

Journal of Advanced Research in Applied Sciences and Engineering Technology 28, Issue 1 (2022) 67-80

67

Journal of Advanced Research in Applied
Sciences and Engineering Technology

Journal homepage:
https://semarakilmu.com.my/journals/index.php/applied_sciences_eng_tech/index

ISSN: 2462-1943

Evaluation of CFD Computing Performance on Multi-Core
Processors for Flow Simulations

Iman Fitri Ismail1, Akmal Nizam Mohammed1,*, Bambang Basuno2, Siti Aisyah Alimuddin1,
Mustafa Alas3

1 Flow Analysis, Simulation, and Turbulence Research Group, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor,

Malaysia
2 Aerodynamics and Propulsion Research, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
3 Civil Engineering Department, Near East University, Near East Boulevard, Nicosia, Turkish Republic of Northern Cyprus, Mersin-10, Turkey

ABSTRACT

Previous parallel computing implementations for Computational Fluid Dynamics (CFD) focused extensively on Complex Instruction
Set Computer (CISC). Parallel programming was incorporated into the previous generation of the Raspberry Pi Reduced Instruction
Set Computer (RISC). However, it yielded poor computing performance due to the processing power limits of the time. This
research focuses on utilising two Raspberry Pi 3 B+ with increased processing capability compared to its previous generation to
tackle fluid flow problems using numerical analysis and CFD. Parallel computing elements such as Secure Shell (SSH) and the
Message Passing Interface (MPI) protocol were implemented for Advanced RISC Machine (ARM) processors. The parallel network
was then validated by a processor call attempt and core execution test. Parallelisation of the processors enables the study of fluid
flow and computational fluid dynamics (CFD) problems, such as validation of the NACA 0012 airfoil and an additional case of the
Laplace equation for computing the temperature distribution via the parallel system. The experimental NACA 0012 data was
validated using the parallel system, which can simulate the airfoil's physics. Each core was enabled and tested to determine the
system's performance in parallelising the execution of various programming algorithms such as pi calculation. A comparison of
the execution time for the NACA 0012 validation case yielded a parallelisation efficiency above 50%. The case studies confirmed
the Raspberry Pi 3 B+'s successful parallelisation independent of external software and machines, making it a self-sustaining
compact demonstration cluster of parallel computers for CFD.

Keywords:
Computational Fluid Dynamics;
Raspberry Pi; parallel computing; RISC;
MPI; SSH;NACA

Received: 17 July 2022 Revised: 28 August 2022 Accepted: 1 September 2022 Published: 19 Sept. 2022

1. Introduction

Computational Fluid Dynamics (CFD) is a contemporary tool used in conjunction with
experimental work to compute and predict the mechanics of flow media such as liquids and gases.
CFD results are analogous to those obtained via physical experiments as the numerical solutions
usually agree with the empirical data [1]. However, analysing these complex simulations requires

* Corresponding author.
E-mail address: akmaln@uthm.edu.my

https://doi.org/10.37934/araset.28.1.6780

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 28, Issue 1 (2022) 67-80

68

substantial computing power and time to acquire good accuracy [2]. The development of
computational technology allows for accelerated fluid flow analysis since it can be accessed via
terminals and is easily transportable compared to wind tunnels, with many constraints, including
obstruction, ground modelling, and other boundary interference effects [3].

Nowadays, CFD analysis can be performed on a network of parallel computing systems. Parallel
computing is the latest technology to model complicated fluid dynamic problems efficiently.
Moreover, it employs several processors to fully exploit these parallel networks' computational
capabilities and vast memory capacity to address the needs of an increasing large-scale CFD
application in scientific research [4].

In recent years, energy-efficient and data-intensive computing is becoming an area of interest in
the industry and educational institutions for research and development purposes. However, the new
approach and techniques of CFD require state-of-the-art computers with higher processing
capabilities that usually impose higher installation and operation costs. As a result, there is a growing
interest in utilising low-power CPUs fitted with energy-efficient chips as the architectures of these
CPUs have the potential to be an innovative and cost-effective alternative for future high-
performance computing systems [5].

The development of parallel computing for CFD is always constricted to conventional computers
fitted with complex instruction set computing (CISC) processors. However, to accommodate the
current demand increase in software development for ARM processors, it is essential to understand
its architecture and implementation to yield results from its optimum [6].

