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This research paper introduces an advanced approach to address the numerical 
challenges associated with stiff chemical reaction problems. We propose employing a 
Hybrid Diagonally Implicit Block Backward Differentiation Formula coupled with 
strategically placed off-step points to improve the accuracy and efficiency of numerical 
solutions. Stiff chemical reactions, commonly encountered in various industrial 
processes, require advanced numerical techniques to precisely capture rapid changes 
in concentrations. Our hybrid formulation enhances stability and computational 
efficiency by building on the diagonally implicit structure of block backward 
differentiation formulas, offering improved performance for solving stiff chemical 
reaction problems. Under a specific selection of a free parameter, the method is found 
to possess both zero-stability and 𝐴−stability properties. Convergence analysis 
demonstrates its ability to accurately approximate exact solutions. Through rigorous 
experimentation and comparative analysis, this research will illustrate the 
effectiveness of the developed method in solving stiff ordinary differential equations. 
The expected outcomes include the development of the new numerical method, its 
validation through comprehensive numerical experiments and insights into its 
performance and applicability in diverse science and engineering domains. 
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1. Introduction 
 

In this paper, we explore an advanced approach based on Block Backward Differentiation Formula 
(BBDF) in diagonally implicit structure for the numerical solutions of stiff chemical reaction problems 
in the form of 
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( ) ( )  ' , , , ,y f x y y a x a b= =                    (1) 

 

where ( ) ( )1 2 1 2, , , , , , ,T T

m my y y y f f f f= =  and ( )1 2, , , .T

m   = The system in Eq. (1) is 

said to be linear with constant coefficients if ( ) ( ), ,f x y Ay x= + where A  is an m m  constant 

matrix, while ,y f  and ( )x  are m-dimensional vectors. 

According to Lambert [1], Eq. (1) is classified as stiff if the eigenvalues i  of 
f

y




 satisfy the 

following conditions: 
 

i) ( )Re 0,i   

 

ii) ( ) ( )max Re min Rei i
ii

   where the ratio 
( )

( )

max Re

min Re

i
i

i
i




 indicates the stiffness index. 

 
A system is classified as stiff when the ratio of the largest to the smallest eigenvalue is extremely 

large, often spanning several orders of magnitude. This large ratio causes stability issues in explicit 
methods, necessitating the use of implicit methods for efficient and stable numerical solutions. 

Chemical reactions are crucial in diverse fields such as industrial processes, environmental studies 
and pharmaceutical development. Precise modeling and simulation of chemical reaction systems 
involve solving stiff ODEs characterized by widely separated time scales. Conventional numerical 
methods frequently encounter difficulties in efficiently and accurately handling such systems (see [2–
4]). This paper addresses this challenge by introducing an improved version of BBDF method, a novel 
approach designed specifically for stiff ODEs stemming from chemical reaction problems.  

Over time, the Backward Differentiation Formula (BDF) has been extensively used for solving stiff 

ODEs. Traditionally, the BDF method approximates the solution for 1ny +  at 1nx +  in each integration 

step. However, in a prior study by Ibrahim et al., [5], the BBDF approach was introduced as an 
alternative method to reduce the number of integration steps and processing time required by 
conventional numerical integrators, while still maintaining accuracy and meeting necessary stability 
conditions. This approach has garnered significant attention in the research community, proving to 
be more accurate and efficient compared to non-block methods and existing solvers (see [6–17]). 
Numerous efforts have been made to implement the BBDF approach in solving stiff problems, 
highlighting its potential to enhance computational efficiency and solution accuracy. 

Another widely employed strategy for tackling stiff ODEs involves the use of the Runge-Kutta (RK) 
method. In the context of fully implicit Runge-Kutta (FIRK) methods, the necessity to assess the 
Jacobian matrix, denoted as J, and execute the lower-upper factorization at each integration stage is 
a prerequisite. Nevertheless, the substantial computational overhead linked with the application of 
FIRK methods, as outlined in [7–10,13,15,16,20,24–26], has prompted researchers to seek alternative 
approaches. Such alternatives are commonly referred to as diagonally implicit RK (DIRK) methods. In 
DIRK methods, the matrix can be rendered lower triangular with a constant value on the diagonal, 
streamlining the computation process. This adjustment allows for the evaluation of J to be conducted 
only once per step, mitigating the computational burden associated with FIRK methods. 

