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To date, solder has been a crucial component for interconnecting circuit boards (PCBs) 
and electronic components in the electronics industry. However, solder faces certain 
challenges, such as cracking due to thermal changes. This paper investigates solder 
cracking under thermal expansion. We employ a phase field model to study crack 
propagation under thermal stress in a square domain and in solder with a fillet shape. 
The model is based on those proposed by Takaishi-Kimura and Alfat, where the stress 
and strain tensors are modified to account for variations in the temperature field. In 
this study, we consider the solder material to be viscoelastic, while the other materials 
are treated as homogeneous and isotropic. A numerical example is computed using the 
adaptive mesh finite element method, with the code implemented in FreeFEM 
software. The results of this study are in good agreement with previous numerical and 
experimental findings. 
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1. Introduction 
 

There are many factors that can enhance crack propagation, and changing tem perature is one of 
them [1]. Since thermal effects within an elastic body are accompanied by shifts in the relative 
positions of the particles composing the body [2], this phenomenon is called thermoelasticity. In the 
electronics industry, this phenomenon can cause solder cracking. Experimentally, there are three 
methods to observe and predict the mechanism of solder cracking: (a) the high-temperature storage 
test [2], (b) the temperature cycle test or air chamber method [3,4], and (c) the thermal shock test 
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[3,4]. However, laboratory experiments often encounter several obstacles. For instance, since the 
solder size is small, the experimental collection of stress-strain data is becoming increasingly difficult 
[5]. Therefore, one simple alternative to tackle it is numerical simulation [6]. 

The discrete model is a fundamental element of numerical methods, extensively used to tackle 
real-world engineering problems. Among these models, the extended finite element method (XFEM) 
is particularly notable for its effectiveness in structural and continuum mechanics. However, XFEM 
faces difficulties when dealing with complex geometries and three-dimensional extensions without 
adding new vertices. Furthermore, the integration of the gradient is complicated by singularities and 
discontinuities [7]. Consequently, an alternative model is necessary. One promising alternative is the 
phase field model (PFM). The PFM is both a fascinating mathematical concept and a robust method 
[8-11]. The phase field model (PFM) is one kinds of continuous approach which is powerful model. It 
has been employed in various simulations, including crack propagation [12-14], solidification [15-17], 
crystal growth [18-19], multicellular systems [20,21], incompressible fluids [22,23], and dislocation 
[24]. This approach has become well-established for modeling the development of non-equilibrium 
microstructures. 

Essentially, several studies on solder cracks using phase field model (PFM) have been conducted 
effectively [8,25]. Among them, the research reported by Kimura and colleagues [8] presents a simple 
model that effectively explains solder cracking due to temperature changes. Although this model has 
successfully elucidated the behavior of crack growth in solder resulting from thermal variations, we 
believe it can be modified by adjusting the crack's driving force and considering the solder as a 
viscoelastic solid. Therefore, building upon the studies from [26-28], we propose an alternative model 
to describe solder crack behavior under temperature changes by considering the solder material as 
a viscoelastic solid. From a simulation point-of-view, we apply the Kelvin-Voigt type viscoelasticity model 

in the present study due to its simplicity.  
Considering solder as a viscoelastic solid is reasonable, as its mechanical properties exhibit a 

combined response of elastic and viscous behavior when subjected to varying loads or temperature 
changes [29-31]. Among the various types of viscoelastic models, one of the simplest is the Kelvin-
Voigt model, which describes the immediate viscoelastic response of solder material under stress 
[32]. Although the Kelvin-Voigt model offers simplicity, it does not fully capture long-term creep or 
stress relaxation. However, these limitations become less significant when the study focuses solely 
on the initial stages of crack propagation and small deformation conditions [33,34]. Therefore, the 
Kelvin-Voigt viscoelastic model is a reasonable choice for describing and investigating crack behavior 
in solder material, even without the inclusion of other viscoelastic models, which are more complex.  

