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The current study explored the Maxwell hybrid nanofluid on mixed convective 
radiative over a stretching/ shrinking inclined plate with nanoparticles shapes effect. 
Copper and aluminum oxide were introduced to sodium alginate as a base fluid to 
formulate the problem and the effect of shape factor is examined by considering 
spherical, bricks, cylindrical and platelet nanoparticles. Using similarity transformation, 
the governing nonlinear partial differential equations of the Maxwell hybrid nanofluid 
are converted to nonlinear ordinary differential equations. Then, they are solved 
numerically using the Keller Box method and the system is solved by using Fortran 
software. The physical behavior of controlling factors on velocity and temperature 
profiles as well as skin friction and local Nusselt number are depicted graphically and 
tabulated. The various shapes of nanoparticles produce considerable differences in the 
Maxwell hybrid nanofluid’s velocity and temperature functions. For all parameters, 
nanoparticles shape with the highest Nusselt number is platelet, followed by 
cylindrical, bricks and spherical. The findings of this study will provide information and 
knowledge in mathematics for mathematicians who interested in future research on 
Maxwell hybrid nanofluid. 
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1. Introduction 
 

Nanotechnology has become an excessive field over the past few decades. According to Rivas-
Cruz et al., [1], nanotechnology is described as the study of matter at scales of 1 to 100 nanometers 
and usually composed of oxides, nanotubes, and metal. Nanotechnology creates many new 
instruments and materials for a large range of applications, for instance, biosensors, nanomedicine, 
chemical industry, tissue engineering, agriculture and, energy productions [2,3]. Numerous 
researchers are currently interested in nanotechnology because it lowers production costs, conserves 
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energy and time, enhances the properties of materials, and ultimately raises human quality of life. 
[4]. One of the key components of nanotechnology is nanofluid, which is effectively used to solve 
problems with heat transfer.  

Nanofluid was initially introduced by [5] and considered as a next generation medium of heat 
transfer and it is widely used in high technology for heating or cooling process [6]. It is an innovative 
concept in which it has offered solutions to many problems including nuclear system cooling, 
electronics cooling, solar water heating, heat exchanger, fuel cells and transportation [7-8]. Even 
though nanofluids meet the demands of engineers and scientists to obtain higher thermal 
performance, an enhanced type of fluid is still sought after today. In order to meet these demands, 
researchers have proposed that the latest class of nanofluids is recognized as hybrid nanofluid. In 
general, hybrid nanofluids are created by combining two or more different types of nanoparticles 
(metal oxides, metals, and carbon materials) into base fluids (water, ethylene glycol, a mixture of 
ethylene glycol and water) [9]. The primary goal of adopting hybrid nanofluid is to obtain a promising 
improvement in thermophysical hydrodynamic and heat transfer properties [10]. The studies on 
hybrid nanofluids by some researchers was referred on [11-14] 

Mathematical models have three categories which are differential, rate, and integral type 
models. Maxwell fluid model, a subclass rate type model is used to predict both elastic and memory 
effects simultaneously and determine the relaxation time effect [15]. Lok et al., [16] heat transfer of 
an upper convected Maxwell fluid near a stagnation-point of a permeable shrinking sheet found that 
the effects of shrinking and suction are direct and obvious as the flow near the surface is seen to suck 
through the permeable sheet and drag to the origin of the sheet. However, aligned but reverse flow 
occurs for the case of lower branch solutions. Studied the Maxwell nanofluid on a stretching sheet 
surface by Zainal et al., [17] found that Maxwell parameter in hybrid nanofluids embarks on a 
substantial increment of the heat transfer rate contrast to traditional fluids. In 
magnetohydrodynamics (MHD) flow, magnetic force is applied to a fluid that conducts electricity to 
create the currents needed to generate the opposing Lorentz force in the field. The interaction 
between the magnetic and electrical fields, affects the industrial equipment especially for MHD 
generators [18]. Currently, the research related to MHD has developed quickly by focusing on various 
problems [19-26]. Due to the fundamental differences in the energy-exchange processes for 
radiation, conduction and convection, thermal radiation impacts on the boundary layer flow of fluid 
becomes noticeable when mechanical procedures take place at high temperature [27]. Thermal 
radiation effect is applicable in fields such as biomedical fields. Waini et al., [28] investigates a hybrid 
nanofluid flow towards a stagnation region of a vertical plate with radiation effects found that heat 
transfer rate is intensified with the thermal radiation by 49.63% and the hybrid nanoparticles by 
32.37%. The studied on various problems related in thermal radiation has been done by some 
researchers in [29-31]. 

