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ABSTRACT 

Previous parallel computing implementations for Computational Fluid Dynamics (CFD) focused extensively on Complex Instruction 
Set Computer (CISC). Parallel programming was incorporated into the previous generation of the Raspberry Pi Reduced Instruction 
Set Computer (RISC). However, it yielded poor computing performance due to the processing power limits of the time. This 
research focuses on utilising two Raspberry Pi 3 B+ with increased processing capability compared to its previous generation to 
tackle fluid flow problems using numerical analysis and CFD. Parallel computing elements such as Secure Shell (SSH) and the 
Message Passing Interface (MPI) protocol were implemented for Advanced RISC Machine (ARM) processors. The parallel network 
was then validated by a processor call attempt and core execution test. Parallelisation of the processors enables the study of fluid 
flow and computational fluid dynamics (CFD) problems, such as validation of the NACA 0012 airfoil and an additional case of the 
Laplace equation for computing the temperature distribution via the parallel system. The experimental NACA 0012 data was 
validated using the parallel system, which can simulate the airfoil's physics. Each core was enabled and tested to determine the 
system's performance in parallelising the execution of various programming algorithms such as pi calculation. A comparison of 
the execution time for the NACA 0012 validation case yielded a parallelisation efficiency above 50%. The case studies confirmed 
the Raspberry Pi 3 B+'s successful parallelisation independent of external software and machines, making it a self-sustaining 
compact demonstration cluster of parallel computers for CFD. 
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1. Introduction 
 

Computational Fluid Dynamics (CFD) is a contemporary tool used in conjunction with 
experimental work to compute and predict the mechanics of flow media such as liquids and gases. 
CFD results are analogous to those obtained via physical experiments as the numerical solutions 
usually agree with the empirical data [1]. However, analysing these complex simulations requires 
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substantial computing power and time to acquire good accuracy [2]. The development of 
computational technology allows for accelerated fluid flow analysis since it can be accessed via 
terminals and is easily transportable compared to wind tunnels, with many constraints, including 
obstruction, ground modelling, and other boundary interference effects [3].  

Nowadays, CFD analysis can be performed on a network of parallel computing systems. Parallel 
computing is the latest technology to model complicated fluid dynamic problems efficiently. 
Moreover, it employs several processors to fully exploit these parallel networks' computational 
capabilities and vast memory capacity to address the needs of an increasing large-scale CFD 
application in scientific research [4].  

In recent years, energy-efficient and data-intensive computing is becoming an area of interest in 
the industry and educational institutions for research and development purposes. However, the new 
approach and techniques of CFD require state-of-the-art computers with higher processing 
capabilities that usually impose higher installation and operation costs. As a result, there is a growing 
interest in utilising low-power CPUs fitted with energy-efficient chips as the architectures of these 
CPUs have the potential to be an innovative and cost-effective alternative for future high-
performance computing systems [5].   

The development of parallel computing for CFD is always constricted to conventional computers 
fitted with complex instruction set computing (CISC) processors. However, to accommodate the 
current demand increase in software development for ARM processors, it is essential to understand 
its architecture and implementation to yield results from its optimum [6].  

The study aims to construct a network of parallel computers via Message Passing Interface (MPI) 
and Secure Shell (SSH) protocol to study the performance of computing time in distributed parallel 
system of Raspberry Pi 3 B+. Then, the parallelisation of onboard ARM processors is verified by test 
cases and fluid flow case studies. To evaluate these ARM processors' ability to handle CFD test 
scenarios, the airfoil coefficient from NACA 0012 experimental data will be validated on the same 
parallel system. While numerous studies have been conducted to evaluate the performance of 
conventional processors in CFD applications, few to none have made use of the ARM processors 
installed in Raspberry Pi single-board computers (SBCs). Thus, this work is vital to implementing fluid 
dynamics computation in a parallel computing system based on the RISC processor architecture. 
Furthermore, this technology will aid future academics and engineers who wish to analyse fluid flow 
over an airfoil on a small-scale parallel computer system. The possible benefits include the ability to 
rapidly execute a program to analyse fluid flow over an airfoil using a low-cost setup and open-source 
code compared to currently available commercial software. 
 