The aim of this paper is to develop a numerical method for simulating solder fracturing under 
thermal stress, considering solder as a viscoelastic material. A primary focus of this research is to 
investigate the behavior of crack propagation under cyclic thermal stress. In the simulation, the 
computational domain assumes that only the solder is a viscoelastic solid, while other materials, such 
as printed circuit boards (PCBs), semiconductor components, and Cu patterns, are considered rigid 
bodies. We believe that our current research using the phase field model has not been conducted by 
other researchers. While similar studies have been done, they consider only solder material with 
linear elasticity [8,25,35]. 

This paper is structured into five main sections. In Section 2, we examine the governing equation 
of crack propagation resulting from thermal expansion. This section also presents a computational 
model, including boundary and initial conditions, as well as all relevant physical properties. 
Additionally, the solder joint geometry, including the shape and size of the solder, is shown in this 
section. In the present study, we did not investigate the effect of solder joint geometry on crack 
propagation behavior and have only selected the fillet shape. However, readers can refer to [8] for 
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more on the impact of solder joint geometry on crack propagation behavior.  Section 3 describes the 
numerical method and algorithm used to simulate crack behavior under thermal stress. Since we 
apply the refinement mesh technique, this section also addresses the adaptive finite element 
method. In Section 4, we present the numerical results of solder cracking and discuss them alongside 
a physical analysis. Finally, Section 5 concludes with the main findings and suggests possible future 
research directions as extensions of this study. 
 
2. Mathematical Model and Computational Model  
2.1 Governing Equation 

 
In the present paper, we study crack propagation under thermal stress in eutectic solder material 

cases. Herein, the study develops the phase field model for thermal cracking by modifying the 
thermal fracturing model in [8] with the temperature function given and the thermal fracturing for 
viscoelastic solids in [27]. Therefore, the phase field model for thermal fracturing is given by 
 

{
−div ((1 − 𝑧)2(σkv[𝑢, 𝑒[𝑢̇]] − β(Θ − Θ0)𝐼)) = 𝑓(𝑥, 𝑡) 𝑥 ∈ Ω,

𝛼
∂𝑧

∂𝑡
= (ϵdiv(γ(x)∇z)-

γ(x)

𝜖
𝑧 + (1 − 𝑧)W(u))

+
𝑥 ∈ Ω,

   (1) 

 
where Ω is a bounded two-dimensional domain Ω ⊂ 𝑅2, γ(𝑥) is the critical energy release rate 
[Pa ⋅ m] with respect to position, 𝑓(𝑥, 𝑡) is the external force [Pa ∙ m−1], 𝑢(𝑥, 𝑡) represents the 
displacement vector [m] at position 𝑥 = (𝑥1, 𝑥2)

𝑇 ∈  Ω and time 𝑡 ≥ 0 [s], and the function 𝑧(𝑥, 𝑡) 
is called the phase field for crack shape. The variable 𝑧(𝑥, 𝑡) satisfies 0 ≤ 𝑧(𝑥, 𝑡) ≤ 1 ∈ Ω, where 
𝑧 =  0 represents the uncracked area and 𝑧 =  1 represents the cracked area. The parameters α >
 0 and ϵ >  0 represent, respectively, small numbers related to regularization in time [Pa ⋅ s] and 
space [m]. Some researchers refer to ϵ as the length scale parameter [9,13]. The parameters Θ and 
Θ0 are the given temperature [K] and initial temperature [K], respectively. In addition, the thermal 
modulus is defined by β = 𝑎𝐿(dλ + 2μ) [Pa ⋅ K

−1], where 𝑎𝐿 > 0 is called the coefficient of linear 
thermal expansion [K−1]. The strain and stress tensors for Kelvin-Voigt type viscoelastic solids are 
respectively defined by: 
 