Mixed convection is a combination of forced and free convection. Forced convection and free 
convection is a mixing motion produced by an external source and difference in density, respectively 
[32]. The fluid flow characteristics and heat transfer over a stretching surface can be used in a variety 
of industries. For example, in the ultimate quality of thinning and annealing some metallic wires [33]. 
Nanoparticles shapes are crucial as they have a great effect on the nanofluid properties. To identify 
the improvement of nanofluid thermal conductivity, different shapes of nanoparticles can be used in 
different host liquids [34]. Bosli et al., [35] using five different shapes of nanoparticles including 
sphere, platelet, cylinder, lamina, and brick to study the effects of nanoparticles shape towards the 
behavior of aligned MHD natural convection Casson nanofluid passing a vertical plate with convective 
boundary condition. Research by Rawi et al., [36] examined the influence of different shapes of 
copper nanoparticles (sphere, needle and disk-shaped) and the effect of material parameter, solid 
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nanoparticles volume fraction, amplitude of modulation and frequency of oscillation on the mixed 
convection flow of second grade nanofluid past an inclined stretching sheet. 

 It can be concluded that Maxwell hybrid nanofluid plays a significant role in enhancing the 
thermal conductivity of fluids. Therefore, the study on Maxwell hybrid nanofluid on mixed convective 
radiative flow over a stretching/ shrinking inclined plate with nanoparticles shapes effect cannot be 
ignored and needs further investigation. Copper (Cu) and aluminum oxide (Al2O3) are used as 
nanoparticles within the base fluid, sodium alginate (NaAlg). Conventional boundary condition of 
constant wall temperature is applied. There are four nanoparticles’ shapes considered, which are 
spherical, bricks, cylindrical and platelet shapes. The effects of parameters such as aligned angle of 
magnetic field, interaction of magnetic field, plate inclination, Maxwell parameter, mixed convection 
parameter, stretching parameter, radiation parameter, and volume fraction of nanoparticles towards 
the velocity and temperature profiles as well as skin friction and Nusselt number are examined. 
 
2. Methodology  
 

This study considers a continuous, incompressible two-dimensional stagnation point flow of 
magnetohydrodynamic Maxwell hybrid nanofluid over a stretching/ shrinking inclined plate as shown 
in Figure 1, where x  and y  are the Cartesian coordinates such that x -axis is parallel to the inclined 

plate while y -axis is normal to the inclined plate with   as the inclination angle under the 

gravitational force g . The ambient velocity of the fluid is ( )e
u x  and the stretching/shrinking velocity 

of the inclined plate is ( )w
u x = cx , such that when 0c   and 0c  , the inclined plate are stretching 

and shrinking, respectively, while the inclined plate is static when 0c = . The temperature of the 

ambient fluid and at the wall are T  and w
T , respectively. The magnetic field that is assumed to be 

from the origin with an inclination of acute angle   is defined as ( ) 0=B x B  where ( )0 0B   is the 

magnetic field strength. In addition, the base fluid, and the suspended nanoparticles of the hybrid 
nanofluid are assumed to be in thermal equilibrium. 
 

  
(a) (b) 

Fig. 1. Physical model of (a) stretching inclined plate and (b) shrinking inclined 
plate 

 
Based on the abovementioned assumptions as well as referring to the work by Zainal et al., [17], 

Waini et al., [28] and Ilias et al., [25], the governing partial differential equations are given as: 
 

+ = 0
u v

x y

 

 
                  (1)      
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hnf
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ρ ρ
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                                                      (2) 

 

( ) ( )

2

2

1
+ =  

  
−

   

hnf r

p phnf hnf

k qT T T
u v

x y y yρC ρC
                                                                                               (3) 

 
while the boundary conditions used in this study are as follows: 
 

( )

( )

   0    on  y = 0

          as  y

w w

e

u u x v = T T

u u x T T


= =

→ → → 
                                                                  (4) 