1.1 Parallel Computers with RISC Processors 
 

Motivated by the fact that earlier single-board computers (SBCs), such as the Raspberry Pi 1, were 
limited to a single-core processor, parallel computing algorithms became more complicated to 
implement. Thus, researchers focused on connecting SBCs as microclusters, aided by the Message 
Passing Interface (MPI), a standard library for message passing across parallel computers [7]. The first 
study of such implementation was IridisPi, using Raspberry Pi Model B [8]. Epiphany is a high-
performance manycore architecture that is used in an embedded system, and it was used by 
Adapteva in its first product that features a 16-core 32 GFLOPS chip with a size of 65nm in 2011 [9]. 
Another example of small scales parallel computing is for computational fluid dynamics (CFD) 
application, which consists of clusters of peak performance over 3 GFLOPS which is made with three 
Raspberry Pi 2 as nodes and costs £120 without the networking equipment [10].  
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Theoretically, applying the concept of parallel computing is intended to minimise the time taken 
for the execution of a task. Contrary to a conventional computer, which is costly and bulky, parallel 
computing in the form of clusters can be constructed with a low-cost and small system of 
components such as Iridis-pi, which was assembled as a demonstration cluster using 64 Raspberry Pi 
nodes interconnected via ethernet links. A single node exhibited around 65000 kFLOPS for a problem 
size of n=100, and 1.14 GFLOPS for the whole cluster of 64 nodes with a problem size of n=10240 
[10]. The performance of Iridis-pi is much poorer than Guthrie’s CFD simulation cluster of three 
Raspberry Pi 2 since the cluster consists of 64 nodes of the first-generation Raspberry Pi with a 
500MHz single-core processor.  

The processors of Raspberry Pi 3 Model B+ are classified as RISC, this architecture of processors 
allows them to have fewer cycles per instruction (CPI) compared to a CISC. Comparatively, Raspberry 
Pi 3 Model B+ have higher CPI compared to its previous generation. This is because RISC processors 
work on simple instructions executed in one clock cycle, whereas CISC aims to complete a task in 
fewer lines of assembly as possible [11]. 
 
1.2 Parallel RISC Machines for CFD 
 

The RISC processors suffer low floating-point operations per second (FLOPS) of only 15% to 20%. 
The fundamental causes of these occurrences are the complexity of instruction-level coding for 
devices with asynchronous internal design and, more importantly, the unacceptably poor throughput 
of primary memory subsystems [12].  

Boeing's high-performance computing benchmark suite (BHPCBS), consisting of NASA’s 
OVERFLOW codes and computational electromagnetics (CEM) codes, has been benchmarked on RISC 
parallel systems and CISC clusters. The connection between the processors was facilitated using MPI. 
However, CFD tests conducted on the RISC processors posed several limitations, such as the low 
amount of memory. In addition, some CFD studies revealed several constraints, including insufficient 
memory and processor cache, a lack of virtual memory, and poor memory per-node performance 
[13].  

Hence, the performance and development of finite element method-based CFD software were 
studied using IBM RISC workstations. The study concluded that solving non-linear equations on RISC 
machines required substantial communication between processors, reducing the expected 
parallelisation speed-up [14].  

Although the introduction of parallel computing via RISC processors has garnered drawbacks over 
the recent decade, the continuously improved architecture of the processors introduced much more 
powerful capabilities. However, integrating RISC processors into smartphones and Internet of Things 
(IoT) systems necessitates trade-offs in die size, power consumption, cost, and performance, all of 
which are the benefits of RISC processors. As a result, demands for x86-based systems declined by 
10% per year peaking in 2011, while RISC chips now made up to 99% of 32-bit and 64-bit processors 
today [15]. 
 