The study aims to construct a network of parallel computers via Message Passing Interface (MPI)
and Secure Shell (SSH) protocol to study the performance of computing time in distributed parallel
system of Raspberry Pi 3 B+. Then, the parallelisation of onboard ARM processors is verified by test
cases and fluid flow case studies. To evaluate these ARM processors' ability to handle CFD test
scenarios, the airfoil coefficient from NACA 0012 experimental data will be validated on the same
parallel system. While numerous studies have been conducted to evaluate the performance of
conventional processors in CFD applications, few to none have made use of the ARM processors
installed in Raspberry Pi single-board computers (SBCs). Thus, this work is vital to implementing fluid
dynamics computation in a parallel computing system based on the RISC processor architecture.
Furthermore, this technology will aid future academics and engineers who wish to analyse fluid flow
over an airfoil on a small-scale parallel computer system. The possible benefits include the ability to
rapidly execute a program to analyse fluid flow over an airfoil using a low-cost setup and open-source
code compared to currently available commercial software.

1.1 Parallel Computers with RISC Processors

Motivated by the fact that earlier single-board computers (SBCs), such as the Raspberry Pi 1, were
limited to a single-core processor, parallel computing algorithms became more complicated to
implement. Thus, researchers focused on connecting SBCs as microclusters, aided by the Message
Passing Interface (MPI), a standard library for message passing across parallel computers [7]. The first
study of such implementation was IridisPi, using Raspberry Pi Model B [8]. Epiphany is a high-
performance manycore architecture that is used in an embedded system, and it was used by
Adapteva in its first product that features a 16-core 32 GFLOPS chip with a size of 65nm in 2011 [9].
Another example of small scales parallel computing is for computational fluid dynamics (CFD)
application, which consists of clusters of peak performance over 3 GFLOPS which is made with three
Raspberry Pi 2 as nodes and costs £120 without the networking equipment [10].

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 28, Issue 1 (2022) 67-80

69

Theoretically, applying the concept of parallel computing is intended to minimise the time taken
for the execution of a task. Contrary to a conventional computer, which is costly and bulky, parallel
computing in the form of clusters can be constructed with a low-cost and small system of
components such as Iridis-pi, which was assembled as a demonstration cluster using 64 Raspberry Pi
nodes interconnected via ethernet links. A single node exhibited around 65000 kFLOPS for a problem
size of n=100, and 1.14 GFLOPS for the whole cluster of 64 nodes with a problem size of n=10240
[10]. The performance of Iridis-pi is much poorer than Guthrie’s CFD simulation cluster of three
Raspberry Pi 2 since the cluster consists of 64 nodes of the first-generation Raspberry Pi with a
500MHz single-core processor.

The processors of Raspberry Pi 3 Model B+ are classified as RISC, this architecture of processors
allows them to have fewer cycles per instruction (CPI) compared to a CISC. Comparatively, Raspberry
Pi 3 Model B+ have higher CPI compared to its previous generation. This is because RISC processors
work on simple instructions executed in one clock cycle, whereas CISC aims to complete a task in
fewer lines of assembly as possible [11].

1.2 Parallel RISC Machines for CFD

The RISC processors suffer low floating-point operations per second (FLOPS) of only 15% to 20%.
The fundamental causes of these occurrences are the complexity of instruction-level coding for
devices with asynchronous internal design and, more importantly, the unacceptably poor throughput
of primary memory subsystems [12].

Boeing's high-performance computing benchmark suite (BHPCBS), consisting of NASA’s
OVERFLOW codes and computational electromagnetics (CEM) codes, has been benchmarked on RISC
parallel systems and CISC clusters. The connection between the processors was facilitated using MPI.
However, CFD tests conducted on the RISC processors posed several limitations, such as the low
amount of memory. In addition, some CFD studies revealed several constraints, including insufficient
memory and processor cache, a lack of virtual memory, and poor memory per-node performance
[13].

Hence, the performance and development of finite element method-based CFD software were
studied using IBM RISC workstations. The study concluded that solving non-linear equations on RISC
machines required substantial communication between processors, reducing the expected
parallelisation speed-up [14].

Although the introduction of parallel computing via RISC processors has garnered drawbacks over
the recent decade, the continuously improved architecture of the processors introduced much more
powerful capabilities. However, integrating RISC processors into smartphones and Internet of Things
(IoT) systems necessitates trade-offs in die size, power consumption, cost, and performance, all of
which are the benefits of RISC processors. As a result, demands for x86-based systems declined by
10% per year peaking in 2011, while RISC chips now made up to 99% of 32-bit and 64-bit processors
today [15].

2. Raspberry Pi 3B+ Parallelisation Setup

This section provides an overview of the Raspberry Pi cluster, including its hardware and software
components. The parallelisation and CFD test cases are fully described, including their governing
equations and how they assess processor capability.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 28, Issue 1 (2022) 67-80

70

2.1 Hardware

The devices connected as nodes in the Raspberry Pi parallel system are of the Raspberry Pi 3
Model B+, featuring 1.4Ghz Quad-core Cortex-153 processors that allow multiple task processing.
The device is composed of a system-on-chip (SoC) board, which is described as a tiny chip that
contains all of the components necessary for the operation of a computer [16]. The pi is powered by
a 4.4A 22W power supply and connected to the ethernet switch via RJ45 cable for parallelisation.
Local storage is provided via a secure digital (SD) card slot, and the board includes low-level interfaces
such as Inter-Integrated Circuit (I2C), Serial Peripheral Interface (SPI), Universally Asynchronous
Receiver / Transmitter (UART), and General-Purpose Input Output (GPIO) that enable the connection
and powering of active cooling systems [17].