 

where u  and v  are the velocities in  x  and y - directions, respectively,   is the electrical 

conductivity, 
hnf

μ , 
hnf

ρ , 
hnf

β , 
hnf

k , and ( )p hnf
ρC  refer to the dynamic viscosity, density, thermal 

expansion, thermal conductivity, and heat capacity for the hybrid nanofluid, respectively.  
For the thermal radiation, the Rosseland approximation is utilized to obtain the following 

radiative heat flux: 
 

44 *

3 *


= −


r

σ T
q

k y
                                                                                                                                                      (5) 

 
where *σ  is the Stefan Boltzmann whereas *k is the mean absorption coefficients. Taylor’s series 

is considered to extend to the temperature difference in the flow. By extending 4T  over 
T  with the 

higher-order terms is being neglected, we get 4 3 44 3
 

 −T T T T . So, that 

 
3 2

2

16 *

3 *

rq T T

y k y

  
= −

 
             (6) 

 

Therefore, the energy equation Eq. (3) becomes: 
 

( ) ( )

32

2

16 *1
+ =

3 *

hnf r

p phnf hnf

k T qT T T
u v

x y k yyρC ρC

    
+

  
        (7)                                                                                                                          

 
For the hybrid nanofluid, the thermophysical properties of the base fluid and hybrid nanoparticles 

are displayed in Table 1, taken from research by Zainal et al., [17] and Alwawi et al., [26]. Table 2 

demonstrates the thermophysical relation of hybrid nanofluids [14] where 1
  and 2

  are the 

nanoparticle volume fraction for copper and aluminum oxide, respectively. The subscripts of 1s , 2s , 

hnf , bf  and f  refer to copper nanoparticle, aluminum oxide nanoparticle, hybrid nanofluid, 

nanofluid and base fluid, respectively. The shape factor and its numerical shape factor with sphericity 
values for different kinds of shapes is shown in Table 3, referred from research by Liu et at., [37]. 



Journal of Advanced Research in Numerical Heat Transfer 

Volume 16, Issue 1 (2024) 1-16 

5 
 

Table 1  
Thermophysical Properties of Base Fluid and Hybrid Nanofluid 
Properties NaAlg Cu Al2O3 

( )P

J
C

kgK
 4175 385 765 

( )
W

K
mK

 0.6376 400 40 

3
( )
kg

m
  989 8933 3970 

510−  99 1.67 0.85 

Pr  6.45   

 
Table 2 
Thermophysical Relation of Hybrid Nanofluid 
Properties Hybrid Nanofluid 

Density 
1 22 1 1 2(1 )[(1 ) ]= − − + +   hnf f s sρ ρ ρ ρ  

 (8) 

Heat Capacity 
1 22 1 1 2( ) (1 )[(1 )( ) ( ) ] ( )= − − + +   p hnf p f p s p sρC ρC ρC ρC  

(9) 

Viscosity 

2.5 2.5

1 2(1 ) (1 )
=

− −

f

hnf

μ
μ

 
 

(10) 

Thermal 
Conductivity 

2 2

2 2

2

2

( 1) ( 1) ( )

( 1) ( )

+ − − − −
=

+ − + −

s bf bf shnf

bf s bf bf s

k m k m k kk

k k m k k k




 

1

1 1

s 1 1

1

( 1) ( 1) ( )

( 1) ( )

+ − − − −
=

+ − + −

f f sbf

f s f f s

k m k m k kk

k k m k k k




 

(11) 
 
 

(12) 

Thermal 
Expansion 
Coefficient 

1 22 1 1 2[(1 )((1 ) ( ) )]= − − + +hnf f s sβ β ρβ β     

1 22 1 1 2( ) [(1 )((1 )( ) ( ) )] ( )= − − + +hnf f s sρβ ρβ ρβ ρβ     

(13) 
 

(14) 

Thermal 
Diffusivity 

( )
=

hnf

hnf

p hnf

k
α

ρC
 

 
(15) 

 
Table 3 

The Nanoparticles Shape Factors ( )m  and Sphericity ( )  

Nanoparticles Shape Shape Factor ( )m  Sphericity ( )  