2. Raspberry Pi 3B+ Parallelisation Setup 
 

This section provides an overview of the Raspberry Pi cluster, including its hardware and software 
components. The parallelisation and CFD test cases are fully described, including their governing 
equations and how they assess processor capability.  
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2.1 Hardware 
 

The devices connected as nodes in the Raspberry Pi parallel system are of the Raspberry Pi 3 
Model B+, featuring 1.4Ghz Quad-core Cortex-153 processors that allow multiple task processing. 
The device is composed of a system-on-chip (SoC) board, which is described as a tiny chip that 
contains all of the components necessary for the operation of a computer [16]. The pi is powered by 
a 4.4A 22W power supply and connected to the ethernet switch via RJ45 cable for parallelisation. 
Local storage is provided via a secure digital (SD) card slot, and the board includes low-level interfaces 
such as Inter-Integrated Circuit (I2C), Serial Peripheral Interface (SPI), Universally Asynchronous 
Receiver / Transmitter (UART), and General-Purpose Input Output (GPIO) that enable the connection 
and powering of active cooling systems  [17].  

The central hub was constructed using the ethernet switch. As a result, the parallel system was 
connected to a D-Link (DES-1008A). The D-Link (DES-1008A) features eight fast ethernet LAN ports 
that enable high-speed data transfer between nodes. The parallelisation processes follow the 
procedures used in prior literature [18]–[20]. Its plug-and-play feature also eases the setting of the 
networking configuration for the parallel system. The simple parallel system described here is 
visualised in Fig. 1.  
 

 
Fig. 1. Raspberry Pi 3 Model B+ Parallel System 

 
The equation that exhibits efficiency for two nodes of Raspberry Pi 3 Model B+ against a single 

node is given by the following equation. 
 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦,% = +!!	#$%&'"!(	#$%&'
!(	#$%&'

+ × 100         (1) 

 
Where, t8cores is execution time for two nodes of Raspberry Pi and t4cores is execution time for a single 
node of the board. 
 
2.2 Software 
 

Raspbian OS Stretch Lite was chosen for this experiment because it is a lightweight operating 
system based on the Debian distribution. The distribution includes numerous tips and a handbook 
for troubleshooting if any issue arises throughout the experiment. Raspbian is installed on the devices 

Master 

RPi 1 

RPi 2 

Modem 

4 Ports 4.4A 22W 
Power Supply 

LAN via RJ45 Cable 
Power supply line 
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before the inclusion of parallel components, as the devices require an operating system to function. 
The Raspbian Stretch Lite OS can be downloaded from Raspberry Pi's official website.  

The hostname is modified to make the pi easily identifiable in the parallel system. The master 
node is referred to as 'RPAR-1,' which stands for Raspberry Pi in Parallel 1. The naming of the 
subsequent new device will begin with number two and continue upward. Secure Shell (SSH) was set 
on the 'Interfaces' page to enable the master node to remotely access and log into other devices 
connected to the parallel system.  

After enabling SSH, as illustrated in Table 1, the packages list from the repositories must be 
updated to reflect the most recent versions of the packages and dependencies. This assures that 
protocols installed will use the most recent version, maximising the system's capabilities. After 
installing the parallel computing parts in both devices, they are rebooted to apply the system's 
changes. Confirming the parallel system's successful configuration of SSH can be done on a distant 
computer running a Linux distribution and linked to the parallel system over the same ethernet 
switch. The MPI necessities were installed on the devices to allow the parallelisation algorithm to be 
automatically assigned once the module is called inside the programming codes. Configuration of 
static IP address allows for one-time changes to the host files, making it easier for connection and 
SSH between devices to be conducted with ease. 
 
Table 1 
Installation of parallel system components via terminal 

No. Terminal Inputs Explanation 
1 pi@RPAR-1:~$sudo apt-get update Packages list and dependencies update. 
2 pi@RPAR-1:~$sudo apt-get upgrade The upgrade process of dependencies and packages. 
2 pi@RPAR-1:~$sudo apt-get install manpages-

dev 
GNU/Linux devices, file formats, and syntaxes. 

