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Scalar convection-diffusion has been drawing attention in fluid mechanics since more 
than half a century due to its relevance in various applications, its impact on transport 
properties, and its interplay with other fluid phenomena. In this review, we summarize 
the recent advances in scalar convection-diffusion studies documented by various 
researchers in efforts to identify an appropriate case study for using the model of 
convection-diffusion correctly. Scalar convection-diffusion studies are classified as 
theoretical, numerical solution, extracellular, chemical reaction, turbulence, 
diffusivity, and mixing perspectives since different perspectives have their own 
context. This paper has examined and articulated a range of viewpoints with different 
emphases. Encapsulating the latest advancements in the study of scalar convection-
diffusion processes for future case study applications is the goal of this review. 
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1. Introduction 
 

The current research trend in the study of scalar convection-diffusion in fluid mechanics includes 
investigating buoyancy-driven convection flows using the Grossmann-Lohse theory [1]. Numerous 
research efforts have also concentrated on the advancement of numerical techniques aimed at 
addressing convection-diffusion equations [2,3] which includes analyzing semi-implicit DG schemes 
for scalar nonstationary nonlinear problems [3], modeling diffusive and convective transport in brain 
extracellular space [4], analyzing the destabilization of density stratifications by chemical reactions 
[5], scalar quantities evolution by molecular diffusion and turbulent convection [6], investigating 
double-diffusive convection flows [7,8], testing scalar solvers for convective convection-diffusion 
problems [9], and defining the rate of scalar mixing in fluid flows [10]. This process is relevant in 
various fields, including engineering, oceanography, and geophysics. 
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2. Grossmann-Lohse Theory 
 

Buoyancy-driven scalar convection flows have been studied extensively in fluid dynamics. In the 
study of Rayleigh-Bénard (RB) convection, Grossmann and Lohse [11] proposed that in the 
experimentally accessible parameter regime, the use of Prandtl and Rayleigh numbers in the 
formulation of pure power laws for the Reynolds and Nusselt numbers are invalid [11,12]. The regions 
of Grossmann-Lohse theory are shown in FigureFig. 1. Despite more than twenty years passing since 
the initial claim, it still stands as a viable and applicable concept within the realm of buoyancy-driven 
convection flows, such as double-diffusive turbulence [7], vertical natural convection [13], axially 
homogeneous RB convection [14], and two-scalar turbulent RB convection [1]. A more recent 
extension of the Grossmann-Lohse (GL) model was made in 2021 [15] which covers tilting RB 
convection, horizontal convection, and magneto-convection. 
 

 
Fig. 1. Depiction of the laminar-like 
(boundary-layer) and turbulent (bulk) 
zones as described in the Grossmann-
Lohse theory [13] 

 
GL theory has been a beneficial tool for understanding buoyancy-driven scalar convection flows. 

Despite its applicability to a wide range of control parameters, including those relevant for ocean 
flows [7], the original claim does not encompass thermal convection within the high Prandtl number 
regime. Consequently, Wang et al., [16] generalized Grossmann and Lohse’s theories in offering a 
unifying theory for purely internally heated convection and turbulent. It is worth noting that the 
turbulent convective flow is frequently characterized by a significant convective structure known as 
a turbulent roll, commonly referred to as the wind of turbulence [17]. 

 
3. Discontinuous Galerkin Schemes 
 

Discontinuous Galerkin (DG) methods have been demonstrated to be accurate and stable 
numerical approaches for approximating convection-dominated convection-diffusion problems [18]. 
Brdar et al., [19] comprehensive study provides a detailed comparison of well-established DG 
methods used to solve nonlinear convection-diffusion problems. In order to model natural 
convection phenomena, a novel set of staggered semi-implicit DG techniques of high-order was 
proposed in the year 2020 [20]. 
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The integration of DG with the widely recognized trapezoidal rule second-order backward 
difference formula (BDF2) [21] methods offer a powerful approach to efficiently and precisely solve 
partial differential equations, particularly in domains such as numerical weather prediction (NWP) 
and other scientific simulations. The DG-BDF2 method demonstrates adaptability, high-order 
accuracy, and stability, making it a valuable tool in computational science and engineering. 
Moreover, it serves as a benchmark for other hybridized DG methods, including those that involve 
hierarchical scale separation extensions [22]. 