The central hub was constructed using the ethernet switch. As a result, the parallel system was
connected to a D-Link (DES-1008A). The D-Link (DES-1008A) features eight fast ethernet LAN ports
that enable high-speed data transfer between nodes. The parallelisation processes follow the
procedures used in prior literature [18]–[20]. Its plug-and-play feature also eases the setting of the
networking configuration for the parallel system. The simple parallel system described here is
visualised in Fig. 1.

Fig. 1. Raspberry Pi 3 Model B+ Parallel System

The equation that exhibits efficiency for two nodes of Raspberry Pi 3 Model B+ against a single

node is given by the following equation.

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦,% = +!!	#$%&'"!(#$%&'
!(#$%&'

+ × 100 (1)

Where, t8cores is execution time for two nodes of Raspberry Pi and t4cores is execution time for a single
node of the board.

2.2 Software

Raspbian OS Stretch Lite was chosen for this experiment because it is a lightweight operating
system based on the Debian distribution. The distribution includes numerous tips and a handbook
for troubleshooting if any issue arises throughout the experiment. Raspbian is installed on the devices

Master

RPi 1

RPi 2

Modem

4 Ports 4.4A 22W
Power Supply

LAN via RJ45 Cable
Power supply line

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 28, Issue 1 (2022) 67-80

71

before the inclusion of parallel components, as the devices require an operating system to function.
The Raspbian Stretch Lite OS can be downloaded from Raspberry Pi's official website.

The hostname is modified to make the pi easily identifiable in the parallel system. The master
node is referred to as 'RPAR-1,' which stands for Raspberry Pi in Parallel 1. The naming of the
subsequent new device will begin with number two and continue upward. Secure Shell (SSH) was set
on the 'Interfaces' page to enable the master node to remotely access and log into other devices
connected to the parallel system.

After enabling SSH, as illustrated in Table 1, the packages list from the repositories must be
updated to reflect the most recent versions of the packages and dependencies. This assures that
protocols installed will use the most recent version, maximising the system's capabilities. After
installing the parallel computing parts in both devices, they are rebooted to apply the system's
changes. Confirming the parallel system's successful configuration of SSH can be done on a distant
computer running a Linux distribution and linked to the parallel system over the same ethernet
switch. The MPI necessities were installed on the devices to allow the parallelisation algorithm to be
automatically assigned once the module is called inside the programming codes. Configuration of
static IP address allows for one-time changes to the host files, making it easier for connection and
SSH between devices to be conducted with ease.

Table 1
Installation of parallel system components via terminal

No. Terminal Inputs Explanation
1 pi@RPAR-1:~$sudo apt-get update Packages list and dependencies update.
2 pi@RPAR-1:~$sudo apt-get upgrade The upgrade process of dependencies and packages.
2 pi@RPAR-1:~$sudo apt-get install manpages-

dev
GNU/Linux devices, file formats, and syntaxes.

3 pi@RPAR-1:~$sudo apt-get install gfortran Installation of GNU Fortran compiler.
4 pi@RPAR-1:~$sudo apt-get install nfs-common Network File System (NFS) for client/server application.
5 pi@RPAR-1:~$sudo apt-get install nfs-kernel-

server
NFS server installation for directories sharing.

6 pi@RPAR-1:~$sudo apt-get install vim ‘Vim’ editor installation to edit programming codes.
7 pi@RPAR-1:~$sudo apt-get install openmpi-bin OpenMPI dependencies and MPI components.
8 pi@RPAR-1:~$sudo apt-get install libopenmpi-

dev
OpenMPI libraries for developer’s installation.

9 pi@RPAR-1:~$sudo apt-get install openmpi-doc Description of Message Passing Interface standards.
10 pi@RPAR-1:~$sudo apt-get install keychain SSH password manager via Debian-based cloud server.
11 pi@RPAR-1:~$sudo apt-get install nmap Installation of auditing security utility and discovery of

network.

2.3 Pi Calculation via Monte Carlo Simulation

The use of Secure Shell (SSH) is a cryptographic protocol that allows the use of a secure
connection over an unsecured network to connect one machine to another. To establish the
successful connection of the devices connected as nodes over a parallel system, verification of SSH
must be implemented before any process is carried out over the network [21].

