recent years, the field of transportation infrastructure has made significant strides towards 
improving road safety and durability. One critical aspect in this domain is the detection of road 
defects, such as potholes, which can pose substantial risks to both vehicles and road users. Potholes, 
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often caused by wear and tear, adverse weather conditions, and heavy traffic, can lead to accidents, 
vehicle damage, and increased maintenance costs. Timely and accurate detection of potholes is 
imperative for proactive maintenance and improved road safety. 

Potholes, depressions in road surfaces caused by deteriorated asphalt and weakened underlying 
soil, pose significant challenges to road users and governmental authorities worldwide. The adverse 
effects of potholes range from compromised road safety and increased vehicle maintenance costs to 
financial liabilities for government agencies. Therefore, the development of efficient and accurate 
methods for pothole detection and timely repair is crucial.  

The significance of pothole detection and remediation cannot be overstated. According to a 
collaborative effort between the Malaysian government and Waze, approximately 50,000 potholes 
were reported in the state of Selangor alone between 2019 and 2020 [1]. Malaysia, ranked as the 
12th country with the worst roads globally [2], has witnessed a steady decline in road quality, 
resulting in a high number of road fatalities. Moreover, the responsibility of maintaining roads falls 
on governmental bodies like the Malaysian Public Works Department (JKR) and local authorities, who 
may face compensation claims due to negligence in managing potholes [3]. Syahmi Radzi et al., [4] 
studied the road characteristics effect over motorcycle crashes fatality involving the heavy good 
vehicle (HGV). The research provides a new insight on the importance to understand the 
characterisation of road such road defect, quality surface, type and condition, and their effect on 
crashes; Thus, the severity can be reduced. Hence, exploring innovative approaches for efficient 
pothole detection is imperative to mitigate these issues. 

Research in road defect detection has explored various sensing technologies to address this 
challenge. Various sensor types have been investigated for pothole detection, such as vision-based, 
laser-based, microwave-based, acoustic-based and vibration-based. Each has advantages and 
limitations. Vision and laser-based sensors often have limited views over range, weather, and lighting 
conditions. Meanwhile, the acoustic sensor provides a cost-effective solution but has difficulty 
distinguishing obstacles. In addition, vibration-based sensor faces challenges in detecting minor 
defect and has battery consumption limitations. Hence, advancements in sensing technologies, such 
as radar systems, coupled with the power of deep learning algorithms, have shown great potential 
in addressing this issue. 

Limited knowledge exists regarding the efficacy of classifying Doppler radar waveforms 
associated with potholes. Doppler radar can ascertain a target's velocity but cannot determine its 
specific depth, making it unsuitable for depth-based pothole detection [5]. Furthermore, surrounding 
elements often obscure echoes from the target of interest [5,6]. This depth detection limitation in 
Doppler radar, as seen in ultrasound medical imaging, has been discussed by X. Li et al., Their work 
explores how factors like ultrasound beam characteristics and intonation angle affect depth precision 
and underscores the importance of spatial resolution for distinguishing closely spaced structures at 
various depths. These complexities highlight the challenge of accurately detecting pothole depths 
using Doppler radar [6].  

Furthermore, the effectiveness of a classification is determined by how many waveforms can be 
distinguished as belonging to a category described by a class. Moreover, the time-domain signal and 
frequency spectrum are insufficient to differentiate between potholes and non-pothole Doppler 
signals over asphalt pavement, which leads to incorrect interpretation. Therefore, this study 
examines the categorisation relevance of classification to reflect on the potential of Doppler radar 
signal sensing. Additionally, the effectiveness of the coarse Decision Tree (DT) and K-Nearest 
Neighbours (KNN) for classifying Doppler waveforms is compared. 
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1.1. Radar-Based Road Defects Detection 
 
Detecting damages along the inspected road and identifying cracks promptly are crucial for 

enhancing the thorough monitoring and assessment of road pavement conditions [7]. Millimetre-
wave (mmWave) radar technology has proven its prowess in pothole detection research. Wu, H., Qi, 
F., and Wang, J.'s work introduced a low-terahertz radar system operating at 94GHz, employing the 
frequency-modulated continuous-wave (FMCW) technique with a 3mm wavelength [8]. Through 
extensive simulations and experiments, this system demonstrated its effectiveness in detecting road 
pits and smaller obstacles like rocks and steel balls. Simulations consistently reveal higher electric 
field strength within road pits compared to the road surface, regardless of pit depth, and 
experimental results confirmed a distinctive 16 dB field strength difference. However, the work only 
explored the FMCW signal, which can identify the pothole depth. 