𝑒𝑘𝑣[𝑢, 𝑒[𝑢̇]] = 𝑒[𝑢] = 𝑒𝑖𝑗[𝑢],  𝑒𝑖𝑗[𝑢](𝑥) ≔
1

2
(
∂𝑢𝑖

∂𝑥𝑗
(𝑥) +

𝜕𝑢𝑗

𝜕𝑥𝑖
(𝑥))  (𝑖, 𝑗 = 1,2),   (2) 

 

𝜎𝑘𝑣[𝑢, 𝑒[𝑢̇]] ≔ 𝐶1𝑒[𝑢] + C2𝑒[𝑢̇],   (3) 

 
where 𝐶1 and 𝐶2 are the elastic tensor [Pa] and viscosity constant [Pa ⋅ s], respectively, while 𝑒[𝑢̇] is 
the partial derivative of the strain tensor with respect to 𝑡. σ[𝑢] = 𝐶1𝑒[𝑢] is called the stress tensor, 
which is defined as follows: 
 
𝜎[𝑢] ≔ λ(div𝑢)𝐼 + 2μ𝑒[𝑢], 
 

where divu ≔ tr(𝑒[𝑢]) = (
∂𝑢1

𝜕𝑥1
+

∂𝑢2

𝜕𝑥2
) is the volumetric strain tensor and 𝐼 is the identity matrix. 

In the second row of Eq.   (1), 𝑊(𝑢) is called the elastic energy density, which represents the 
driving force of crack propagation. It is defined by the following equalities: 
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W(u) ≔ 𝜎[𝑢]: 𝑒[𝑢] = (λ(div𝑢)𝐼 + 2μ𝑒[𝑢]): 𝑒[𝑢] 
= λ(div𝑢)2+ 2μ|𝑒[𝑢]|2   (4) 
 

The parameters λ =
𝐸𝑌ν𝑃

(1+ν𝑃)(1−2ν𝑃)
 and μ =

𝐸𝑌

2(1−ν𝑃)
 are Lame’s constants [Pa], where the constants 

𝐸𝑌 > 0 and ν𝑃 > 0 represent Young’s modulus [Pa] and Poisson's ratio [−], respectively. There are 
two notes related to the driving force of crack propagation. First, we have chosen the thermoelastic 
energy density 𝑊(𝑢,Θ) = σ[𝑢,Θ]: 𝑒[𝑢,Θ] as the driving force for crack propagation in a previous 
study [8]. Second, Eq.   (4) can be split into 𝜆∗(div 𝑢)+

2 + 2𝜇|𝑒𝐷[𝑢]|
2 dan 𝜆∗(div 𝑢)−

2 , which represent 
the positive and negative parts of the elastic energy density, respectively. We can then consider the 
positive part of the elastic energy density as the driving force of crack propagation. It should be noted 

that it is not necessarily applied immediately; we should also split the (1 − 𝑧)2σkv[𝑢, 𝑒[𝑢̇]]  term into 

positive and negative parts in Eq.   (1). For details, the reader can refer to [27]. In the current study, 
we have not investigated this further.  

If we denote the total stress tensor, including the damage variable, as σ𝑧
∗[𝑢, 𝑒[𝑢̇], Θ] ≔

(1 − 𝑧2)(σkv[𝑢, 𝑒[𝑢̇]] − β(Θ − Θ0)𝐼), we can write the first row of Eq.   (1) as −div(𝜎𝑧[𝑢, 𝑒[𝑢̇], Θ]) =

𝑓(𝑥, 𝑡). Hereafter, we will omit 𝑓(𝑥, 𝑡) for simplicity. Eq.   (1) is complemented by the boundary and 
initial conditions, as follows: 

 

{
 
 

 
 