In recent years, many researchers have extended conventional block methods by introducing 
hybrid points, also known as off-step points, to obtain numerical solutions for Eq. (1). The use of off-
step points in BBDF methods has been explored in [11,15,18–20], demonstrating improved accuracy 
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using additional data points, increased stability for stiff or oscillatory problems and greater flexibility 
in step size selection. These methods also enhance higher-order convergence, allowing for more 
precise results with fewer computational steps. A related approach using off-step points is discussed 
in [21–23]. In this paper, we build upon the theory from [5] and derive new stability coefficients, 
advancing the findings of [27]. 

In this study, we use a predictor-corrector (PECE) approach to enhance the accuracy and 
efficiency of our numerical solutions. This method reduces truncation errors and improves stability, 
making it particularly effective for stiff problems while allowing flexible step sizes for robust results 
(see [28]). 

 
2. Methodology  
 

This section provides an elaborate elucidation of the formulation of the proposed ρ-Hybrid 
Diagonally Implicit Block Backward Differentiation Formula (ρ-HDIBBDF) designed to solve Eq. (1). 
The general form of linear multistep method (LMM) for first order ODEs is written as 

 

0 0

1.
k k

j n j j n j

j j

y h f k + +

= =

=                                                 (2) 

 

where h is the step size. Since the interval for x  is the continuous interval  ,a b , h represents the 

division of this continuous interval into discrete points. Consider ( )n j n jy y x+ +  and 

( ),n j n j n jf f x y+ + + , coefficients ,j j   are suitably chosen constants subject to conditions 

0 01, 0k  = +   and k is defined as the order of the method employed. The method in (2) is 

explicit if 0k =  and implicit otherwise. 

The formulation developed by Ijam et al., [27] is extended by incorporating a hybrid block 
multistep method. Building upon existing BBDFs, we introduce off-step points into the formulation 
to create a variant with 𝐴−stability properties. The importance of employing an 𝐴−stable method lies 
in its ability to maintain numerical stability for stiff problems, allowing for larger step sizes without 
compromising accuracy. This enhancement enables more efficient computations while effectively 
addressing the rapid variations characteristic of stiff systems. 

 The two starting points, 1nx −  and nx  with an equal step size denoted as 1n nh x x+= −  are 

considered as illustrated in Figure 1. The proposed method evaluates the approximate solutions of 

1ny +  and 2ny +  with a fixed h, as well as two off-step points, 
1

2
n

y
+

 and 
3

2
n

y
+

 with half the step size, 

simultaneously. 
 

 
Fig. 1. Hybrid block method with two off-step points 
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The ρ-HDIBBDF method takes the general form of 
 

1

1, 1 1

0 2

k

j k n j k n k
n k

j

y h f f  
+

− + − +
+ −

=

 
= − 

 
                                               (3) 

 

where 
1 3

, 1, , 2.
2 2

k =  The linear difference operator, 
kL  associated with Eq. (3) is defined by 

 

( ) ( )
1

1

1, 1 1

0 2

; 0.
k

q p

k n j k n j k n k q
n k

j

L y x h y h f f C y O h  
+

+

− + − +
+ −

=

 
= − − = + =    

 
                                          (4) 

 

By applying the Taylor series expansion about nx x= , we expand Eq. (4) to obtain 

 

( )1 1 1 1 1 1 1 1 1
1, 0, ,

2 2 2 2 2 2 2 2

; 0n n n n
n n

L y x h y y y h f f    −
− + +

 
= + + − − =    

 
 

( )1 1,,1 1 0,1 1 1 1,1 1 1 1 1
,1

2 2 2

; 0n n n n n
n n

L y x h y y y y h f f     − − + +
+ +

 
= + + + − − =    

 
                                       (5) 

( )
3

2

3 1,, 3 1 0, 1 3 1 1, 3 1 3 3 3 3 3 1
, ,

2 2 2 2 2 2 2 2 2 2 2

; 0n n n n n n n
n

L y x h y y y y y h f f      − − + + + +
+

 
= + + + + − − =    

 
 

( )2 1,,2 1 0,2 1 2 1 1,2 1 3 3 2,2 2 2 2 3
, ,2

2 2 2 2 2

; 0n n n n n n n
n n

L y x h y y y y y y h f f       − − + + + +
+ +

 
= + + + + + − − =    

 
             

 
and the terms involving the derivative of y  are collected, resulting in 

 

( ) ( ) ( ) ( ) ( )2

0 1 2' '' 0.
qq

n n n q nC y x C hy x C h y x C h y x+ + + + =                                                         

 

The constant qC  in Eq. (4) are given by 

 

( )

( ) ( )

( )

( )
( )

( )

1

0 1,

0

01

1 1,

0

111

1,

0

1

1! 0!