Additionally, A. Srivastava et al., [9] research employed the finite difference time domain (FTDT) 
techniques to estimate the 2D Radar Cross-Section (RCS) of potholes, highlighting the substantially 
higher RCS values (approximately 20dB) in potholes filled with air or rainwater compared to flat road 
surfaces. They emphasised the influence of dielectric constants on RCS, particularly in potholes with 
triangular cross-sections. The study focused on the automotive radar frequency, also exploring 
utilising the look-ahead radar for prior sensing, contrary to Doppler-radar principle. 

Moreover, Valuyskiy, D. V. et al., [10] study developed a 77GHz radar bench to investigate 
reflection properties and build mathematical models for various obstacles, including fallen trees and 
potholes. This research encompassed hardware and software tool development for recording and 
analysing reflections, with the overarching aim of enhancing obstacle detection algorithms in 
Advanced Driver Assistance Systems (ADAS) radar modelling. 

In a separate contribution, Soroush Ameli's proposal [11] introduced a radar-based system for 
autonomous vehicles, leveraging mmWave technology for precise road sensing in driverless cars, 
achieving notable accuracy in classifying road conditions, and holding potential applications in 
stabilisation, path planning, and guidance control systems. Collectively, these studies underscored 
the growing significance of mmWave radar in advancing pothole detection research and its broader 
potential for improving road safety and autonomous vehicle technology. Similar to the earlier work, 
this research also implemented the FMCW. 

These studies [6-9] have provided valuable insights into using mmWave radars, offering guidance 
on operating radar modules for pothole detection and optimal mounting placements on vehicles for 
radar data collection. However, it's important to note that while these studies enlightened the 
pothole detection, such as using RCS and the reflection properties of signals from specific obstacles, 
they did not address Doppler-based parameters and measurements for pothole sensing. This 
revealed a gap that warrants further exploration and consideration in future research efforts. 

Conversely, numerous studies have underscored the versatile applications of Ground-Penetrating 
Radar (GPR) in pothole detection and pavement assessment. For instance, X. Liang et al., [12] 
harnessed 3D-GPR and the VGG16 machine learning model to detect pavement distress efficiently. 
At the same time, Cao Q. and Al-Qadi I.L. [13] studied the GPR's potential in identifying inadequate 
bonding in asphalt overlays, accentuating its sensitivity to texture and moisture variations. 
Meanwhile, Li, S. et al., [14] introduced automation to conceal crack detection through 3D GPR and 
YOLOv4, and Gao J. et al., [15] achieved real-time pavement distress detection using GPR and Faster 
R-ConvNet. Torbaghan M. E. et al., [16] improved road crack detection with GPR, and L. Zhao et al., 
[17] explored GPR's capacity in non-contact terrain sensing. These studies shed light on GPR's 
adaptability and effectiveness in assessing road infrastructure, including pothole detection. 
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While these studies offered valuable insights into GPR's operation and potential, they primarily 
focused on its versatility in detecting road defects such as pavement distress and asphalt debonding. 
Notably, they delved into radar feature extraction but did not specifically address Doppler-based 
features. Hence, this highlights the need for further research to evaluate and compare Doppler-based 
techniques with existing pothole detection infrastructure, potentially enriching our understanding of 
radar technology's capabilities. 

In summary, the research focused on pothole sensing using radar has yielded promising results. 
These studies have demonstrated the potential of radar technology to detect and analyse potholes 
effectively. However, many aspects of radar feature extraction, named Doppler-based features have 
not been discussed, stressing the need for such a study to compare the feasibility with existing 
infrastructure.  

 
1.2. Utilisation of Doppler Information in Road Defect Detections 

  
Several studies have explored the work of pothole detection, focusing on leveraging Doppler-

based information. In one notable contribution, D. A. Jordan and colleagues [18] tackled the pressing 
issue of potholes in African road networks by introducing the Pothole Detection, Classification, and 
Logging (PDCL) system. This innovative system ingeniously amalgamates active infrared stereo vision 
and mmWave FMCW radar sensors, all mounted on a vehicle's bonnet. While the radar's range-
Doppler maps (RDMs) faltered in detecting potholes due to their diminutive radar cross-sections, the 
stereo vision component emerged as the hero of the day. It accomplished the detection of shallow 
potholes by flattening depth maps to accentuate deviations in the road surface. This work was a 
testament to the inefficacy of RDMs generated using FMCW radar and champions the superior 
efficacy of stereo vision in Doppler-based pothole detection. 