3 pi@RPAR-1:~$sudo apt-get install gfortran Installation of GNU Fortran compiler. 
4 pi@RPAR-1:~$sudo apt-get install nfs-common Network File System (NFS) for client/server application. 
5 pi@RPAR-1:~$sudo apt-get install nfs-kernel-

server 
NFS server installation for directories sharing. 

6 pi@RPAR-1:~$sudo apt-get install vim ‘Vim’ editor installation to edit programming codes. 
7 pi@RPAR-1:~$sudo apt-get install openmpi-bin OpenMPI dependencies and MPI components. 
8 pi@RPAR-1:~$sudo apt-get install libopenmpi-

dev 
OpenMPI libraries for developer’s installation. 

9 pi@RPAR-1:~$sudo apt-get install openmpi-doc Description of Message Passing Interface standards. 
10 pi@RPAR-1:~$sudo apt-get install keychain SSH password manager via Debian-based cloud server. 
11 pi@RPAR-1:~$sudo apt-get install nmap Installation of auditing security utility and discovery of 

network. 
 
2.3 Pi Calculation via Monte Carlo Simulation 
 

The use of Secure Shell (SSH) is a cryptographic protocol that allows the use of a secure 
connection over an unsecured network to connect one machine to another. To establish the 
successful connection of the devices connected as nodes over a parallel system, verification of SSH 
must be implemented before any process is carried out over the network [21]. 

To call processes on many nodes inside the cluster, a minor change to the processor call command 
was made at this point to ensure that all of the cores on the master node have been successfully 
called before any test cases can be run in parallel. Figure 2 exhibits the number of 8 processes 
distributed over two nodes with four cores each that will be used for calculation.  
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Fig. 2. Call processors attempt for two nodes of Raspberry Pi 3B+ 

 
Because this type of calculation can be spread across numerous cores and nodes and conducted 

multiple times on each machine, Monte Carlo methods are used to do a basic pi calculation [22]. The 
program calculates the value of pi over 3×105 iterations, and the execution time is measured using 
the ‘time mpiexec’ command to generate an output consisting of ‘real time’, ‘user time’, and ‘sys 
time’. The execution time decreases with the number of cores, as observed in Fig. 3, but there is a 
drop in the increase of efficiency from 48.1% from one core to two cores, 17.17% from two cores to 
three cores, and 8.43% from three cores to four cores.  

 

 
Fig. 3. Graph of execution time (s) against no. of cores 

 
The effectiveness of the four cores is not as expected, as shown in Fig. 3, as it fell below the 

expected percentage of greater than 80%. This is explained by parallel system scalability rules or 
Amdahl’s law, which states that increasing the number of cores reduces the efficiency of a parallel 
system [23]. 
 
2.4 Grid Generation and Solution of Laplace Equation on Steady Heat Transfer via Jacobi Iteration 
 

The Jacobi Iteration Program was used to investigate each Raspberry Pi 3 B+ node's ability to 
produce and output a data file based on a processing load, calculation time, and overall execution 
time. Using the Laplace Equation, the programme solves the discretisation via finite-difference of a 
square domain [24]. Figure 4 shows the initiation of the Jacobi Iteration with the solution parameters 
given by the user in the application. By splitting the domain for the investigation of the stable heat 
equation, the iteration was divided among the processors. 

The designations given to the allocated processors connected in parallel for ease of identification 
are 'RPAR-1' and 'RPAR-2.' The first node contains RPAR-1, whereas the second node has RPAR-2. 
Because each node has four cores, the declaration of each core is required after the 'time mpiexec' 
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instruction. The numbers 'nx global' and 'ny global' represent the number of nodes in the x- and y-
coordinate directions, respectively. 

 

 
Fig. 4. Initiation of Jacobi Iteration 

 
 
The calculation involves a square domain, which yields a total of 262144 nodes by multiplying 'nx 

global' and 'ny global'. The term 'npes' refers to the number of cores or processors connected in this 
simulation between two nodes of the devices. Figure 5 depicts the steady heat equation's 
temperature distribution, which exhibits an increase in temperature along the x- and y-axes, with the 
maximum temperature at x=1.0 and y=0.5. Figure 5 shows the approximate temperature calculation 
using finite difference discretisation in the square domain. 
 