1 1
, 2, 3,

! 1 ! 1 !



  
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+

−

=

+

−

=

−−+

−

=

=

− 
= − + 

 

 − −
 = − + =

− −  







k

j k

j

k

j k k k

j

q qqk

q j k k k

i

C

j k
C

j kk
C q

q q q

                                          (6) 

 
By setting 

, 0,11, 0k k = =  and 
0,2 0 =  and solving Eq. (6) simultaneously, we obtain the 

coefficients of 1,j k −  and 
k  for the corrector formula of ρ-HDIBBDF, as listed in Eq. (7).  
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1 1 1
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(7) 
 

Eq. (7) can be rewritten in the matrix form as follows 
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(8) 
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By applying the test equation ( )' ,y f x y y= =  and assume y H =  into Eq. (8) yields 
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which is equivalent to 1.m mAY BY −=  

In the next section, to ensure absolute stability, the parameter ρ is constrained to the interval 
(−1,1), as discussed by Ijam et al., [10,13]. Specifically, we choose ρ = -3/4, a selection thoroughly 
justified by Ijam et al., [10]. Their extensive work demonstrates that ρ = -3/4 yields accurate numerical 
results with optimal stability properties. 
 
3. Stability Analysis  
3.1 Definitions 
 

In this section, we conducted an analysis of the stability characteristics of the proposed method, 
with a particular focus on its order, consistency, zero stability, convergence, and 𝐴−stability. These 
analyses are essential for determining the method's suitability in efficiently addressing stiff ODEs. To 
commence, we present the widely known definitions of the method's order, consistency, zero 
stability, convergence and 𝐴−stability, as outlined in the numerical analysis literature in [1]: 
 

Definition 1.  

The LMM associated with the linear difference operator, kL  are said to be order p  if 

0 1 10, 0p pC C C C += = = =  . 

 
Definition 2.  
The LMM is said to be consistent if it has order  1p . 
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Definition 3.  
The method is said to be zero stable if there is no root of the first characteristic polynomial having 

modulus greater than one and if every root with modulus one is simple. 
 
Definition 4.  
The necessary conditions for an LMM to be convergent are that it must be consistent and zero 

stable. 
 
Definition 5.  
A numerical method is 𝐴−stable if its region of absolute stability covers the entire of the negative 

half-plane. 
 
3.2 Order of the Method 

 

By substituting the corresponding values of 1,j k −  and k  into Eq. (6), which gives

0 1 2 3

3

0 22

140
, .

870

00

0

 
−  
  
   −= = = =
  
  
  
  

C C C C  The result indicates that 
3 0C  . Therefore, following Definition 1, 

it can be inferred that the derived method is of order 2. 
     

3.3 Consistency 
 

In accordance with Definition 2, consistency is affirmed for the ρ-HDIBBDF method, as its order 
exceeds one.      
 

3.4 Zero Stability 
 

The stability polynomial ( ),R t H  for the proposed method in Eq. (3) is determined based on the 

root locations obtained by solving the characteristic equation, represented by ( )det 0At B− = , 

resulting in           
 

( ) 4 3 2 2 2 2 3 4

4 2 3 3 4 3 4 4 3

3 2

160315 277131 19935 1215 1131506

156244 18124304 9062152 18124304 1132769

422469 906759 69876 4320 17477171

1132769 18124304 1132769 1132769 18124304

451875

1132769

,R t t t H t H t H t H

t H t H t H t H t

t H

t

H

H − + + + −

+ − − + −

=

− 4 3 210935 4071

9062152 156244
.H t t− +

       (9) 

 
According to [1], when H = 0, the roots r coincides with the zeros   of the first characteristic 

polynomial ( )  , which by zero stability, all roots lie in or on the unit circle. When substituted 0H =  

into Eq. (9), it yields 
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( ) 4 3 2160315 4071

156244 156244
,R t H t t t= − +                                                                                                                                                          (10) 

 

and solving Eq. (10) for t , gives 0, 0,1, 0.02606t = . Since the roots of the stability polynomial in Eq. 

(9) align with the criteria set forth in Definition 3, it can be asserted that the method is zero-stable.  
 