𝑢 = 𝑢𝐷(𝑥, 𝑡) on Γ𝐷 ,

𝜎𝑧
∗[𝑢, 𝑒[𝑢̇], Θ]𝑛 = 𝑞(𝑥) on Γ𝑁 ,

∂𝑧

∂𝑛
= 0 on Γ,

𝑢(𝑥, 0) = 𝑢0(𝑥) 𝑥 ∈ Ω,

𝑧(𝑥, 0) = 𝑧0(𝑥) ∈ [0,1] 𝑥 ∈ Ω,

   (5) 

 
where 𝑢0(𝑥) is the initial displacement, 𝑧0(𝑥) is the initial crack, 𝑛 is the normal vector, 𝑢𝐷(𝑥, 𝑡) is 
the given displacement on the Dirichlet boundary Γ𝐷 , and 𝑞(𝑥) is the given boundary load on the 
Neumann boundary Γ𝑁 . The boundary Γ is defined ∂Ω ≔ ΓD ∪ Γ𝑁.  
 
2.2 Computational Model  
 

This section will discuss the computational realm, computational arrangement, and fundamental 
constants for thermal fracturing in a 2D solder domain. Additionally, it outlines certain assumptions 
made regarding the physical aspects during calculations. To begin, we will elucidate the 
computational domain. 

Models concerning solder joint fatigue or solder cracking stem from empirical stress, strain, and 
energy data derived from thermal cycling experiments. In numerical simulations, we designate the 
fillet shape as the computational domain (see Figure 1). We did not design the solder joint with a 
volcano shape [8] or a shape suitable for connecting a quad flat package to the PCB [36]. 
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Fig. 1. Computational domain of thermoelasticity problem 

 
In this paper, we simulate crack propagation in eutectic 36Sn-37Pb solder. Since we consider the 

fillet shape, the domain in Figure 1 can be divided into the Neumann boundary Γ𝑁  and the Dirichlet 
boundary Γ𝐷 , which are clearly defined by the following equation: 

 

{
𝑢 =  0 on Γ𝐷,

σ𝑧
∗[𝑢, 𝑒[𝑢̇], Θ]𝑛 = 0 on Γ𝑁 .

   (6) 

 
Herein, Γ𝑁 ∪ Γ𝐷 = ∂Ω where ∂Ω denotes the boundary of the computational domain. In addition, 

we also set the initial conditions as follows: 
 

{
𝑧0(𝑥) = 0 in Ω,
𝑢0 = 0 in Ω.

   (7) 

 
In the following example, we assume that the electronic components (e.g., integrated circuits 

(ICs), semiconductor chips, and printed circuit boards (PCBs)) are rigid bodies, while the solder 
material is treated as a viscoelastic solid. Additionally, for simplicity, the solder material is assumed 
to be homogeneous and isotropic. The physical properties of the solder material are set based on the 
thermal fracturing simulations in [8], except for the parameter 𝜖. In the present paper, 𝜖 = 5 × 10−3 
is used for solder fracturing due to variations in the maximum triangle sizes. Furthermore, different 
from [8], we set the temperature function Θ(t) as 90 sin(10π𝑡) + 35 (see Figure 2), with a duration 
𝑡 of 5000 and a time step Δ𝑡 given by 1 × 10−3. Based on the function, we consider the effect of 
repeated thermal cycling. Although we understand that repeated thermal cycling has implications for 
crack propagation behavior, this study uses only a single temperature function. In the current study, 
we assume that all the parameters are nondimensional. The nondimensional setting is detailed in 
[8,28]. 
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Fig. 2. Illustration of temperature function profile 
during the time interval 0 ≤  t ≤  20 

 
3. Numerical Method  
3.1 Finite Element Discretization and Weak Form 
 

To simulate the solder fracturing, we solve the thermoelasticity problem in Eq.   (1), we derive a 
semi-discretization in time 𝑡. Let 𝑢𝑘 and 𝑧𝑘  be the solution approximations of 𝑢 and 𝑧, and we set 
Δ𝑡 >  0 as a constant time step, with (𝑡𝑘 = 𝑘Δ𝑡) (𝑘 = 1,2,⋯ ). The numerical solution of the 

thermoelasticity equation is recomputed from the solution of (𝑢𝑘−1, 𝑧𝑘−1) with the semi-implicit 
scheme [12]: 
 