To achieve the objective of addressing linear convection-diffusion-reaction problems, recent 
hybridized methods include advanced semi-Lagrangian DG techniques [23] of high-order, combining 
the accuracy and conservation properties of DG methods with the computational efficiency and 
robustness of semi-Lagrangian techniques. Additionally, high-order semi-implicit multistep methods 
have been developed for time-dependent partial differential equations, encompassing nonlinear 
reaction-diffusion and convection-diffusion problems [24]. These methods differ in their treatment 
of advection and time integration. The semi-Lagrangian DG method places emphasis on accurate and 
efficient advection schemes, while the semi-implicit multistep DG method prioritizes stability and 
robustness in temporal integration. Another variation of the semi-implicit DG method, proposed by 
Ioriatti et al., [25], incorporates a posteriori subcell finite volume limiting technique to handle shock 
waves or steep gradients. 

In comparison to conventional DG schemes, interior penalty DG schemes introduce penalty terms 
that penalize jumps in the solution and its derivative across element interfaces [26]. This penalty 
ensures the preservation of maximum principles at the discrete level for steady transport and 
convection-diffusion problems. 
 
4. Modeling of Transport in Brain Extracellular Space 
 

The transport of solutes in the brain particularly in its extracellular space (ECS) has been a topic 
interest for many years. It has been thought commonly that diffusivity and nondirectionality are the 
only primary characteristics of the transport of solute in brain parenchyma, particularly the narrow 
and tortuous extracellular space [27]. However, the transport of convection may also play a role as 
suggested in recent studies on the solutes transport in the brain ECS [4,27-31] as depicted in Figure 
Fig. 2. 

In a study by Ray et al., [28], a substantial collection of published experimental findings regarding 
transport mechanisms within the brain were used to verify the modeling of transport mechanisms 
characterized solely by diffusion, as well as the modeling of transport processes that integrate both 
convective and diffusive elements within the interstitial space of the brain [28]. The modellings 
incorporated current theories of perivascular influx and efflux as illustrated in Figure Fig. 3 and Figure 
Fig. 4. The results of the study suggested that convective transport may play a significant role in the 
transport of solutes in the brain ECS. Similarly, Abbott et al., [30] proposed a model that links, for 
clearance along peri-venous spaces, fluid delivery to venules, the aquaporin-4 (AQP4) water channel 
related transport of convection of solutes and fluid mediated by glia via the ECS of brain tissue, and 
lastly bulk of brain tissue cerebrospinal fluid (CSF) flow (i.e. that of convection) along the exterior of 
penetrating arteries [30]. This model suggests that convective transport may be an important 
mechanism for solute clearance in the brain. 

However, there are also studies that suggest that diffusive transport may be the dominant 
mechanism for solute transport in the brain ECS [27,32-34]. For example, Smith et al., [32] observed 
that, in a way consistent with transport of diffusion rather than that of convection, dextran size 
influenced dextrans fluorescent transport in brain parenchyma [32]. Similarly, Holter et al., [34] found 
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that interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk 
flow [34]. In conclusion, while there is evidence to suggest that convective transport may play a role 
in the transport of solutes in the brain ECS, there are also studies that suggest that diffusive transport 
may be the dominant mechanism. Further investigation into scalar convection-diffusion phenomena 
is imperative in order to comprehensively elucidate the intricate mechanisms behind solute transport 
in the brain extracellular space (ECS). 
 

 
(a) 

 

 
(b) 

Fig. 2. Differences between conventional and contemporary 
perspectives (a) Conventional understanding of solute clearance [27] 
(b) Proposed glymphatic mechanism of solute clearance [27] 

 

 
Fig. 3. The exchange occurring between the interstitial 
tissue (also known as parenchyma) and the perivascular 
space that encircles the penetrating blood vessels. 
Solute (represented by the purple arrow) and fluid 
(indicated by the green arrow) movement within brain 
tissue is depicted [28] 



Journal of Advanced Research in Numerical Heat Transfer 

Volume 27, Issue 1 (2024) 14-27 

18 
 

 
Fig. 4. The relationship between the Péclet number and 
the apparent diffusivity of various molecules relevant to 
transport within the brain [28] 

 
5. Destabilization of Density Stratifications by Chemical Reactions 
 

Density stratifications in scalar convection-diffusion flow can be destabilized by chemical 
reactions, leading to hydrodynamic instabilities. Several studies have explored this phenomenon 
using reaction-diffusion-convection models [5,35-38]. In addition, the phenomenon of chemical 
destabilization against buoyantly stable density stratifications has been the subject of numerical 
studies that aim to provide specific insights [39,40]. 