Spherical 3.0 1.00 
Bricks 3.7 0.81 
Cylindrical 4.8 0.62 
Platelets 5.7 0.52 

 
As per usual, to simplify the governing partial differential equation, the following similarity 

variables are introduced: 
 

( ) ( ), =  , 



=
f

f w

T Ta
η = y ψ aυ x f η θ η

υ T T

−

−
                                                                                            (16) 
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( ) ( ) ( )
1

2,=
f

u ax f η v = aυ f η−                                                                                                                   (17) 

 
Hence, by substituting the similarity variables into Eq. (2) and Eq. (7), the ordinary differential 

equations of the mathematical model obtained are 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( )( ) ( )

2 2

1 2 1 2

2

1 1 3

1 2

sin 1 cos 0

      − − − +
  

− − + =
T

f η  A A f η  A A f η f η K f η f η f η f η f η

 A M α  f η  A A λ θ η γ

−
                               (18) 

 

( ) ( ) ( )4 5

1 4
0

Pr 3

 
 + + = 

 
A A Rd η f η η                                                                                                   (19) 

 
while Eq. (4) is transformed to the following boundary conditions  
 

( ) ( ) ( )

( ) ( )

0 0 0          0 1                  at     = 0

1                                 0                as     

 = =

 → → → 

f λ          f = y

f η η y




                                                                             (20) 

 
In this formulation, the related parameters are defined as follows: 

 

( ) ( ) ( ) ( )

( ) ( )
( )

( )

( )

( )

( )

( )

( )

2.5 2.5 1 2
1 1 2 2 2 1 1 2

1 2
3 2 1 1 2 4

3 2

5 2 2

1 1 ,     1 1 ,

1 1  ,     ,

,     ,     ,     


  
 − − = − − + +    

   

  
  = − − + + =

    

−
= = = =

s s

f f

ρ fs s

ρf f hnf

hnf f wx
T x x

f x f

ρ ρ
A = A

ρ ρ

ρCρβ ρβ
A A

ρβ ρβ ρC

k g β T T xGr ax
A λ Gr Re

k Re υ

     

   

2 3

0
0

,

B 4 *
,     ,     Pr ,     ,  

*

= = =

f

f

f f f

υ

υσ T σ c
M = K = k  a Rd

ρ a α k k a


    (21) 

 

where 1 2 3 4 5,  ,  ,  ,  A A A A A  are the related relations for the hybrid nanofluid thermophysical 

properties, T
λ is the mixed convection parameter, x

Gr  is the local Grashof number, x
Re  is the local 

Reynolds number, M  is the magnetic parameter, K  is the Maxwell parameter, Pr  is Prandtl 
number, Rd  is the thermal radiation parameter and   is the stretching/shrinking parameter such 
that 0   is for stretching, 0   is for shrinking, and 0 =  is for static plate. It also should be noted 

that, in order to have a true similarity solution, the parameter x
Gr  must be a constant and not 

dependent on x , hence we assume that 3

f ax −=  so that it will become ( ) 2/w fGr ag T T υ= − . 

The quantities of physical interest in this present work are based on the definition of the skin 

friction, 
xf

C at the plate’s surface and the local Nusselt number, x
Nu : 
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2

0

 
 

 
x

hnf

f

f e y=

μ u
C =

ρ u y
 and 

( )
( )

0

0

 
− + 

 

hnf

x r y=

f f y=

xk T
Nu = q

yk T T−
                                                         (22) 

 
Substituting into Eq. (16) and Eq. (17) into Eq. (22), the reduced skin friction and Nusselt number 

can be written as 
 

( )
1

2 = 0hnf

x x

f

μ
Re Cf f

μ
 and ( ) ( )

1

2
4

0
3

−  
= − + 

  

hnf

x x

f

k
Re Nu Rd

k
                                                             (23) 

 
3. Numerical Solution  
 

The Eq. (18) and Eq. (19) and boundary conditions (20) are numerically solved by using Keller Box 
method, an efficient implicit finite-difference method, which has been discussed by Cebeci and 
Bradshaw [38]. The four steps that needed to be followed in obtaining the solution are: 

 
i. Reduce the differential equations to first-order equations. 

ii. Write the difference equations using central differences.  
iii. Linearize the algebraic equations by Newton’s method and write them in the form of matrix-

vector. 
iv. Solve the linear system by block tri-diagonal elimination technique. 