In a related exploration, B. S. M. Aparajith, A. Srikanth, A. Ali, and T. S. Chandar [19] scrutinised 
radar technology, specifically FMCW and Orthogonal Frequency Division Multiplexing (OFDM) radar 
methodologies, in the pursuit of spotting low-height road surfaces anomalies such as humps and 
potholes. Their investigation centred on the estimation of RCS and the subsequent identification of 
these anomalies. Doppler-based features played a pivotal role in their approach, manifesting in two 
distinct ways. First, Range-Doppler (RD) processing was used to determine the radial speed of targets 
that were discovered by using the Doppler shift in the received radar signal. Secondly, in the OFDM 
methodology, Doppler-induced phase progression across consecutive OFDM symbols was leveraged 
for velocity estimation, mirroring the principles of FMCW radar systems. 

Employing the Logistic Regression Machine Learning algorithm, this classification model achieved 
impressive results, boasting a training accuracy of 84.4% and a test accuracy of 80%. This 
investigation not only sheds light on radar-based target detection, but also showcased the potential 
of Doppler-based velocity estimation and classification techniques in road surface anomaly 
detection, with prospective applications in real-time traffic management and safety systems. 

Turning attention to the domain of autonomous vehicles, Z. Xu, C. J. Baker, and S. Pooni [20] 
endeavoured to enhance radar technology, with a prominent focus on exploiting Doppler-based 
features to bolster obstacle detection capabilities. Their research unveiled an advanced algorithm 
that adeptly surmounted the challenge of accurately distinguishing between moving and stationary 
objects across diverse scenarios. Notably, this study elucidated that these Doppler-based radar 
features could be effectively repurposed for pothole detection, contributing not only to road safety 
but also to improved ride quality, while simultaneously augmenting the autonomous driving 
capabilities of vehicles. 
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Yet another pioneering endeavour in road defect detection is the work by I. Katsamenis and 
colleagues [21], which embraced Unmanned Aerial Vehicles (UAVs) and the YOLOv5 deep learning 
model. This study stands out due to its unwavering emphasis on Doppler-based features within the 
YOLOv5 model, enriching defect detection accuracy. By detecting frequency shifts in radar or sensor 
data induced by moving objects, such as vehicles on the road, this research imbued the model with 
the unique ability to distinguish static road defects from moving objects. The incorporation of 
Doppler information facilitated the precise localisation of road defects within captured images, 
effectively discerning between anomalies like cracks and potholes and other mobile elements like 
vehicles. This innovative approach showcases the potential of integrating Doppler features into 
vision-based sensors for pothole detection, pushing the boundaries of technological capability in this 
field. 

All of the earlier works studied various techniques which mostly using doppler information of 
FMCW signal, but did not address the CW Doppler radar utilisation. In contrast to the aforementioned 
studies, this paper focuses on practical applications of commercially available 24 GHz K-LC2 RFbeam 
radar modules for road pavement pothole detection. It explores the untapped potential of CW 
Doppler signals in assessing road surface conditions, in conjunction with a decision tree classification 
algorithm. This study holds significance as it presented the capability of Doppler-based research in 
improving efficient and reliable road defect detection methods, promising safer and more durable 
transportation infrastructure. 

 
2. Methodology  
2.1 Experimental Setup for Signal Acquisition 

 
The experimental setup of potholes detection was conducted on several pothole and non-pothole 

pavements, utilizing a 24 GHz K-LC2 RFbeam radar module [22]. The commercially of the shelf (COTS) 
doppler radar is a 2x4 patch, maximum at 15dBm of equivalent isotropic radiated power (EIRP). The 
transceiver was operating at 24.125 GHz with 3 dB beamwidth of horizontal 80o and vertical 34o. 
Figure 1 presents the radar module utilized.  
 