{
 
 

 
 −div ((1 − 𝑧𝑘−1)2 (σ[𝑢𝑘]+

𝐶2

Δ𝑡
(𝑒[𝑢𝑘] − 𝑒[𝑢𝑘−1])− β(Θ − Θ0)𝐼)) = 0,

𝛼
𝑧𝑘−𝑧𝑘−1

∆𝑡
= ϵdiv(γ∇𝑧̃𝑘)-

γ

𝜖
𝑧̃𝑘 + (1 − 𝑧̃𝑘)W(uk),

𝑧𝑘 = max(𝑧̃𝑘 , 𝑧𝑘−1) .

   (8) 

 
Since the critical energy release rate is constant, we simplify Eq.   (8) by writing γ(𝑥) = γ. In the 

Eq.   (8), the term 𝑧𝑘 = max(𝑧̃𝑘 , 𝑧𝑘−1) represents (∙)+ in the Eq.   (1). 
Now, we derive the weak form of Eq.   (8). Let (𝑣 ∈ 𝐻1(Ω)|𝑣 = 0 on Γ𝐷) be a test function for 

the first row in Eq.   (8) and (𝑤 ∈ 𝐻1(Ω)|𝑤 = 0 on Γ) for the second row in Eq.   (8). Then, we can 
write the weak form of the Eq.   (8) as follows: 

 

For the first row: 
 

∫(1 − 𝑧𝑘−1)2σ[𝑢]:𝑒[𝑣]𝑑𝑥 +
1

Δ𝑡
∫(1 − 𝑧𝑘−1)2𝐶2𝑒[𝑢

𝑘]: 𝑒[𝑣]𝑑𝑥
ΩΩ

=
1

Δ𝑡
∫(1 − 𝑧𝑘−1)2𝐶2𝑒[𝑢

𝑘−1]: 𝑒[𝑣]𝑑𝑥
Ω

+∫(1 − 𝑧𝑘−1)β(Θ − Θ0)div𝑣𝑑𝑥
Ω

 (∀v ∈ Vu). 

 
 
     (9) 

 

For the second row: 
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τ∫(𝑧̃𝑘 − zk−1)wdx
Ω

= −∫ϵγ∇zk

Ω

⋅ ∇wdx −
γ

ϵ
∫ 𝑧̃𝑘

Ω

wdx + ∫(1 − 𝑧̃𝑘)W(uk)wdx    (∀𝑤 ∈ 𝑉𝑧)
Ω

, 

 
 

(10) 

 

where τ =
𝛼

Δ𝑡
. Finally, we have obtained the weak form of Eq.   (8). We will apply it to simulate the 

solder cracking problem and thermal fracturing in square domain. 
As a remark, in the following numerical simulation, we apply non-dimensional parameters to 

facilitate the calculation process. The non-dimensional setting can be found in [8], while the 
derivation of transformation parameters is shown in [28]. 
 
3.2 Adaptive Mesh Finite Element Technique  
 

We solve the governing equation of crack propagation under thermal stress, represented by Eqs.      
(9)-(10), using FreeFEM [37] with adaptive P2-elements technique, where 𝑧 is evaluated by 
remeshing at each time step. For adaptive refinement, we use an error indicator criterion to identify 
regions of the mesh that require refinement, with an error threshold set to 0.01. As a result, we 
obtain a newly refined mesh. Furthermore, we must also transpose 𝑢𝑘 and 𝑧𝑘  onto the new refined 

mesh to update the values of 𝑢𝑘 and 𝑧𝑘  at the Gauss points of the mesh. The details of the adaptive 
mesh algorithm are shown in Algorithm 1. This code implements the discrete equation derived from 
the finite element weak formulation in Section 3.1. The main reason we choose the adaptive mesh 
technique is its ability to drastically reduce calculation time during the numerical process [27]. We 
will demonstrate the robustness of this technique in reducing computation time in Section 4.2. 
Additionally, we use ParaView as a visualization tool. 