Almarcha et al., [5] demonstrated in their study that density changes resulting from a simple 
kinetic scheme, such as 𝐴 + 𝐵 → 𝐶, can have a significant impact on buoyancy-driven instabilities at 
a horizontal interface between two solutions initially containing the scalars 𝐴 and 𝐵. The authors 
presented their findings in Figure Fig. 5, which clearly illustrates the effects of gravity on the system. 
In this particular scenario, the product 𝐶 diffuses at a rate comparable to that of reactants 𝐴 and 𝐵; 
however, it possesses a greater mass. Consequently, this leads to the emergence of a localized 
Rayleigh-Taylor instability, wherein the denser layer of 𝐶 settles above the lighter layer of 𝐵 beneath 
the contact line. This instability triggers convection currents, resulting in a distortion of the initially 
uniform reaction front. The investigation further demonstrated the development of elongated, 
slender fingers that extend downward from the reaction zone, while convection simultaneously 
elevates the reaction front. This asymmetrical behavior within the system is attributed to the stable 
upper stratification, where the lighter reactant 𝐴 is positioned above the denser layer of 𝐶. 

The stabilizing or destabilizing influence of reactions on buoyancy-driven convection has been 
classified in a parameter space [41], and extensively reviewed by Balakotaiah et al., [42]. It is a 
consensus that chemical reactions might trigger convection even in cases where concentration and 
heat both contribute to a stable density stratification [36,37,43]. Moreover, Loodts et al., [38] 
showed that the onset time of convection can be either enhanced or decreased by a chemical 
reaction, depending on the type of density profile building up in the reactive solution. 
 
6. Scalar Quantities Evolution by Molecular Diffusion and Turbulent Convection 

 
The study of scalar quantities evolution by molecular diffusion and turbulent convection involves 

the use of various mathematical models and numerical methods. Some studies focus on the analysis 
of convective flux density and turbulent chemical diffusivity produced by convection as a function of 
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height [44,45]. Other studies investigate the behavior of scalar quantities in turbulent thermal 
convection and the intermittency of active scalar [46]. Additionally, there are studies that analyze the 
mixing efficiency and turbulent dissipation rate in turbulent flows [47]. 
 

 
Fig. 5. 2D density fields obtained 
numerically, where the black line 
corresponds to the initial contact 
line [5] 

 
7. Double-Diffusive Convection Flows 
 

Double-diffusive convection is a hot topic since half a century [48] in research as a phenomenon 
that occurs when two fluids with different densities diffuse into each other, leading to buoyancy 
forces that drive fluid motion. The development of this field has resulted from a collaborative 
engagement among theorists, geophysicists, marine oceanographers, and engineers [49]. Venables 
et al., [50] examine the potential for double-diffusive convection occurring in a scenario where cold, 
fresh water is situated above warmer, saline water beneath an Antarctic ice shelf. While numerous 
access points have been created in ice shelves to facilitate the placement of instruments for extended 
monitoring, this study marks the inaugural observation of the impacts of diffusive convection. 
Notably, a distinct thermohaline staircase is evident in both the temperature and salinity profiles. 

Double-diffusive convection driven by both thermal and compositional buoyancy in a rotating 
spherical shell was investigated by Silva et al., [51]. In a double-diffusive setup, they numerically 
investigated the linear onset of instability of convection. This is important in order to understand 
how the thermo-compositional convection dynamics is determined by the compositional and thermal 
molecular diffusivities differences. Another numerical analysis of double-diffusive convection was 
carried out by Masuda et al., [52] where opposing heat and mass fluxes on the vertical solid surfaces 
cause the phenomena in a permeable surface. Figure Error! Reference source not found. reveals that 
the main flow is driven thermally. The upper and a lower zone of convection cell may also present 
due to the pattern of flow. This justifies small values of Nu since, in this case, the convection strength 
is weak; the concentration gradients also lead to the convection, and there is a periodically change 
in the pattern of convection and the velocity value. On the other hand, Nu becomes large if the flow 
is thermally-driven and there is only one convection cell [52]. 