 
Fig. 1. Radar module utilised for 
data acquisition (K-LC2 by 
RFbeam [22] 

 
The K-LC2 radar module was integrated to RFbeam ST100 enabling a connection to acquisition 

software, RFbeam SignalViewer, through a USB cable. Figure 2 displays the radiation pattern of the 
patch antenna. 
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Fig. 2. K-LC2 module antenna patch 
radiation pattern [22] 

 
The module was mounted in front of the vehicle at a 1-meter height with an angle of 45o. In this 

study, a sedan car was used. Figure 3 is the setup for data acquisition. 
 

 
Fig. 3. Data acquisition setup 

 
Figure 4 depicts examples of potholes which raw Doppler signals acquired for the study. A CW 

Doppler radar operates to capture any movement observed. However, in this work, we proposed 
that the radar be mounted and, on the move, to acquire signals from static roads and potholes. 

 

 
Fig. 4. Example of potholes measured during experiments 
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2.2 Doppler Signal Processing 
 
The block diagram of the study is illustrated in Figure 5. A raw signal received was recorded in the 

*.wav format. The signal was extracted by using MATLAB R2022b to a readable value in the time 
domain. Each signal was sliced into 10,000 sample points to ensure the power magnitude of the 
frequency spectrum can be compared equally between potholes and non-potholes. Data for potholes 
and non-potholes were segmented manually. There were 460 datasets consisting of potholes and 
non-potholes. Signals were post-processing, which was not using real-time processing. Next, the time 
domain waveform was transformed to a power spectral density (PSD) in the frequency domain of 
256 discrete Fourier transform (DFT) points. 

 

 
Fig. 5. Block diagram the proposed of pothole detection 

 
Thirteen features (excluding Class) from the PSD were extracted and applied with algorithms for 

classification. In this work, DT and KNN Machine Learning (ML) techniques were employed. Features 
were extracted as tabulated in Table 1 for the classification purposes. All signal processing and ML 
were conducted using MATLAB. 

 
Table 1 
Feature extracted form PSD 
Features list Feature ID 

Mean value of PSD magnitude Mean 
Maximum value of PSD magnitude Max 
Minimum value of PSD magnitude Min 
Median value of PSD magnitude Median 
Mean square error of PSD magnitude MSE 
Root means square error of PSD magnitude RMSE 
Scattering Index SI 
Mean distance of peaks location MeanCycle 
Minimum distance of peaks location MinCycle 
Maximum distance of peaks location MaxCycle 
Distance between the first and second highest peaks MaxDiff 
Distance between the highest and the lowest peaks MaxPeakDistHL 
Distance between first and last peaks DistancePeakEE 
Pothole or non-pothole categories Class 

 
2.3 Potholes Classification 

 
PSD extracted features were exported and applied with the DT and KNN classification algorithms, 

which are supervised learning techniques. DT is a simple tree-structured classifier consisting of root, 
decision, and leaf nodes. It is easy to comprehend as it typically reflects human's thinking. In this 
analysis, coarse DT was utilised due to its higher flexibility. Next, a similar dataset was also applied 
with coarse KNN. Like DT, KNN is a non-parametric method and one of the easiest ML techniques. 
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KNN works in such a way that it explores the k-neighbours and produces the projection. The course 
KNN was applied to avoid rigid distinction between classes with 100 neighbours.  

A cross-correlation was applied to avoid overfitting, and the Principal Component Analysis (PCA) 
was disabled. Dataset fed contained 34.57% pothole data and 65.43% non-pothole data, out of 460. 
Non-potholes consisted of even and uneven pavement surfaces, which were classified as one. The 
classification was conducted with 80:20 ratio. 

  
3. Results and Discussion 
3.1 Short-Time Fourier Transform Analysis 

 
Firstly, the Doppler signal was processed using the Short-Time Fourier Transform (STFT) to 

observe the signal’s frequency content over time. Figure 6 shows: 
 

i. doppler signal in time domain of a pothole 
ii. spectrogram of the doppler signal for pothole 

iii. doppler signal in time domain of a non-pothole 
iv. spectrogram of the doppler signal for non-pothole.  