 
Algorithm 1 Crack propagation due to the cyclic  thermal stress 
based on adaptive mesh 

Input: physical parameters 
Input: time parameters 𝑡𝑚𝑎𝑥 and Δ𝑡 
Input: Minimum ℎ𝑚𝑖𝑛  and maximum ℎ𝑚𝑎𝑥 size of triangle 
Input: temperature function Θ(𝑡) 

Set: Initial mesh 𝒯𝒽
0 and initial crack 𝑧0(𝑥) 

For 𝑘 = 1,⋯ , 𝑇/Δ𝑡 do  
 Set 𝒯𝒽

𝓀 = 𝒯𝒽
𝓀−1 

 Calculate the solution of 𝑢𝑘 and 𝑧𝑘  based on Eqs.      (9)-(10) 
 For 𝑖 = 1,⋯ ,10 do 
  Design new mesh 𝒯𝒽

𝒾 based on  𝑧𝑘  
 End for 
 Set 𝒯𝒽

𝓀+1 = 𝒯𝒽
𝒾 

 Interpolate 𝑢𝑘 and 𝑧𝑘  on new mesh 𝒯𝒽
𝓀+1 

End for 
 
4. Numerical Results and Discussion 
 

Although this study primarily focuses on solder cracks caused by thermal cycling, we will also 
discuss the effect of temperature on square viscoelastic solids on crack growth. This serves as a basic 
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verification of how temperature gradients in viscoelastic solids can accelerate crack propagation. We 
will cover this in Section 4.1, while the explanation of solder cracks will be provided in Section 4.2. 
 
4.1 Thermal fracturing in square viscoelastic solids  

 
In this section, a numerical example considers a square domain Ω ≔ [−0.5,0.5] × [−0.5,0.5] ∈

𝑅2 with a single initial crack. The domain is subjected to uniaxial stress in the vertical direction, as 
clearly illustrated in Figure 3. Since the example utilizes an adaptive finite element method, we apply 
Algorithm 1 to solve the thermal fracturing in square viscoelastic solids. Furthermore, the parameters 
used are listed in Table 1. 

 
Table 1 
Non-dimensional parameters for the case in Section  
4.1 

Parameters 𝐸𝑌  [-] 𝜈𝑃  [-] 𝐶2 [-] 𝛼 [-] 𝜖 [-] 𝛾 [-] 𝑎𝐿 [-] Θ0 [-] Δ𝑡 [-] 𝑡 [-] 

Value 5 × 106 0.29 2 × 104 1 × 10−3 2 × 10−2 2.5 1 × 10−4 0 6 × 10−4 2500 

 
Since the temperature varies, we set it to Θ =  0.0, 2.5, 5.0, 7.5 for instance. Additionally, the 

square viscoelastic solid is considered a homogeneous and isotropic material. 
 

 
Fig. 3. Domain illustration for Section   
4.1. We set 𝑔 = 0.002, and denote 𝜎𝑧

∗𝑛 =

 σ𝑧
∗[𝑢, 𝑒[𝑢̇], Θ]𝑛  for simplicity. The red line 

represents the initial crack 

 
Figure 4 shows the results of thermal fracturing in square viscoelastic solid material. Since the 

behavior is similar, we do not show the crack propagation for temperature 𝜃 =  0.0. The red color 
represents the cracked area, while the blue color represents the uncracked area. Because the domain 
is subjected to uniaxial stress in the vertical direction and is made of a homogeneous and isotropic 
material, the crack propagation behavior is straight, extending to the right. From Figure 4, it is evident 
that crack propagation is slower in the square material at higher temperatures, while it is faster in 
the material at lower temperatures. This behavior can be attributed to the presence of thermal 
stress. The higher the temperature of a material, the greater the thermal stress. This increased 
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thermal stress causes the total energy available for crack growth to decrease, indirectly reducing the 
crack propagation rate. 
 