 
4. Results and Discussion 
 

The impact of the parameters will be investigated in relation to the results. The effect of 
parameters on the Maxwell hybrid nanofluid’s velocity and temperature profiles as well as skin 
friction and Nusselt number will be displayed using graphs and table. Tables will be used to illustrate 
how the parameters employed in this study affected skin friction and Nusselt number. Indicated in 
Table 4 below, the numerical values of the skin friction coefficient obtained are compared with those 
from four previous studies which are Lok et al., [16], Kimiaeifar et al., [39], Wang et al., [40] and Zainal 
et al., [17]. The comparison is made to ensure the validity and accuracy of this study. It is reported 
that the present results to be in fair agreement, which then confirms and supports the accuracy of 
the numerical results obtained.  

 
Table 4 

Results of ( )0f  for different values of λ  when T 1 2
=    0 = = =M = K λ Rd =   

λ  

Lok et al., [16] Kimiaeifar et al., [39] Wang et al., 
[40] 

Zainal et al., [17] Present Result 

( )0f  ( )0f  ( )0f  ( )0f  ( )0f  

-0.25 1.402240 1.402241 1.402240 1.402241 1.402241 
-0.50 1.495670 1.495671 1.495670 1.495670 1.495670 
-0.75 1.489300 1.489335 1.489300 1.489299 1.489299 
-1.00 1.328820 1.328809 1.328820 1.328820 1.328820 
-1.15 1.082230 - 1.082230 1.082245 1.082245 
-1.20 0.932470 - - 0.932508 0.932508 
-1.12465 0.584300 - - 0.586974 0.586974 
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The effect of parameters on the Maxwell hybrid nanofluid’s velocity and temperature profiles as 
well as skin friction and Nusselt number will be displayed in the corresponding figures and tables.  
For the Maxwell hybrid nanofluid, the Prandtl number taken is 6.45 and fit the non-dimensional 

values as follows for the numerical computation o

T
45 , = 1, 45 , = 0.1, 0.1, 0.2,= = =α M γ = K λ λ  

1
1,  0.05  =Rd =   and 

2
0.05= unless stated otherwise. Figure 2 to figure 9 demonstrate how the 

velocity and temperature profiles change with the varied values of 
T 1

, , , , , , ,   α M γ K λ λ Rd   and 
2

  

whereas the numerical value of skin friction coefficient and Nusselt number are shown in Table 5. 
From Figure 2(a), it is observed that the increment in α  causes the velocity profiles to increase 

and the thickness of the momentum boundary layer to decrease. The increase of the aligned angle 
makes the magnetic field becomes stronger thus pushes the Maxwell hybrid nanofluid towards the 

plate. When 0=α , it indicates that there is no magnetic field but when 90=α , the aligned 

magnetic field behaves like a transverse magnetic field and due to changes in the position of the 
aligned magnetic field, it attracts the nanoparticles. From Figure 2(b) it is depicted that an increase 
in α  lead to the decrement in temperature profiles. Besides, thermal boundary layer thickness also 
decreases. The heat transfer is enhanced by an increase in α . As displayed in Table 5, the skin friction 
and Nusselt number increases as α  increases.   

 
 

 

  

 

(a)  (b)  

Fig. 2. Effects of α on (a) velocity and (b) temperature profiles of maxwell hybrid nanofluid 

 
It can be noticed from Figure 3(a), when M  increases, the velocity profiles increase while the 

momentum boundary layer thickness decreases. When the strength of the magnetic field increases, 
the fluid is pushed towards the plate thus the momentum boundary layer is reduced. The increasing 
in M  leads to the increase in Lorentz force, in which it operates in such a way that causes the flow 
to accelerate thus producing more resistance to the transport phenomena. The effect of parameter
M on the temperature profiles is demonstrated in Figure 3(b). When M rises, the temperature 
profiles across the plate decrease, along with the thermal boundary layer thickness. According to 
Table 5, the value for the skin friction and Nusselt number rises as M increases. 