To call processes on many nodes inside the cluster, a minor change to the processor call command
was made at this point to ensure that all of the cores on the master node have been successfully
called before any test cases can be run in parallel. Figure 2 exhibits the number of 8 processes
distributed over two nodes with four cores each that will be used for calculation.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 28, Issue 1 (2022) 67-80

72

Fig. 2. Call processors attempt for two nodes of Raspberry Pi 3B+

Because this type of calculation can be spread across numerous cores and nodes and conducted

multiple times on each machine, Monte Carlo methods are used to do a basic pi calculation [22]. The
program calculates the value of pi over 3×105 iterations, and the execution time is measured using
the ‘time mpiexec’ command to generate an output consisting of ‘real time’, ‘user time’, and ‘sys
time’. The execution time decreases with the number of cores, as observed in Fig. 3, but there is a
drop in the increase of efficiency from 48.1% from one core to two cores, 17.17% from two cores to
three cores, and 8.43% from three cores to four cores.

Fig. 3. Graph of execution time (s) against no. of cores

The effectiveness of the four cores is not as expected, as shown in Fig. 3, as it fell below the

expected percentage of greater than 80%. This is explained by parallel system scalability rules or
Amdahl’s law, which states that increasing the number of cores reduces the efficiency of a parallel
system [23].

2.4 Grid Generation and Solution of Laplace Equation on Steady Heat Transfer via Jacobi Iteration

The Jacobi Iteration Program was used to investigate each Raspberry Pi 3 B+ node's ability to
produce and output a data file based on a processing load, calculation time, and overall execution
time. Using the Laplace Equation, the programme solves the discretisation via finite-difference of a
square domain [24]. Figure 4 shows the initiation of the Jacobi Iteration with the solution parameters
given by the user in the application. By splitting the domain for the investigation of the stable heat
equation, the iteration was divided among the processors.

The designations given to the allocated processors connected in parallel for ease of identification
are 'RPAR-1' and 'RPAR-2.' The first node contains RPAR-1, whereas the second node has RPAR-2.
Because each node has four cores, the declaration of each core is required after the 'time mpiexec'

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 28, Issue 1 (2022) 67-80

73

instruction. The numbers 'nx global' and 'ny global' represent the number of nodes in the x- and y-
coordinate directions, respectively.

Fig. 4. Initiation of Jacobi Iteration

The calculation involves a square domain, which yields a total of 262144 nodes by multiplying 'nx

global' and 'ny global'. The term 'npes' refers to the number of cores or processors connected in this
simulation between two nodes of the devices. Figure 5 depicts the steady heat equation's
temperature distribution, which exhibits an increase in temperature along the x- and y-axes, with the
maximum temperature at x=1.0 and y=0.5. Figure 5 shows the approximate temperature calculation
using finite difference discretisation in the square domain.

Fig. 5. Graph of execution time (s) against no. of cores

It took 1794.206 seconds to generate a grid and calculate the temperature and exact temperature

distribution of a square domain via Jacobi Iteration based on the reading of ‘real-time. In addition,
the influence of the number of loads processed by a single node in the calculation based on the
'nnodes' can be studied using Jacobi Iteration. For example, in a square domain, a single core of a
Raspberry Pi computed a total of 65536 nodes, while four cores computed a total of 262144 nodes.
The parameters of the solution in two Raspberry Pi nodes and the reduction in computing time, are
shown in Table 2.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 28, Issue 1 (2022) 67-80

74

Table 2
Execution time and parallelisation efficiency of Jacobi Iteration
No. of
Devices

No. of
Cores

Nodes Processed per
Core

Execution Time (s) Efficiency of
Parallelisation

1 4 65536 1794.206 -
2 8 32768 1009.086 43.76

3. Computational Fluid Dynamics Procedure
3.1 Parameters of the Case Study

The parameters of an airfoil and corresponding properties of air at 1atm pressure and
temperature of 25°C are shown in Table 3.

Table 3
Properties of NACA 0012 airfoil and air at 1atm pressure of 25°C

Airfoil nomenclature NACA 0012
Chord length, c 1m

The angle of attack, α 0°, 10°, 15°
Reynolds number, Re 3×106, 6×106, 9×106
Dynamic viscosity, μ 1.184×10-5 m2s-1

Kinematic viscosity, v 1.562×10-5 m2s-1

3.2 Grid Generation of NACA 0012 Airfoil

The first step in running the Finite Volume Method code for airfoil validation is to generate the
two-dimensional grid. The grid is an unstructured mesh constructed following the theory of grid
computation via the Joukowsky transformation formula [25].