The scope and development of the diffusive regime associated with double-diffusive convection 
in oceanic environments has been studied [53]. In particular, it was found that by utilizing a 
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multifrequency acoustic backscattering technique, thin acoustic layers identified in proximity to the 
western Antarctic Peninsula have been found to align with scattering phenomena observed at 
diffusive-convection interfaces in controlled laboratory settings. 
 

    
𝑡1 𝑡2 𝑡3 𝑡4 

Fig. 6. Contour lines of stream functions at four different times 𝑡 for Rayleigh-Darcy number 
𝑅 = 100, Lewis number 𝐿𝑒 = 20, buoyancy ratio 𝑁 = 0.55, and the aspect ratio 𝐴 = 5 [52] 

 
More current studies include an investigation by Zaussinger and Kupka [54] of a disparity in mean 

molecular weight between the upper and lower layers which serves to mitigate the instability of 
double-diffusive convection where thermal stratification is prone to to thermal convection. 

It is known that local thermal non-equilibrium regulates double-diffusive Rayleigh-Bénard 
convection within a dual-layered configuration. Venkatraman and Vanishree [55] examined the 
influence of magnetic fields on the initiation of this convection, while Manjunatha et al., [56] studied 
Darcy-Benard double-diffusive Marangoni convection in a composite layer system with a constant 
heat source along with non-uniform temperature gradients. 
 
8. Scalar Solvers 
 

In their research, Wu and Xu introduced simplex-averaged finite element techniques specifically 
designed for addressing convection-diffusion challenges within the 𝐻(grad), 𝐻(curl), and 𝐻(div) 
function spaces [57]. Their study provided compelling numerical examples that illustrated the 
reliability and efficiency of these methods in tackling a wide range of convection-diffusion issues. 
Another finite element method for convection-diffusion equations is the well-known algebraic flux 
correction (AFC) finite element schemes [58]. While simplex-averaged finite element methods [57] 
emphasize techniques like edge-averaging and exponential averaging, AFC finite element schemes 
[58] focus on satisfying maximum principles and entropy stability conditions. 

Chertock et al., [59] and Ullmann et al., [60] promote the idea of breaking down the original 
problem into more manageable subproblems or transformed systems, which can be solved using 
established numerical algorithms. This decomposition or transformation approach allows for 
efficient computation and improved convergence behavior in solving convection-diffusion equations. 
Chertock et al., [59] extended the fast-explicit operator splitting method for solving deterministic 
convection-diffusion equations to the problems with random velocity fields and singular source 
terms. In the solution of log-transformed random diffusion equations, Ullmann et al., [60] introduced 
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effective iterative algorithms for the stochastic Galerkin discretization. In both diffusion and 
convection-diffusion contexts, they conducted a comparative analysis of the performance of these 
iterative solvers using a model problem. 

Angermann [61] made significant advancements in the field by utilizing fitted discretizations for 
convection-diffusion equations with scalar diffusion coefficients and extending the approach to those 
with anisotropic diffusion coefficients. Similarly, Patel and Dhodiya [62] extended the application of 
the differential transform method for reaction-diffusion to convection-diffusion problems, 
addressing the limitations of existing methods in the literature. These contributions have expanded 
the understanding and capabilities in solving convection-diffusion equations with various diffusion 
coefficients.  

Three-dimensional convection-diffusion equations can be solved by applying the upwind Crank-
Nicolson difference schemes combined with alternating bar parallelization [63] as a new solver.  Such 
parallel unconditionally stable solver was incorporated in a Navier-Stokes solver for three-
dimensional channel flow at moderately large Reynolds number [64]. In a noteworthy development, 
Kubrak et al., [65] addressed the challenges associated with incompressible flow by integrating the 
discretization of the scalar convection-diffusion equation with a fourth-order Navier-Stokes solver. 
 