 
Fig. 5. Graph of execution time (s) against no. of cores 

 
It took 1794.206 seconds to generate a grid and calculate the temperature and exact temperature 

distribution of a square domain via Jacobi Iteration based on the reading of ‘real-time. In addition, 
the influence of the number of loads processed by a single node in the calculation based on the 
'nnodes' can be studied using Jacobi Iteration. For example, in a square domain, a single core of a 
Raspberry Pi computed a total of 65536 nodes, while four cores computed a total of 262144 nodes. 
The parameters of the solution in two Raspberry Pi nodes and the reduction in computing time, are 
shown in Table 2. 
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Table 2  
Execution time and parallelisation efficiency of Jacobi Iteration 
No. of 
Devices 

No. of 
Cores 

Nodes Processed per 
Core  

Execution Time (s) Efficiency of 
Parallelisation 

1 4 65536 1794.206 - 
2 8 32768 1009.086 43.76 

 
3. Computational Fluid Dynamics Procedure 
3.1 Parameters of the Case Study 
 

The parameters of an airfoil and corresponding properties of air at 1atm pressure and 
temperature of 25°C are shown in Table 3. 

 
Table 3 
Properties of NACA 0012 airfoil and air at 1atm pressure of 25°C 

Airfoil nomenclature NACA 0012 
Chord length, c 1m 

The angle of attack, α 0°, 10°, 15° 
Reynolds number, Re 3×106, 6×106, 9×106 
Dynamic viscosity, μ 1.184×10-5 m2s-1 

Kinematic viscosity, v 1.562×10-5 m2s-1 
 
3.2 Grid Generation of NACA 0012 Airfoil 
 

The first step in running the Finite Volume Method code for airfoil validation is to generate the 
two-dimensional grid. The grid is an unstructured mesh constructed following the theory of grid 
computation via the Joukowsky transformation formula [25]. 

 

𝑍 = 𝑔#(𝜁) = 𝜁 + $)

%
           (2) 

 
The grid is generated using the Raspberry Pi parallel system's execution of program code on an 

exact solution. The exact solution generates an output file in a grid format that is visible via 
'0012.GRID'. After that, the file is visualised using the Tecplot software. The grid must follow the 
tolerance set by NASA’s OVERFLOW Turbulence Modelling Resource so that the calculation over the 
generated grid will not produce undesirable and unexpected results [26]. The codes will be 
improvised and executed again until a proper unstructured grid is generated. 
 
3.3 Solver Code 
 

The Courant-Friedrichs-Lewy (CFL) number, the maximum time steps for iteration, the type of 
inviscid flux, the limiter, the number of variables in the target equation gradient, the Least-Square 
(LSQ) gradient, the gradient weight, and the time is taken to stop the calculation are specified as 
input parameters [27].  

A boundary condition map must be prepared in a file to specify the boundary between the fluid 
flow and the solid body in the generated grid of the airfoil. The original solver comes with an example 
of a study case which is obtained from Masatsuka [28]. The boundary condition parameters in the 
file are identified and adjusted according to the study case of this research, as specified in Table 2. 
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The initial solutions are computed by considering the infinity velocity on the x-axis, the infinity 
velocity on the y-axis, the density, and the pressure. The analysis in this case study makes use of the 
Roe approximation Riemann solver, which Puri and Ramachandran deduced for airfoils using the 
following equation [29].  

 
𝐹∗ = #

'
6𝐹$ + 𝐹( − ∑ 𝑟$() :𝜆$() :(𝑎( − 𝑎$)* =        (3) 

𝑝∗ = #
'
?𝑝$ + 𝑝( −

#
+*%
(𝑢( − 𝑢$)A         (4) 

 
The computational residual is calculated using the Roe solver, and the iteration will stop once it 

converges based on the input parameters. To produce the result in a readable format, a subroutine 
will be created that will generate a ‘.DAT’ output file that can be visualised using TECPLOT. ‘DAT’ 
output file format resembling ‘0012.DAT’ will be produced in the folder. It can be opened and viewed 
via the TECPLOT software and compared with the visual result of ANSYS CFX [30]. If the visual result 
does not match the programme, debugging processes will be executed to update and compile the 
source code until the proper result is reached. The parallel computing test can be run once both 
findings are in agreement. 
 