3.5 Convergence 
 

With demonstrated consistency and zero stability, as presented in Subsections 3.3 and 3.4, 
respectively, it can be inferred by Definition 4 that this method has converged.    
 

3.6 𝐴−stability 
 

In this subsection, the absolute stability regions are provided to offer insights into the stability 
properties of the methods. The boundary of the stability regions for the proposed method is 

established by substituting 
it e =  into Eq. (9) and solving ( ),R t H  for t . The plots in Figure 2 

illustrate the complex H-plane for a range of  0, 2  , where 1t  .             

 

 
Fig. 2. Stability region for ρ-HDIBBDF 

 

Illustrated in Figure 2, the absolute stability region for ρ-HDIBBDF is situated beyond the closed 
contour of the graph, with the unstable region contained within. In accordance with Definition 5, the 
method is deemed 𝐴−stable, as the absolute stability region covers the entire half-plane. 
Consequently, the proposed method is well-suited for the efficient solution of stiff ODEs.        

 
4. Numerical Results  
 

In this section, numerical solutions for three stiff chemical reaction problems are obtained using 
the proposed method, ρ-HDIBBDF and will be compared with two existing methods of the same 

order. The tested problems will be solved with varying step sizes, specifically, 2 4 610 , 10 , 10 .H − − −=   

 
 
 
 



Journal of Advanced Research in Numerical Heat Transfer 

Volume 25, Issue 1 (2024) 100-115 

108 
 

Test Problem 1: Nonlinear stiff chemical reaction problem (the Kaps problem) in [19] 
 

( )' 1 1 2

1 1 22y y y − −= − + +                                                       ( )1 0 1y =                                          0, 20x  

( )'

2 1 2 21y y y y= − +                                                                 ( )2 0 1y =                                              
310 −=  

Exact solutions: ( ) ( )2

1 2,x xy x e y x e− −= =  

 
Test Problem 2: Modified nonlinear stiff chemical reaction problem of Robertson in [27] 

 
' 4

1 1 2 30.04 10 0.96 xy y y y e−= − + −                                           ( )1 0 1y =                                             0, 1x  

( )' 4 7 2

2 1 2 3 20.04 10 3 10 0.04 xy y y y y e−= − −  −                     ( )2 0 0y =                                                            

( )' 7 2

3 23 10 xy y e−=  +                                                               ( )3 0 0y =                                                            

Exact solutions: ( ) ( ) ( )1 2 3, 0, 1x xy x e y x y x e− −= = = −  

 
Origin of the problem: The ROBER problem, as defined by Robertson, H., represents the kinetics 

of an autocatalytic reaction (see [19]). The composition of the reactions is as follows: 
 

1

2

3

k

k

k

A B

B B C B

B C A C

⎯⎯→

+ ⎯⎯→ +

+ ⎯⎯→ +

 

 
Chemical species A, B and C are involved in the reactions, and the rate constants for these 

reactions are denoted as 1 2,k k  and 3k , respectively. 1 2,y y  and 3y  are refer to the concentrations of 

A, B and C, respectively and ( ) ( )1 20 , 0y y  and ( )3 0y  are the concentrations at time 0t = . 

For Test Problem 3, the exact solutions are unknown, therefore the approximation values are 
obtained to be compared with MATLAB stiff solver, ode15s. 

 
Test Problem 3: Nonlinear oregonator chemical reaction problem in Hairer and Wanner [29] 
 

( )' 6 2

1 2 1 2 1 177.27 8.375 10y y y y y y−= − + −                        ( )1 0 1y =                                         0, 400x  

( )'

2 3 2 1 2

1

77.27
y y y y y= − +                                                   ( )2 0 2y =                                                            

( )'

3 1 30.161y y y= −                                                                  ( )3 0 3y =                         

 
Origin of the problem: The OREGO problem stems from the well-known Belousov-Zhabotinsky 

reaction. When chemicals like bromous acid, bromide ions and cerium ions are mixed, they undergo 
a chemical reaction that oscillates in structure and colour (red to blue and back) after an initial 
inactive phase. The Oregonator mechanism follows this pattern 
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2

2 2

2

1

2

A Y X P

X Y P

A X X Z

X A P

B Z fY

+ → +

+ →

+ → +

→ +

+ →

 

 
with standard notations for the assignments and effective concentrations: 
 

hypobromous acid   2HBrO X=  
115.025 10−  

Bromide  Br Y−  =   
73.0 10−  

Cerium − 4  ( )CE IV Z=    
82.412 10−  

Bromate  
3BrO A−  =    

all oxidizable organic species   Org B=   

   HOBr P=   

 

where 1 2,y y  and 3y  are refer to the concentrations of X, Y and Z, respectively. 