9. Rate of Scalar Mixing in Fluid Flows 
 

Scalar mixing [66] is a significant issue in convection-diffusion, with applications in environmental 
and industrial flows. The rate of scalar mixing in fluid flows has been extensively studied in recent 
years. The concept of scalar mixing is best defined in terms of the flux of the scalar across isoscalar 
surfaces as illustrated in Figure Fig. 7 [10]. 

A remarkable philosophical viewpoint on passive scalar mixing in a diffusive fluid flow at finite 
Péclet number was presented by Heffernan and Caulfield [67]. Their work emphasized the 
fundamental nature of mixing in various environmental and industrial flows. They also proposed a 
robust and efficient method for identifying optimal mixing perturbations using proxy multiscale 
measures. Passive scalar mixing was also studied by Alqahtani et al., [68], focusing on extreme events 
and instantons in Lagrangian turbulence models. 
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Fig. 7. Let θ and θ + ∆θ are the scalar values defining the 
surfaces 𝑆 and 𝑆∆, respectively, the fluid volume between 

such surfaces is represented by ∆𝑉. Take a cross-section 

with area 𝐴 in volume 𝑉, two isoscalar surfaces are 
possible as in this schematic [10] 

 
The parameters that affect the rate of scalar mixing depend on the type of flow. Sreenivasan [69], 

for instance, discussed how a turbulently mixed state depends on the flow Reynolds number and the 
Schmidt number of the scalar, whereas Karasso and Mungal [70,71] investigated scalar mixing and 
reaction in liquid shear layers to find that the rate of scalar mixing is directly proportional to the 
entrainment rate and not to any hydrodynamic measures. Another example is the study three-scalar 
mixing in a turbulent coaxial jet by Cai et al., [72] where the flow better approximates the mixing 
process in a non-premixed turbulent reactive flow. 

Excellent examples on the validation of scalar mixing models are the work of Fox [73] and Kops 
and Mortensen [74], involving the use of DNS data sets. Fox proposed an efficient numerical 
implementation of velocity-conditioned scalar mixing for full probability density function (PDF) 
simulations, while Kops and Mortensen [74] provided brilliant, high-resolution description of the 
scalar mixing layer. Table 1 shows some scalar convection-diffusion studies. 
 

Table 1 
Scalar convection-diffusion studies 
Perspective Author 

Grossmann-Lohse Theory [1,7,11-17] 
Discontinuous Galerkin Schemes [18-26] 
Modeling of Transport in Brain Extracellular Space [4,27-34] 
Destabilization of Density Stratifications by Chemical Reactions [5,35-43] 
Scalar Quantities Evolution by Molecular Diffusion and Turbulent Convection [44-47] 
Double-Diffusive Convection Flows [48-56] 
Scalar Solvers [57-65] 
Rate of Scalar Mixing in Fluid Flows [10,52,66-74] 

 
10. Conclusions 
 

This paper reviewed the study of scalar convection-diffusion in fluid mechanics encompassing a 
wide range of research areas, including the investigation of buoyancy-driven convection flows using 
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the Grossmann-Lohse theory, the development of numerical methods for solving convection-
diffusion equations, modeling diffusive and convective transport in brain extracellular space, 
analyzing the destabilization of density stratifications by chemical reactions, and defining the rate of 
scalar mixing in fluid flows: 
 

i) The Grossmann-Lohse theory has been instrumental in understanding buoyancy-driven 
scalar convection flows, with recent extensions covering various convection scenarios. 

ii) Discontinuous Galerkin (DG) methods have been shown to be accurate and stable numerical 
approaches for approximating convection-dominated convection-diffusion problems, 
offering adaptability, high-order accuracy, and stability. 

iii) The transport of solutes in the brain extracellular space has been a topic of interest, with 
evidence suggesting that both convective and diffusive transport mechanisms may play a 
role. 

iv) Chemical reactions have been shown to destabilize density stratifications in scalar 
convection-diffusion flow, triggering hydrodynamic instabilities. 

v) Studies have also focused on scalar quantities evolution by molecular diffusion and 
turbulent convection, double-diffusive convection flows, scalar solvers for convective 
convection-diffusion problems, and parameters affecting the rate of scalar mixing 
depending on the type of flow. 
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