3.4 NACA 0012 Airfoil Validation 
 

This case is specifically chosen for its ability to portray the numerical analysis of turbulence 
modelling in terms of its convergence properties and order of accuracy. The case is executed at an 
incompressible condition in which the Mach number 𝑀𝑎 = 0.15 and the compressibility effects are 
ignored since theoretically, the compressibility effects of the flow will be significant for 𝑀𝑎 > 0.3 
[31]. The Reynolds number used is 𝑅𝑒 = 6 × 10,, and turbulent boundary layers are implemented 
over most of the airfoil. The results for the pressure over the NACA 0012 airfoil at the angle of attack, 
α of 0°, 10°, and 15° have been obtained experimentally, as shown in Fig. 6.  

Ladson and Johnson's surface pressure coefficients measured at Langley Research Centre (LaRC) 
utilising the 0.3 Meter Transonic Cryogenic Tunnel (0.3M TCT) do not appear to resolve the leading 
edge upper surface pressure efficiently [32]. On the other hand, the surface pressure coefficients of 
Gregory and O'Reilly appear to be more resolved, with considerable differences on the airfoil's 
leading edge at an angle of attack, α of 10° and 15°. Furthermore, as shown in Fig. 6, Gregory's data 
are considered more two-dimensional and thus more acceptable for CFD validation of surface 
pressure coefficients [33]. 

 

 
 

Fig. 6. Pressure coefficient on the angle of attack of; (a) 0°, (b) 10°, and (c) 15° 
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Due to the shape of NACA 0012, which has symmetrical geometry of the upper and lower surface, 
this affects the outcome of the graph as exhibited in Fig. 7 to Fig. 9, where the pressure coefficient 
distribution over X/c is not ‘looping’. The trend in the graph signifies that high negative pressure 
distribution was developed at the airfoil's leading edge. Along with the non-dimensional distance, 
X/c of the airfoil, the distribution of pressure increases from negative to positive towards the trailing 
edge. The Finite Volume Method code obtained an overshoot graph line at the leading edge due to 
the limitation of the solver code. The trend of both graphs confirms each other even though there is 
a slight overshoot. 

Validation of this experimental data is the overall result of the pressure coefficient formula, which 
involves pressure at each node, infinite pressure, infinite velocity, and infinite density. The validation 
of the experimental data confirms and establishes the finding of the ability of the CFD model to 
emulate the actual pressure distribution over the NACA 0012 airfoil. The discrepancies in the leading-
edge pressure distribution are explained by the error obtained from other validation cases.  

 
 

  
Fig. 7. Pressure Coefficient at Re = 3×106 Fig. 8. Pressure Coefficient at Re = 6×106 

 

 
Fig. 9. Pressure Coefficient at Re = 9×106 
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The limitation of the FVM codes persists due to the definition of NACA 0012, which was modified 
from the original definition to end the chord of the airfoil at X/c = 1 in non-dimensional form. The 
airfoil simulation model is also scaled down by 1.008930411365 to produce the perfect scaled-down 
copy of NACA 0012. The maximum thickness of the NACA 0012 airfoil is 12% relative to the blunted 
chord. At the same time, the scaled-down airfoil has an approximate 11.894% relative to the chord. 
The FVM codes also implemented one inviscid Roe Solver. 

Previous researchers applied the k-epsilon model which includes boundary layer solver, inviscid 
solver, and turbulence solver on CFD simulation software such as ANSYS CFX. The result of ANSYS CFX 
has higher accuracy to the experimental data compared with FVM codes [30]. But due to the 
limitation of the 1.4 GHz Quad-core processors of the Raspberry Pi 3 B+, it does not allow for graphical 
intensive software such as ANSYS to run. Therefore, errors and discrepancies were caused by the 
limitation of FVM codes, not hardware. 
 