 
In both scenarios, it was hard to distinguish between potholes and non-potholes. Both exhibit a 

continuous signal with non-uniform magnitudes for the time domain Doppler signals. Subsequently, 
the STFT spectrogram also presents spikes indicating intensity at certain parts of the signal. 
Therefore, STFT analysis was not competent to distinguish between pothole and non-pothole signals. 
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(a)  (b) 

   

 

 

 
(c)  (d) 

Fig. 6. Example of doppler signal for (a) a pothole in time domain, (b) spectrogram of pothole 
signal, (c) a non-pothole in time domain, and (d) spectrogram of non-pothole signal 

 
3.2 Power Spectrum Density Analysis 

 
Signals were further analysed in the frequency domain by transforming to Welch's power 

spectrum density (PSD) with 256 discrete Fourier transform (DFT) points. Welch's approach lowers 
noise in the estimated power spectra, improving the standard periodogram spectrum. Figure 7 
presents several examples of pothole PSD, and Figure 8 displays examples of non-pothole PSD.  
 

 

 
Fig. 7. Example of potholes PSD 
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Restate, a signal was manually segmented with 10,000 sample points prior to PSD to obtain 
results as per Figures 7 and 8. PSD result demonstrates a better behaviour of Doppler signal, between 
magnitude and frequency. However, peak behaviour for both cases was unable to be categorised by 
using a simple peak distinction technique such as maximum peak. Overall, visually determining 
between these signals in time or frequency domains was difficult. Therefore, PSD features for each 
spectrum were extracted, as tabulated in Table 1, for further analysis using DT and KNN algorithms. 

 

 

 
Fig. 8. Example of non-potholes PSD 

 
3.2.1 Potholes classification 

 
Features utilised for this experiment are as per Table 1. The classification techniques employed 

were coarse DT and KNN, the most flexible model for both methods. Table 2 indicates the 
performance comparison between these two models. The coarse DT had a maximum number of splits 
of 4 using Gini’s diversity index. Meanwhile, the coarse KNN had 100 neighbours with Euclidean 
distance metric and equal distance weight. 

 
Table 2 
Comparison between coarse DT and KNN algorithms 
Performance DT KNN 

Training results:   

Accuracy (Validation), % 90.5 81.8 

Prediction speed, obs/ sec ~10,000 ~3,900 

Training time, sec 8.5287 8.1995 

Test results:   

Accuracy (Test), % 91.2 89.0 

 
From the table, DT outperforms KNN for validation and testing, which are 90.5% and 91.2%, 

respectively, for the 80:20 distribution. KNN’s accuracy is 8.7% less than DT during validation and 
2.2% less during testing. Due to the large data size, DT exhibits higher prediction speed and training 
time. Besides, KNN is known for its effectiveness on small data. 

The coarse DT and KNN test confusion matrix is as per Figure 9. From the matrix, it describes that 
for DT, Class 1 (pothole) has 83.9% true positive rates (TPR) and 16.1% false negative rates (FNR). On 
the other hand, Class 0 (non-pothole) has 95.0% TPR and 5.0% FNR. FNR for Class 1 is at 16.1%, which 
is higher than Class 0 at 5.0%, indicating more pothole’s Doppler signals are wrongly predicted 
compared to Class 0. 
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Meanwhile, the KNN matrix presents 100% of non-pothole TPR. Hence, it was able to be fully 
classified. However, pothole produces 67.7% TPR and 32.3% FNR. It displays a higher confusion of 
pothole detection when using the KNN algorithm. Improvement by 16.2% was observed over the 
classification of Class 1 when DT is applied, with a trade-off of 5.0% over the classification of Class 0. 
The exercise displays that accuracy increases with the DT technique.  
 

 

 

 
(a)  (b) 

Fig. 9. Test confusion matrix (a) DT, and (b) KNN 

 
4. Conclusions 

 
This study established an analysis using the coarse model of DT and KNN techniques for pothole 

detection by utilising a Doppler radar signal. The study was conducted over actual raw data acquired 
for potholes and non-potholes. The work contributes to the improvement of pothole detection by 
applying a DT classification over the Doppler signal PSD’s attributes, which produced 91.2% accuracy 
at an 80:20 dataset ratio. The classification was also compared to the KNN algorithm. The KNN 
presents slightly low accuracy but better prediction speed and training time. From observation, visual 
of Doppler signals in the time domain, STFT, and PSD plots were hard to be classified between pothole 
and non-pothole. Hence, the decision was to employ ML over the PSD features extracted. The finding 
lays a baseline for Doppler radar signal processing and detection. More validation can be explored 
using other machine learning (ML) and deep learning (DL) approaches to pothole detection 
performance. 
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