The abbreviations utilized in numerical results are listed below in Table 1. 
 

Table 1 
Description of the abbreviations used 
Notation Description 

H Step size 
TS Total steps 

MAXE Maximum error 
TIME Computational time in Microsecond 

ρ-HDIBBDF The derived method 
ρ-DIBBDF ρ-Diagonally Implicit Block Backward Differentiation Formula derived in Ijam et al., [27] 
NDIBBDF Diagonally Implicit Block Backward Differentiation Formula by Babangida et al., [30] 

ode15s Variable step, variable order solver based on numerical differentiation formula in MATLAB 

 
The numerical results for Test Problems 1–3 are presented in Tables 2–4. The results are obtained 

using the C programming language and the methods are compared based on accuracy, total steps 
taken and computational time. 

Tables 2–4 display the numerical outcomes of ρ-HDIBBDF for three test problems, highlighting its 
accuracy. A thorough review of the tabulated results across test problems 1 and 2 reveals that as the 
step size decreases, MAXE improves, signifying heightened accuracy. To visually depict the 

performance of the methods, graphs of 10log MAXE  against 10log TIME  were generated, as 

illustrated in Figures 3–4. 
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Table 2 
Numerical results for Test Problem 1 
H Method ρ TS MAXE TIME 

210−  ρ-HDIBBDF -3/4 1000 2.63600e-04 1.70046e-05 

ρ-DIBBDF -3/4 1000 5.28528e-04 3.73354e-05 
NDIBBDF 1/5 1000 5.99388e-04 4.84041e-05 

410−  ρ-HDIBBDF -3/4 100000 3.05335e-08 1.14600e-03 
ρ-DIBBDF -3/4 100000 6.16862e-08 1.25609e-03 
NDIBBDF 1/5 100000 7.19977e-08 3.94726e-03 

610−  ρ-HDIBBDF -3/4 10000000 1.67696e-11 8.44418e-02 
ρ-DIBBDF -3/4 10000000 1.13746e-11 9.37730e-02 
NDIBBDF 1/5 10000000 3.37188e-11 1.34732e-01 

 
Table 3 
Numerical results for Test Problem 2 
H Method ρ TS MAXE TIME 

210−  ρ-HDIBBDF -3/4 50 7.66634e-05 3.77463e-06 

ρ-DIBBDF -3/4 50 1.60447e-04 1.52997e-05 

NDIBBDF 1/5 50 1.95517e-04 2.15107e-05 
410−  ρ-HDIBBDF -3/4 5000 7.77988e-09 3.56956e-04 

ρ-DIBBDF -3/4 5000 1.62943e-08 5.77681e-04 
NDIBBDF 1/5 5000 1.99133e-08 3.12601e-03 

610−  ρ-HDIBBDF -3/4 500000 2.76684e-11 1.96184e-03 

ρ-DIBBDF -3/4 500000 1.82327e-11 2.92248e-02 

NDIBBDF 1/5 500000 5.82263e-11 3.98782e-01 

 
Table 4 

(a) Approximate solutions of ( )1y x  for Test Problem 3 

x  ρ-HDIBBDF ode15s 

0 1 1 
20 2.7592375213e+1 2.7694042443e+1 

40 1.0005765914e+0 1.0005772292e+0 
60 1.0008746230e+0 1.0008746638e+0 
80 1.0014591409e+0 1.0014595860e+0 
100 1.0024499598e+0 1.0024450131e+0 
120 1.0041180119e+0 1.0041180876e+0 

140 1.0069297957e+0 1.0069245946e+0 
160 1.0116838451e+0 1.0117673390e+0 
180 1.0197634207e+0 1.0197676067e+0 
200 1.0336162966e+0 1.0336284516e+0 
220 1.0577314841e+0 1.0577878013e+0 

240 1.1008487863e+0 1.1007820164e+0 
260 1.1817948736e+0 1.1817371633e+0 
280 1.3490005510e+0 1.3487884271e+0 
300 1.7797210611e+0 1.7790787590e+0 