4. Execution Time for NACA 0012 Validation 
 

The implementation of parallel computing over the devices allows for a total of 8 cores with 
1.4Ghz each executing a modified FVM code which has been altered with MPI protocol. The alteration 
makes it possible for the execution of the codes written in Fortran to be paralleled with the result 
produced on the master node. To test the paralleling ability of Raspberry Pi, it is redundant to vary 
the Reynolds number as the graph shown in the previous subtopic shows the Reynolds number 
heavily impacts the value of the pressure coefficient. In Figure 10, the implementation of two devices 
observed an overall reduction in computation time.  

At an angle of attack α of 0°, the time taken to solve the pressure distribution is the highest. This 
is explained due to the symmetrical nature of NACA 0012, where α=0° requires intensive calculation 
for the upper surface of the airfoil compared to the lower. As the angle of attack α increases, the 
velocity is distributed more on the upper surface of the airfoil than on the lower, resulting in a 
decrease in computational needs over the grid of the lower airfoil. 

 

 
Fig. 10. Execution time (s) according to the angle of attack, α 
and no. of cores 

 
Referring to Figure 10, the efficiency of parallelisation is at its lowest on the angle of attack α=10°. 

This is because solving the high-pressure distribution at the airfoil's lower leading edge necessitates 
a lot of computing resources. Therefore, the computational simulation is slightly targeted towards 
the decreasing pressure distribution of the lower airfoil body as the angle of attack approaches 15°. 
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Because few extrinsic effects have affected the result, the experiment is performed three times 
to acquire the best computation time. For the overall angle of attack, the efficiency of parallel devices 
is increased by an average of 50%, with 15° having the longest execution time. 

When the computational time of FVM codes on two Raspberry Pi nodes is compared, the time 
required for a single Raspberry Pi cluster is cut in half when another node is added. It can be inferred 
that the Raspberry Pi's ARM Architecture's Reduced Instruction Set Computing can handle 
sophisticated Fortran calculations and that processor parallelism improves the calculation's efficiency 
in terms of processing time. 

The cluster overheats while calculating FVM codes and throttles down to half speed. Heatsinks 
and active cooling were added to both devices to address the issues. The consequences of 
overheating can be studied thanks to the case studies' frequent testing. Disabling most of the device's 
unnecessary background processes is one of the procedures followed. In addition, the computational 
power is impacted by the use of cooling fans, which drain a large amount of current from the 
equipment. Consequently, the devices must be supplied with a constant amperage at all times. 
 
5. Conclusion 
 

The results obtained from the validation proved that the parallel system can be utilised for flow 
problems and represents the ability of the device to function similar to Complex Instruction Set 
Computing (CISC) processors and generate solved outputs and data to be analysed by the users. To 
authenticate and confirm that the cores and nodes are working in parallel, processors call attempt 
was used that individually called out each core within the cluster. The first parallelisation test case of 
Monte Carlo simulation was used, in which a reduction of execution time from 2311s for one core, 
reduced to 607s for four cores. Jacobi Iteration allows the generation of grid to be segregated and 
tested over the parallel clusters, in which 512 points over x-axis and 64 points over y-axis were 
distributed to the eight cores. A calculation of Jacobi Iteration took 1794s for four cores (one node) 
and 1009s for eight cores (two nodes) of Raspberry Pi 3B+. The NACA 0012 validation was aimed to 
test parallelability of the Roe solver codes. Discrepancies were observed on the airfoil’s leading edge 
due to the limitation of the solver codes that are unable to emulate the two-dimensionality of the 
experimental data at the location of the leading edge, the parameters of the surface skin friction was 
also not considered. The validation case yielded 23275s for a node of Raspberry Pi and 114987s for 
two nodes, recording an overall parallelisation efficiency of 50%. 
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