 
Fig. 4. Snapshot of thermal fracturing for each temperature 𝜃 variation at time 𝑡 =
0.0, 0.375, 0.75, 1.125, 1.5 (from left to right):  Θ =  2.5 (top), Θ =  5.0 (middle), and Θ =  7.5 (bottom) 

 
Theoretically, the speed at which a crack propagates can also be assessed using the surface 

energy profile. The surface energy can be determined using the following equation: 
 

Es(z) =
1

2
∫ 𝛾 (𝜖|∇𝑧|2 +

1

𝜖
𝑧2)𝑑𝑥

Ω

  (11) 

 
The results of Eq.  (11) are shown in Figure 5. It is clear that cracks propagate more slowly in high-

temperature materials and more quickly in low-temperature materials. Another observation from 
Figure 5 is the size of the cracked area. Since crack size is proportional to surface energy, calculating 
the surface energy helps assess the extent of the cracked area. The Figure 5 also demonstrates that 
the cracked area tends to be larger in high-temperature materials. In conclusion, it is evident that 
temperature significantly affects crack growth. 

As a note, if we add the heat transfer equation in Eq.   (1), we can observe the thermal response 
(thermal behavior) due to crack propagation, as studied in [38]. However, we do not investigate this 
in the present study. Nevertheless, the reader can refer to [27] for more details. 
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Fig. 5. Surface energy profile for each different 
temperature 

 
4.2 Thermal Fracturing in a 2D Solder Domain  
 

This section is the main focus of our research. It is divided into two parts: the first part explains 
solder fracturing behavior under varying maximum triangle sizes (ℎ𝑚𝑎𝑥) while the second part 
addresses solder fracturing behavior due to variations in 𝜖. Let us begin by studying solder fracturing 
behaviour under different ℎ𝑚𝑎𝑥 values. 

Figure 6 shows the z-profile for each different maximum triangle size at times 𝑡 = 0.0, 2.5, and 
5.0 (from left to right). As seen in Figure 6, the crack profiles are similar for each maximum triangle 
size. Initially, cracks appear on both sides of the solder in the right section, bordering the IC 
component and the PCB. These cracks then grow straight toward the left-hand side boundary. The 
crack tips turn approximately 45° and reach the surface of the solder at time 𝑡 =  5. Overall, the 
results obtained in Figure 6 are qualitatively consistent with experimental studies [39-43] and 
numerical studies [8,25]. 

 

 
Fig. 6. Snapshot of solder fracturing for each different the maximum triangle size (ℎ𝑚𝑎𝑥) at time 𝑡 =
0.0, 2.5, 5.0. (from left to right):  ℎ𝑚𝑎𝑥 =  5 × 10

−2 (top), ℎ𝑚𝑎𝑥 =  2.5 × 10−2 (middle), and ℎ𝑚𝑎𝑥 =
 1 × 10−2 (bottom) 
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In this paper, an important point is that the numerical results of the model are supported by 
adaptive finite element techniques, a variant within FEM. In Figure 7, the refined mesh follows the 
crack path. In particular, the adaptive finite element technique positions small triangular elements 
around the crack, with these smaller elements highlighting stress concentrations in the solder 
domain. Meanwhile, larger triangular elements are used in other regions of the solder to minimize 
the total number of unknowns and reduce computational time. Stress concentration is determined 
from the displacement extrapolation of specific nodes. Therefore, this technique is highly effective 
for calculating and simulating crack propagation using PFM [8,26,44,45]. From this, we conclude that 
this technique is highly suitable for simulating crack growth. 
 