𝑍 = 𝑔#(𝜁) = 𝜁 + $)

%
 (2)

The grid is generated using the Raspberry Pi parallel system's execution of program code on an

exact solution. The exact solution generates an output file in a grid format that is visible via
'0012.GRID'. After that, the file is visualised using the Tecplot software. The grid must follow the
tolerance set by NASA’s OVERFLOW Turbulence Modelling Resource so that the calculation over the
generated grid will not produce undesirable and unexpected results [26]. The codes will be
improvised and executed again until a proper unstructured grid is generated.

3.3 Solver Code

The Courant-Friedrichs-Lewy (CFL) number, the maximum time steps for iteration, the type of
inviscid flux, the limiter, the number of variables in the target equation gradient, the Least-Square
(LSQ) gradient, the gradient weight, and the time is taken to stop the calculation are specified as
input parameters [27].

A boundary condition map must be prepared in a file to specify the boundary between the fluid
flow and the solid body in the generated grid of the airfoil. The original solver comes with an example
of a study case which is obtained from Masatsuka [28]. The boundary condition parameters in the
file are identified and adjusted according to the study case of this research, as specified in Table 2.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 28, Issue 1 (2022) 67-80

75

The initial solutions are computed by considering the infinity velocity on the x-axis, the infinity
velocity on the y-axis, the density, and the pressure. The analysis in this case study makes use of the
Roe approximation Riemann solver, which Puri and Ramachandran deduced for airfoils using the
following equation [29].

𝐹∗ = #

'
6𝐹$ + 𝐹(− ∑ 𝑟$() :𝜆$() :(𝑎(− 𝑎$)* = (3)

𝑝∗ = #
'
?𝑝$ + 𝑝(−

#
+*%
(𝑢(− 𝑢$)A (4)

The computational residual is calculated using the Roe solver, and the iteration will stop once it

converges based on the input parameters. To produce the result in a readable format, a subroutine
will be created that will generate a ‘.DAT’ output file that can be visualised using TECPLOT. ‘DAT’
output file format resembling ‘0012.DAT’ will be produced in the folder. It can be opened and viewed
via the TECPLOT software and compared with the visual result of ANSYS CFX [30]. If the visual result
does not match the programme, debugging processes will be executed to update and compile the
source code until the proper result is reached. The parallel computing test can be run once both
findings are in agreement.

3.4 NACA 0012 Airfoil Validation

This case is specifically chosen for its ability to portray the numerical analysis of turbulence
modelling in terms of its convergence properties and order of accuracy. The case is executed at an
incompressible condition in which the Mach number 𝑀𝑎 = 0.15 and the compressibility effects are
ignored since theoretically, the compressibility effects of the flow will be significant for 𝑀𝑎 > 0.3
[31]. The Reynolds number used is 𝑅𝑒 = 6 × 10,, and turbulent boundary layers are implemented
over most of the airfoil. The results for the pressure over the NACA 0012 airfoil at the angle of attack,
α of 0°, 10°, and 15° have been obtained experimentally, as shown in Fig. 6.

Ladson and Johnson's surface pressure coefficients measured at Langley Research Centre (LaRC)
utilising the 0.3 Meter Transonic Cryogenic Tunnel (0.3M TCT) do not appear to resolve the leading
edge upper surface pressure efficiently [32]. On the other hand, the surface pressure coefficients of
Gregory and O'Reilly appear to be more resolved, with considerable differences on the airfoil's
leading edge at an angle of attack, α of 10° and 15°. Furthermore, as shown in Fig. 6, Gregory's data
are considered more two-dimensional and thus more acceptable for CFD validation of surface
pressure coefficients [33].

Fig. 6. Pressure coefficient on the angle of attack of; (a) 0°, (b) 10°, and (c) 15°

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 28, Issue 1 (2022) 67-80

76

Due to the shape of NACA 0012, which has symmetrical geometry of the upper and lower surface,
this affects the outcome of the graph as exhibited in Fig. 7 to Fig. 9, where the pressure coefficient
distribution over X/c is not ‘looping’. The trend in the graph signifies that high negative pressure
distribution was developed at the airfoil's leading edge. Along with the non-dimensional distance,
X/c of the airfoil, the distribution of pressure increases from negative to positive towards the trailing
edge. The Finite Volume Method code obtained an overshoot graph line at the leading edge due to
the limitation of the solver code. The trend of both graphs confirms each other even though there is
a slight overshoot.

Validation of this experimental data is the overall result of the pressure coefficient formula, which
involves pressure at each node, infinite pressure, infinite velocity, and infinite density. The validation
of the experimental data confirms and establishes the finding of the ability of the CFD model to
emulate the actual pressure distribution over the NACA 0012 airfoil. The discrepancies in the leading-
edge pressure distribution are explained by the error obtained from other validation cases.