 

𝜂 

𝑓
′ (
𝜂
) 

0 ,45 , 70 , 90=α  

𝜂 

𝜃
(𝜂
) 

0 ,45 , 70 , 90=α  
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(a)  (b)  

Fig. 3. Effects of M on (a) velocity and (b) temperature profiles of maxwell hybrid nanofluid 

 
In Figure 4(a), the increase in γ causes the velocity profiles to decrease and the momentum 

boundary layer thickness to rise. The plate is in a vertical and horizontal position when 0=γ and

90=γ , respectively. Meanwhile the plate is in a slanted position when 45=γ and 60=γ . The 

decrement in the velocity profile is because the drag is experienced along the surface of the plate 
thus make it harder for the fluid to flow. This is due to the reduction in the buoyancy effect by a factor

cos γ and largely owing to the gravitational effects. The gravitational effect is minimal for 90=γ  and 

maximal for 0=γ . It can be observed that from Figure 4(b), an increase in γ  increases the 

temperature profiles and the thermal boundary layer. This is because a stronger force is required by 
the fluid to flow better thus affects the temperature. Table 5 demonstrates that both skin friction 
and Nusselt number decrease, as γ increases.  

 
 

 

  

 

  (a)      (b) 

Fig. 4. Effects of γ on (a) velocity and (b) temperature profiles of maxwell hybrid nanofluid 

 
The growing values of K make the velocity profiles in Figure 5(a) to increase thus reduce the 

momentum boundary layer thickness. The explanation of this behavior is the momentum equation 
tends to the momentum equation of Newtonian’s fluid. Therefore, the velocity for nanofluid 
increases as the effective viscous drag forces decrease with the increase in K . In Figure 5(b), it is 
observed that there is a decreasing trend in the temperature profiles with the increasing value of K

. The thermal boundary layer thickness also declines. This is due to the fluid reduction yield stress in 

= 0, 1, 2 M  

𝜂 

𝑓
′ (
𝜂
) 

𝜂 

𝜃
(𝜂
) 

= 0, 1, 2 M  

𝜂 

𝑓
′ (
𝜂
) 

𝜂 

𝜃
(𝜂
) 

0 , 45 , 60 , 90=γ  

0 , 45 , 60 , 90=γ  
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the boundary layer as the K rises. Both skin friction and Nusselt number increase as parameter value 
of K  increases as displayed in Table 5. 

 
 

 

  

 

(a)  (b)  

Fig. 5. Effects of K on (a) velocity and (b) temperature profiles of maxwell hybrid nanofluid 

 

As seen in Figure 6(a), the velocity profiles increase with increasing T
λ values while the 

momentum boundary layer decreases. This happens due to the larger values of buoyancy force. If 
the value of the mixed convection parameter is magnified, therefore the buoyancy will increase. 
Hence, the flow velocity increases as the buoyancy grow. On the other hand, it can be seen from 

Figure 6(b), when there is an increase in T
λ , the temperature profiles and the thermal boundary layer 

will shrink. This is due to the increasing in the convection cooling effect as T
λ increase thus the 

temperature is reduced. The skin friction coefficient and Nusselt number rise as T
λ rises, as seen in 

Table 5. 
 

 

 

 

 

(a) (b) 

Fig. 6. Effects of T
λ  on (a) velocity and (b) temperature profiles of maxwell hybrid nanofluid 

 

From Figure 7(a), it can be observed that as λ increase, the velocity profiles also increases thus 

reduces the momentum boundary layer thickness. When λ  > 0 denoted as stretching, λ  = 0 as static 

and λ < 0 is shrinking. In terms of physics, negative sign implies that the surface exerts the fluid with 
a dragging force, meanwhile positive sign implies the opposite. This explains that the velocity of fluid 
in a stretching surfaces is larger than in the shrinking surfaces. Based on Figure 7(b), temperature 
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profiles decreases along with the thermal boundary layer thickness. Table 5 depicts that skin friction 

declines whereas Nusselt number rises as λ increases. 
 