 
Fig. 7. Profile of remeshing for each different ℎ𝑚𝑎𝑥 = 0.01, 0.025, 0.05 (from left to right) at the final time 

 
The key advantage of applying adaptive mesh refinement is its ability to reduce computational 

time. As shown in Figure 8, the time consumption decreases with smaller  ℎ𝑚𝑎𝑥 values. This can be 
explained as follows: as the number of triangles increases, the degree of freedom (DOF) also 
increases. The DOF is a factor that significantly influences computational time during the calculation 
process. This is a strong reason why we chose the adaptive mesh refinement technique. 
 

 
Fig. 8. Computational time for each different size of 
triangle ℎ𝑚𝑎𝑥. The computation time refers to the CPU 
time during calculations, which is measured in seconds 

 
Now, we address thermal fracturing behavior due to 𝜖 variation. Figure 9 shows the thermal 

fracturing in solder material due to 𝜖 variation.  Herein, the crack profile is similar for 𝜖 =  5 × 10−3, 
and 𝜖 =  7.5 × 10−3, while it is not so similar for 𝜖 =  1 × 10−3. Furthermore, the difference in crack 
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thickness is clearly visible between 𝜖 =  5 × 10−3, 𝜖 =  7.5 × 10−3, and 𝜖 =  1 × 10−3. This is 
because the smaller the value of 𝜖, the thinner the resulting crack. 

As a final note, Figures 6 and 9 illustrate that the area where 𝑧 > 0 widens as the crack length 
increases. This can be understood as the model implicitly assuming that the history of deformation 

leads to solder damage. The model is set under non-repair conditions for the crack, with 
𝜕𝑧

𝜕𝑡
≥ 0, 

indicating that the recovery process of the solder material is impossible. If material deformation 
persists, the width of the region increases due to the assumption of damage (𝜙(𝑥) = 𝑥+). Based on 
the findings of the present study, an interesting issue arises regarding the role of predictive 
maintenance in enhancing the long-term reliability of electronic devices. Regular maintenance is 
essential to prevent further damage to solder joints, such as crack propagation, which could 
ultimately lead to joint failure.  
 

 
Fig. 9. Snapshot of solder fracturing for each different ϵ at time 𝑡 = 0.0, 2.5, 5.0. (from left to right):  ϵ =
 1 × 10−3 (top), 𝜖 =  5 × 10−3 (middle), and 𝜖 =  7.5 × 10−3 (bottom) 

 
5. Summary and Future Works  
 

A phase field model for fracturing and the finite element method (FEM) with adaptive mesh 
techniques have been implemented to model solder fracturing. The phase field approach is derived 
from the gradient flow of Francfort-Marigo type energy. In this study, because we are focusing on 
fracturing due to thermal effects, we include the thermal stress term in the total stress tensor. 
Additionally, the solder material is considered a Kelvin-Voigt type viscoelastic solid that is 
homogeneous and isotropic.  

Although our research primarily focuses on thermal cracks in solder materials, it also examines 
cracks in square viscoelastic solid domains caused by temperature differences. Specifically for solder 
fracturing, we used a fillet-shaped solder as the domain for our model. Through numerical simulation, 
we demonstrated the behavior and mechanisms of solder cracking under thermal cycling stress. 
Overall, our results show that the findings of this study are in good agreement with previous 
numerical and experimental results. As a final note, the use of a small ℎ𝑚𝑎𝑥 contributes to very long 
computation times, while small ϵ settings result in thin crack trajectories. 

To further advance this work, the Takaishi-Kimura and Alfat models, which modify the 
components of the stress and strain tensors, can be coupled with a general heat conduction equation 
[46] or a heat conduction with dua phase-lags [47] to improve results. Additionally, it is necessary to 
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consider the elasticity of electronic components and PCBs, as these physical objects tend to deform 
when subjected to a temperature field. Three-dimensional simulations will be needed to obtain a 
complete understanding of the cracking phenomenon in solder. Finally, an interesting area of study 
is the use of the Maxwell model for investigating the viscoelastic response of solder. This will be 
easier since we can reference several previous studies [7,48,49]. 
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