Fig. 7. Pressure Coefficient at Re = 3×106 Fig. 8. Pressure Coefficient at Re = 6×106

Fig. 9. Pressure Coefficient at Re = 9×106

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 28, Issue 1 (2022) 67-80

77

The limitation of the FVM codes persists due to the definition of NACA 0012, which was modified
from the original definition to end the chord of the airfoil at X/c = 1 in non-dimensional form. The
airfoil simulation model is also scaled down by 1.008930411365 to produce the perfect scaled-down
copy of NACA 0012. The maximum thickness of the NACA 0012 airfoil is 12% relative to the blunted
chord. At the same time, the scaled-down airfoil has an approximate 11.894% relative to the chord.
The FVM codes also implemented one inviscid Roe Solver.

Previous researchers applied the k-epsilon model which includes boundary layer solver, inviscid
solver, and turbulence solver on CFD simulation software such as ANSYS CFX. The result of ANSYS CFX
has higher accuracy to the experimental data compared with FVM codes [30]. But due to the
limitation of the 1.4 GHz Quad-core processors of the Raspberry Pi 3 B+, it does not allow for graphical
intensive software such as ANSYS to run. Therefore, errors and discrepancies were caused by the
limitation of FVM codes, not hardware.

4. Execution Time for NACA 0012 Validation

The implementation of parallel computing over the devices allows for a total of 8 cores with
1.4Ghz each executing a modified FVM code which has been altered with MPI protocol. The alteration
makes it possible for the execution of the codes written in Fortran to be paralleled with the result
produced on the master node. To test the paralleling ability of Raspberry Pi, it is redundant to vary
the Reynolds number as the graph shown in the previous subtopic shows the Reynolds number
heavily impacts the value of the pressure coefficient. In Figure 10, the implementation of two devices
observed an overall reduction in computation time.

At an angle of attack α of 0°, the time taken to solve the pressure distribution is the highest. This
is explained due to the symmetrical nature of NACA 0012, where α=0° requires intensive calculation
for the upper surface of the airfoil compared to the lower. As the angle of attack α increases, the
velocity is distributed more on the upper surface of the airfoil than on the lower, resulting in a
decrease in computational needs over the grid of the lower airfoil.

Fig. 10. Execution time (s) according to the angle of attack, α
and no. of cores

Referring to Figure 10, the efficiency of parallelisation is at its lowest on the angle of attack α=10°.

This is because solving the high-pressure distribution at the airfoil's lower leading edge necessitates
a lot of computing resources. Therefore, the computational simulation is slightly targeted towards
the decreasing pressure distribution of the lower airfoil body as the angle of attack approaches 15°.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 28, Issue 1 (2022) 67-80

78

Because few extrinsic effects have affected the result, the experiment is performed three times
to acquire the best computation time. For the overall angle of attack, the efficiency of parallel devices
is increased by an average of 50%, with 15° having the longest execution time.

When the computational time of FVM codes on two Raspberry Pi nodes is compared, the time
required for a single Raspberry Pi cluster is cut in half when another node is added. It can be inferred
that the Raspberry Pi's ARM Architecture's Reduced Instruction Set Computing can handle
sophisticated Fortran calculations and that processor parallelism improves the calculation's efficiency
in terms of processing time.

The cluster overheats while calculating FVM codes and throttles down to half speed. Heatsinks
and active cooling were added to both devices to address the issues. The consequences of
overheating can be studied thanks to the case studies' frequent testing. Disabling most of the device's
unnecessary background processes is one of the procedures followed. In addition, the computational
power is impacted by the use of cooling fans, which drain a large amount of current from the
equipment. Consequently, the devices must be supplied with a constant amperage at all times.

5. Conclusion

The results obtained from the validation proved that the parallel system can be utilised for flow
problems and represents the ability of the device to function similar to Complex Instruction Set
Computing (CISC) processors and generate solved outputs and data to be analysed by the users. To
authenticate and confirm that the cores and nodes are working in parallel, processors call attempt
was used that individually called out each core within the cluster. The first parallelisation test case of
Monte Carlo simulation was used, in which a reduction of execution time from 2311s for one core,
reduced to 607s for four cores. Jacobi Iteration allows the generation of grid to be segregated and
tested over the parallel clusters, in which 512 points over x-axis and 64 points over y-axis were
distributed to the eight cores. A calculation of Jacobi Iteration took 1794s for four cores (one node)
and 1009s for eight cores (two nodes) of Raspberry Pi 3B+. The NACA 0012 validation was aimed to
test parallelability of the Roe solver codes. Discrepancies were observed on the airfoil’s leading edge
due to the limitation of the solver codes that are unable to emulate the two-dimensionality of the
experimental data at the location of the leading edge, the parameters of the surface skin friction was
also not considered. The validation case yielded 23275s for a node of Raspberry Pi and 114987s for
two nodes, recording an overall parallelisation efficiency of 50%.