 

 

  

 

(a)  (b)  

Fig. 7. Effects of λ on (a) velocity and (b) temperature profiles of maxwell hybrid nanofluid 

 

Radiation, Rd  parameter gives no effects to the velocity profiles. Meanwhile Figure 8 exhibits the 

effect of the Rd on the temperature profiles. It shows that the temperature of fluid enhances with 

the increase in the parameter value of Rd . The reason behind this behavior is that Rossland, which 

means absorption coefficient is increases when Rd rises. This led to an expansion of tremendous heat 

quantity to improve the values of Rd . Besides, based on Table 5, Nusselt number increases and skin 

friction coefficient remain the same whereas despite the increase value of Rd . 
 

  

 

(a) 

Fig. 8. Effect of Rd on (a) temperature 
profiles of maxwell hybrid nanofluid 

 

In Figure 9(a), the velocity profile decreases due to the growth of 1
 and 2

 , meanwhile the 

thickness of the momentum boundary layer increases. This coincides with the increase in viscosity, 

which causes the velocity to decrease. The temperature profiles in Figure 9(b) increase when 1
 and

2
  increase. This is due to the increases in the rate of heat transportation and more energy is 

physically disperse when the nanoparticles volume fraction is increased, thus raises the temperature 
consequently. Additionally, the thermal boundary layer thickness is also enhanced by the influence 
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of the increment in 1
 and 2

 . As illustrated in Table 5, the magnitude of skin friction and Nusselt 

number rise with the increase in 1
 and 2

 . 

 
 

 

  

 

(a)  (b)  

Fig. 9. Effects of 1
 and 2

 on (a) velocity and (b) temperature profiles of maxwell hybrid nanofluid 

 
Table 5 
Variation of Skin Friction Coefficient and Nusselt number at different dimensionless parameters 

  M  γ  K  Tλ  λ  Rd  1  2  Skin friction Nusselt number 

o0  

1  o45  0.1  0.1  0.2  1  0.05  0.05  

1.558668 2.479022 
o45  1.690212 2.506383 
o60  1.752373 2.518720 
o90  1.812447 2.530301 

o45  

0  
o45  0.1  0.1  0.2  1  0.05  0.05  

1.558668 2.479022 

1  1.690212 2.506383 

2  1.812447 2.530301 

o45  1  

o0  

0.1  0.1  0.2  1  0.05  0.05  

1.702994 2.509194 
o45  1.690212 2.506383 
o60  1.681216 2.504392 
o90  1.659644 2.499571 

o45  1  o45  

0  

0.1  0.2  1  0.05  0.05  
1.640519 2.486473 

0.1  1.690212 2.506383 
0.2  1.746448 2.528158 

o45  1  o45  0.1  
0  

0.2  1  0.05  0.05  
1.659644 2.499571 

0.1  1.690212 2.506383 
0.5  1.816552 2.533227 

o45  1  o45  0.1  0.1  
-0.2  

1  0.05  0.05  
2.242844 2.006022 

0  1.991202 2.264244 
0.2  1.690212 2.506383 

o45  1  o45  0.1  0.1  0.2  
0  

0.05  0.05  
1.690212 1.669303 

1  1.690212 2.506383 
1.5  1.690212 2.854626 

o45  1  o45  0.1  0.1  0.2  1  

0  0  1.255784 2.280644 

0  0.1  1.823166 2.472139 

0.05  0.05  1.580559 2.506383 

0.1  0  1.690212 2.533128 
0.1  0.1  2.170873 2.744409 

 

𝜂 
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5. Conclusions 
 

This study investigated the Maxwell hybrid nanofluid on mixed convective radiative flow over a 
stretching/ shrinking inclined plate. Similarity transformation is used to transform the nonlinear PDE 
to a dimensionless ODE and numerically solved by using Keller Box method using a Fortran software. 
The following are the findings in this study: 

 

i. The velocity increases due to the increasing of T
, , ,  and  α M K λ λ  

ii. The temperature profiles decrease to the increasing of  T
, , ,  and  α M K λ λ  

iii. An increase 1 2
,  and γ     in exhibit a decrement in velocity profile but a rise in the 

temperature profiles. 
iv. When the value of Rd increase, it gives no effect to the velocity profiles but increase the 

temperature profiles. 

v. The skin friction and Nusselt number increase due to the increase in of T 1 2
, , , , and  α M K λ   

except for ,   and γ λ Rd . 

vi. The nanoparticles shape with the highest Nusselt number is platelet followed by cylindrical, 
bricks and spherical shapes. 
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