320 4.9477305937e+0 4.9334847095e+0 
340 1.0005659549e+0 1.0005658773e+0 
360 1.0008148683e+0 1.0008146706e+0 

380 1.0013552502e+0 1.0013503921e+0 
400 1.0022749000e+0 1.0022735383e+0 
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(b) Approximate solutions of ( )2y x  for Test Problem 3 

x  ρ-HDIBBDF ode15s 

0 2 2 
20 9.9276220727e-1 9.9243562629e-1 

40 1.7353155305e+3 1.7351633542e+3 
60 1.1443398044e+3 1.1442337819e+3 

80 6.8632865835e+2 6.8626388443e+2 
100 4.0916618099e+2 4.0912758031e+2 
120 2.4383323413e+2 2.4381016155e+2 

140 1.4530283410e+2 1.4529223198e+2 
160 8.6587189289e+1 8.6597107500e+1 

180 5.1597745733e+1 5.1607395094e+1 
200 3.0746864251e+1 3.0752834605e+1 
220 1.8321054294e+1 1.8327286047e+1 
240 1.0915366103e+1 1.0920157298e+1 
260 6.5002441155e+0 6.5032084339e+0 
280 3.8648259901e+0 3.8666303360e+0 
300 2.2818584576e+0 2.2829182517e+0 

320 1.2505049722e+0 1.2514306841e+0 
340 1.7679103532e+3 1.7678823620e+3 
360 1.2281814830e+3 1.2285953262e+3 
380 7.3886459915e+2 7.3912761146e+2 
400 4.4057572429e+2 4.4073323966e+2 

 

(c) Approximate solutions of ( )3y x  for Test Problem 3 

x  ρ-HDIBBDF ode15s 

0 3 3 
20 5.5001802191e+0 5.5045727499e+0 

40 2.0713781977e+3 2.0710642864e+3 
60 8.3722824261e+1 8.3695537494e+1 

80 4.3064229668e+0 4.3068524784e+0 
100 1.1341682283e+0 1.1340537885e+0 

120 1.0088222993e+0 1.0088077233e+0 
140 1.0061758163e+0 1.0061807790e+0 
160 1.0100597843e+0 1.0100705523e+0 

180 1.0169857345e+0 1.0169385773e+0 
200 1.0288426840e+0 1.0288443878e+0 

220 1.0493895754e+0 1.0493198273e+0 
240 1.0858317299e+0 1.0858650265e+0 

260 1.1532442646e+0 1.1531883210e+0 
280 1.2885003491e+0 1.2883373853e+0 
300 1.6137513726e+0 1.6133147535e+0 

320 3.2075955743e+0 3.2031167190e+0 
340 3.2811073640e+3 3.2891749322e+3 
360 1.3205757622e+2 1.3236993576e+2 
380 6.2375537437e+0 6.2525364944e+0 
400 1.2111795585e+0 1.2116215558e+0 

 
The efficiency curves depicted in Figures 3–4 demonstrate a significant improvement in the 

performance of the proposed method across all step sizes when compared to the other two methods, 
ρ-DIBBDF and NDIBBDF. This underscores the method's exceptional accuracy and efficiency, 
emphasizing its superior performance over alternative approaches. In cases where theoretical 
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solutions are unavailable for Test Problem 3, the solution curves presented in Figure 5 exhibit a 
notable agreement with the MATLAB stiff solver, ode15s. 

 
Fig. 3. Efficiency curves for Test Problem 1 

 

 
Fig. 4. Efficiency curves for Test Problem 2 
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(a)  (b)  

 

 
(c)  

Fig. 5. Solution curves of ρ-HDIBBDF and ode15s for Test Problem 3, (a) ( )1y x , (b) ( )2y x , (c) 

( )3y x  

 
5. Conclusions 
 

In summary, the newly introduced method, ρ-HDIBBDF, exhibits second-order accuracy, 
possesses both consistency and zero stability, thereby demonstrating convergence. Across all 
comparison metrics, including total steps, computational time and maximum error, the proposed 
method has proven to be more efficient than the methods it was compared against. Future research 
may focus on exploring adaptive strategies to further enhance the efficiency and applicability of this 
method. Consequently, the proposed method showcases successful applicability to stiff systems 
arising from chemical reactions, attributed to its high-order accuracy and broader stability region. 
Furthermore, the proposed method holds potential applications in a diverse array of fields, 
contributing to our understanding of natural processes, industrial applications, and environmental 
phenomena. 
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