Acknowledgement
The authors would like to thank the Ministry of Higher Education Malaysia for supporting this
research under Fundamental Research Grant Scheme Vot No. FRGS/1/2020/STG06/UTHM/02/3 and
partially sponsored by Universiti Tun Hussein Onn Malaysia.

References
[1] Tey, Wah Yen, Yutaka Asako, Nor Azwadi Che Sidik, and Rui Zher Goh. "Governing equations in computational

fluid dynamics: Derivations and a recent review." Progress in Energy and Environment 1 (2017): 1-19.
[2] Raase, Sebastian, and Tomas Nordström. "On the use of a many-core processor for computational fluid dynamics

simulations." Procedia Computer Science 51 (2015): 1403-1412. https://doi.org/10.1016/j.procs.2015.05.348
[3] Ljungskog, Emil, Simone Sebben, and Alexander Broniewicz. "Inclusion of the physical wind tunnel in vehicle CFD

simulations for improved prediction quality." Journal of Wind Engineering and Industrial Aerodynamics 197
(2020): 104055. https://doi.org/10.1016/j.jweia.2019.104055

[4] Wang, Yong-Xian, Li-Lun Zhang, Wei Liu, Xing-Hua Cheng, Yu Zhuang, and Anthony T. Chronopoulos.
"Performance optimizations for scalable CFD applications on hybrid CPU+ MIC heterogeneous computing system

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 28, Issue 1 (2022) 67-80

79

with millions of cores." Computers & Fluids 173 (2018): 226-236.
https://doi.org/10.1016/j.compfluid.2018.03.005

[5] Oyarzun, Guillermo, Ricard Borrell, Andrey Gorobets, Filippo Mantovani, and Assensi Oliva. "Efficient CFD code
implementation for the ARM-based Mont-Blanc architecture." Future generation computer systems 79 (2018):
786-796. https://doi.org/10.1016/j.future.2017.09.029

[6] Yokoyama, Daniel, Bruno Schulze, Fábio Borges, and Giacomo Mc Evoy. "The survey on ARM processors for HPC."
The Journal of Supercomputing 75, no. 10 (2019): 7003-7036. https://doi.org/10.1007/s11227-019-02911-9

[7] Pajankar, Ashwin. "Raspberry pi supercomputing and scientific programming." Ashwin Pajankar (2017).
https://doi.org/10.1007/978-1-4842-2878-4

[8] Cox, Simon J., James T. Cox, Richard P. Boardman, Steven J. Johnston, Mark Scott, and Neil S. O’brien. "Iridis-pi: a
low-cost, compact demonstration cluster." Cluster Computing 17, no. 2 (2014): 349-358.
https://doi.org/10.1007/s10586-013-0282-7

[9] Ross, James A., David A. Richie, Song J. Park, and Dale R. Shires. "Parallel programming model for the epiphany
many-core coprocessor using threaded mpi." In Proceedings of the 3rd International Workshop on Many-core
Embedded Systems, pp. 41-47. 2015. https://doi.org/10.1145/2768177.2768183

[10] Guthrie, James John. "CFD simulations on a Raspberry Pi cluster." (2015).
[11] Luntovskyy, Andriy. "Performance and energy efficiency in distributed computing." In International Multi-

Conference on Advanced Computer Systems, pp. 281-292. Springer, Cham, 2016. https://doi.org/10.1007/978-
3-319-48429-7_26

[12] Bessonov, Oleg, and Bernard Roux. "Optimization techniques and performance analysis for different serial and
parallel RISC-based computers." In International Conference on Parallel Computing Technologies, pp. 168-174.
Springer, Berlin, Heidelberg, 1997. https://doi.org/10.1007/3-540-63371-5_18

[13] Manke, Joseph W., G. David Kerlick, David Levine, Subhankar Banerjee, and Eric Dillon. "Parallel performance of
two applications in the Boeing high performance computing benchmark suite." Parallel Computing 27, no. 4
(2001): 457-475. https://doi.org/10.1016/S0167-8191(00)00070-3

[14] Kačeniauskas, Arnas, and Peter Rutschmann. "Parallel FEM software for CFD problems." Informatica 15, no. 3
(2004): 363-378. https://doi.org/10.15388/Informatica.2004.066

[15] Hennessy, John L., and David A. Patterson. "A new golden age for computer architecture." Communications of
the ACM 62, no. 2 (2019): 48-60. https://doi.org/10.1145/3282307

[16] Nath, Omkar. "Review on raspberry pi 3b+ and its scope." Int. J. Eng. Appl. Sci. Technol. 4, no. 9 (2020): 157-159.
https://doi.org/10.33564/IJEAST.2020.v04i09.020

[17] Benoit-Cattin, Théo, Delia Velasco-Montero, and Jorge Fernández-Berni. "Impact of thermal throttling on long-
term visual inference in a CPU-based edge device." Electronics 9, no. 12 (2020): 2106.
https://doi.org/10.3390/electronics9122106

[18] Nugroho, S., and A. Widiyanto. "Designing parallel computing using raspberry pi clusters for IoT servers on apache
Hadoop." In Journal of Physics: Conference Series, vol. 1517, no. 1, p. 012070. IOP Publishing, 2020.
https://doi.org/10.1088/1742-6596/1517/1/012070

[19] Kent, Brian R. Science and Computing with Raspberry Pi. Morgan & Claypool Publishers, 2018.
https://doi.org/10.1088/978-1-6817-4996-9

[20] Dennis, Andrew K. Raspberry Pi super cluster. Packt Publishing Ltd, 2013.
[21] K. Doucet and J. Zhang, ‘The creation of a low-cost raspberry Pi cluster for teaching’, in Proceedings of the 24th

Western Canadian Conference on Computing Education, WCCCE 2019, May 2019, pp. 1–5. doi:
10.1145/3314994.3325088. https://doi.org/10.1145/3314994.3325088

[22] Dorr, Greg, Drew Hagen, Bob Laskowski, Erik Steinmetz, and Don Vo. "Introduction to parallel processing with
eight node Raspberry Pi cluster." In Midwest Instruction and Computing Symposium (MICS), The University of
Wisconsin–La Crosse in La Crosse, pp. 7-8. 2017.

[23] Bourhnane, Safae, Mohamed Riduan Abid, Khalid Zine-Dine, Najib Elkamoun, and Driss Benhaddou. "High-
Performance Computing: A Cost Effective and Energy Efficient Approach." Adv. Sci. Technol. Eng. Syst. J 5 (2020):
1598-1608. https://doi.org/10.25046/aj0506191

[24] Yang, Wenxiang, Jiming Zou, and Liang Deng. "Optimization of Jacobi Iteration on the Intel Xeon Phi." In
Proceedings of the 2019 3rd High Performance Computing and Cluster Technologies Conference, pp. 1-5. 2019.
https://doi.org/10.1145/3341069.3341071

[25] Plotkin, Allen. "Low-Speed Aerodynamics- the theoretical aspects." International Journal of Aerodynamics 2, no.
1 (2012): 1-21. https://doi.org/10.1504/IJAD.2012.046564

[26] Jespersen, Dennis C., Thomas H. Pulliam, and Marissa Lynn Childs. Overflow turbulence modeling resource
validation results. No. ARC-E-DAA-TN35216. 2016.

Journal of Advanced Research in Applied Sciences and Engineering Technology
Volume 28, Issue 1 (2022) 67-80

80

[27] Yusoff, Hamid, Koay Mei Hyie, Halim Ghaffar, Aliff Farhan Mohd Yamin, Muhammad Ridzwan Ramli, Wan Mazlina
Wan Mohamed, and Siti Nur Amalina Mohd Halidi. "The Evolution of Induced Drag of Multi-Winglets for
Aerodynamic Performance of NACA23015." Journal of Advanced Research in Fluid Mechanics and Thermal
Sciences 93, no. 2 (2022): 100-110. https://doi.org/10.37934/arfmts.93.2.100110

[28] Masatsuka, K. "I do like CFD. VOL. 1: Governing equations and exact solutions." Katate Masatsuka, Lulu. com
(2009).

[29] Puri, Kunal, and Prabhu Ramachandran. "Approximate Riemann solvers for the Godunov SPH (GSPH)." Journal of
Computational Physics 270 (2014): 432-458. https://doi.org/10.1016/j.jcp.2014.03.055

[30] M. S. A. Paisal, ‘Numerical simulation of flow over airfoil using open source algorithm’, Universiti Tun Hussein
Onn Malaysia, Batu Pahat, 2016.

[31] Sankar, N. L., and Y. Tassa. "Compressibility Effects on Dynamic Stall of an NACA 0012 Airfoil." AIAA Journal 19,
no. 5 (1981): 557-558. https://doi.org/10.2514/3.50976

[32] Ladson, Charles L., Acquilla S. Hill, and William G. Johnson Jr. Pressure distributions from high Reynolds number
transonic tests of an NACA 0012 airfoil in the Langley 0.3-meter transonic cryogenic tunnel. No. NASA-TM-
100526. 1987.

[33] Gregory, Nigel, and C. L. O'reilly. "Low-speed aerodynamic characteristics of NACA 0012 aerofoil section, including
the effects of upper-surface roughness simulating hoar frost." (1970).

