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Body acceleration and slip velocity effects towards the dispersion of solute in Casson 
blood flow through a stenosed artery is investigated mathematically. Momentum and 
constitutive equations are solved analytically to obtain the blood velocity. Convective-
diffusion equation is solved using Generalized Dispersion Model to obtain dispersion 
function and mean concentration of solute. A study has been conducted on how body 
acceleration and slip velocity disturb the dispersion of a solute in blood flow. With the 
increase of slip velocity and body acceleration, blood velocity increases. The impact of 
body acceleration on blood flow is to increase flow rate while lowering resistance to 
flow. Casson fluid is a suitable fluid model to examine the blood velocity and drug 
transport to the targeted problematic region through a narrow artery for the 
treatment of arterial diseases. The findings of the present study can be beneficial for 
pharmaceutical research to design better drug by referring mathematical analysis data 
that produced in this study. 
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1. Introduction 

 
Stenosis of an artery is the narrowing of the area of blood supply in the artery by forming 

arteriosclerosis plaques due to fat deposits, cholesterol, and so on the inner wall of the artery.  
Healthy eating, exercise, cigarette smoke reduction, and alcohol intake management may all help to 
prevent CAD and CVD. It may also be used to address risk factors including high blood pressure, high 
cholesterol, and diabetes stated by Thomas et al., [1]. The slip velocity is the difference between the 
velocity of the air transmitted and that of the conveyed particles. The slip velocity can be used to 
calculate the blood velocity pipe geometry at the wall of the artery when a slightly higher blood 
velocity is chosen for the practical transfer of blood and solvent across an artery at a given rate. 
Nagarani and Sarojamma [2] stated that the study of blood flow in arteries with body acceleration is 
important in the diagnosis and treatment of diseases. In narrow arteries with a single mild axi-
symmetric stenosis under body acceleration. The shear augmented dispersion of solute in blood flow 
through circular pipe and channel between two parallel flat plates with the effect of chemical 
reaction is investigated by Jaafar et al., [3], treating the blood as non-Newtonian of Casson fluid 
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model. Das et al., [4] using Casson model to describe the dispersion of a solute in the flow of blood 
through a restricted artery with an absorptive wall, which is relevant to arterial pharmacokinetics. 
Rana and Murthy et al., [5] studied the transport of a solute in an unsteady blood flow in small 
arteries with and without absorption at the wall using Casson fluid model was suitable for blood flow 
in small vessels. The unsteady blood flow in the artery is observed from the systemic functioning of 
the heart and body acceleration to a pulsatile pressure gradient that rises. Lee [6] studied numerically 
the effects of steady flow through double similar symmetrical bell-shaped equivalent constrictions 
with percentage of restrictions of 33.3, 50 and 66.67 percent in tube for the Reynolds number in the 
range of 5-400, where the dimensionless restriction spacing is set as 1.0. Mandal et al., [7] 
investigated the impact of various bell-shaped stenosis structures on blood flow characteristics via 
the stenosis artery by considering various shapes at the inlet and outlet of the stenosis configuration. 
Debnath et al., [8] examined the effect of heterogeneous chemical reaction on the transport of a 
solute in a Casson fluid flow through an annular pipe under a periodic pressure gradient.  

The research aims to study the dispersion of solute in Casson fluid with the effect of slip velocity 
and body acceleration through a bell-shaped stenosed artery. Objectives of this research are to 
formulate the mathematical model of Casson fluid model in a circular straight pipe and to solve 
momentum and continuity equation to obtain velocity of Casson fluid model. Unsteady convective-
diffusion is solved to obtain the steady dispersion function using Generalized Dispersion Model 
(GDM). 
 
2. Mathematical Formulation 

 
The governing equations of equation motion, namely the momentum, constitutive and 

convective-diffusion equations are discussed. 
 

2.1 Governing Equations 
 
The momentum equation with body acceleration for steady flow is defined as Sankar and Lee [9] 
 

1

�̄�

𝑑

𝑑�̄�
(�̄��̄�) = �̄�(�̄�) −

𝑑�̄�

𝑑�̄�
,             (1) 

 
where �̄� is the shear stress, �̄� is the pressure, �̄�is the axial coordinate for a circular pipe, �̄� is the radial 
coordinate and 
 
�̄�(�̄�) = 𝑎0 𝑐𝑜𝑠( 𝜛𝑏 �̄� + 𝜙1)            (2) 
 
is the acceleration of the body,𝑎0 denotes the constant parameters of the pressure gradient, 𝜛𝑏 =

2𝜋𝑓𝑏 is the circular frequency, 𝑓𝑏 is the dispersion coefficient and �̄� is the time and 𝜙1 is the lead 
angle of �̄�(�̄�) which relates to the heartbeat movement. The circular frequency is expected to be 
smallest, thus ignore the wave effect stated by Chaturani and Palanisamy [10]. The boundary 
condition of momentum equation Eq. Error! Reference source not found. is given as follows: 
 
�̄� = finite at �̄� = 0             (3) 
 
The constitutive equation of Casson fluid is given by 
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−
𝑑�̄�

𝑑�̄�
= {

1

𝜇
(√�̄� − √�̄�𝑦)2

0

if
if

�̄� > �̄�𝑦,

�̄� ≤ �̄�𝑦,
           (4) 

 
where �̄� is the velocity of Casson fluid,𝜇 is viscosity coefficient of Casson fluid model and �̄�𝑦 is yield 

stress. For the unknown velocity �̄�, with slip condition at the wall of the circular pipe and thus the 
slip boundary condition given by Sankar et al., [11] is as follows 
 
�̄� = �̄�𝑠 at �̄� = �̄�(�̄�),             (5) 
 
where 
 

�̄�(�̄�) = �̄�0 (1 −
�̄�

�̄�0
𝑒𝑥𝑝 (−

�̄�2�̄�2�̄�2

�̄�2
0

)),           (7) 

 
where boundary conditions of convective diffusion at the circular pipe center, �̄� = 0 is 
 
𝜕�̄�

𝜕�̄�
(0, �̄�, �̄�) = 0              (8) 

 
and at the wall, 
 

�̄� = �̄�(�̄�) is 
𝜕�̄�

𝜕�̄�
(�̄�(�̄�), �̄�, �̄�) = 0           (9) 

 
2.2 Non-Dimensional Variables 

 
The following is the non-dimensional variables 

 

𝐶 =
�̄�

�̄�0

, 𝑢 =
�̄�

𝑢0
, 𝑢𝑠 =

�̄�𝑠

�̄�0
, 𝑢𝑚 =

�̄�𝑚

�̄�0
, 𝑟 =

�̄�

�̄�0

, 𝑟𝑝 =
�̄�𝑝

�̄�0

, 𝑃 =
−𝑑�̄�

𝑑�̄�
, 𝑧 =

�̄�𝑚�̄�

𝑅0
2�̄�0

, 

𝑧𝑠 =
�̄�𝑚�̄�𝑠

�̄�2�̄�0
, 𝑡 =

�̄�𝑚�̄�

�̄�2
, 𝜏 =

�̄�

2
(�̄�(�̄�) −

𝑑�̄�

𝑑�̄�
) , 𝜏𝑦 =

�̄�𝑝

2
(�̄�(�̄�) −

𝑑�̄�

𝑑�̄�
) , 

𝑅(𝑧) =
�̄�(𝑧)

𝑅0
, 𝜔𝑏 =

𝜛𝑏

𝜔
, 𝑡 = 𝜔�̄�, 𝐴𝑟 =

𝑎0

𝐴0
, 𝐹(𝑡) =

�̄�(�̄�)

𝐴𝑟
,                  (10) 

 
where �̄�0 is the fluid characteristic velocity, 𝐶, 𝑢, 𝑢𝑠, 𝑢𝑚, 𝑟, 𝑟𝑝, 𝑃, 𝑧, 𝑧𝑠, 𝑡, 𝜏, 𝑅(𝑧), 𝜔𝑏 , 𝐴𝑟 , 𝐹(𝑡) and 𝜏𝑦 

are the solute concentration, velocity, slip velocity, plug core radius, axial distance, solute length, 
time, shear stress, and yield stress in non-dimensional forms, respectively. 
 
2.3 Method of Solution 

 
Generalized Dispersion Model (GDM) is a derivative series expansion the approach of Gill and 

Sankarasubramanian [12] which is given by GDM for 𝐶𝑚(𝑧1, 𝑡) as 
 

𝜕𝐶𝑚

𝜕𝑡
(𝑧1, 𝑡) = ∑ 𝐾𝑖(𝑡)

𝜕𝑖𝐶𝑚

𝜕𝑧1
𝑖

∞
𝑖=1 (𝑧1, 𝑡).                                  (1) 

 
The velocity expression in the outer non-plug core region is indicated as 
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�̄�(𝑟) = �̄�𝑠 +
1

4𝜇
(�̄�(�̄�) −

𝑑�̄�

𝑑�̄�
) 

[�̄�2(�̄�) − �̄�2 + 2(�̄�(�̄�) − �̄�)�̄�𝑝 −
8

3
√�̄�𝑝(�̄�3/2(�̄�) − �̄�3/2)],                  (2) 

 
where 𝑑�̄�/𝑑�̄� is the axial pressure gradient. Evaluating �̄� = �̄�𝑝 in the Eq. (2) the velocity of fluid in the 

plug flow region is obtained as follows 
 

�̄�(�̄�𝑝) = �̄�𝑠 +
1

4𝜇
(�̄�(�̄�) −

𝑑�̄�

𝑑�̄�
) 

 

[�̄�2(�̄�) − �̄�𝑝
2 + 2(�̄�(�̄�) − �̄�𝑝)�̄�𝑝 −

8

3
√�̄�𝑝(�̄�3/2(�̄�) − �̄�𝑝

3/2)].                  (3) 

 
GDM is applied in convective-diffusion equation to obtain dispersion function longitudinal diffusion 
coefficient and mean concentration. The mean velocity is given by  
 

�̄�𝑚 = ∫ ∫
�̄��̄�𝑑�̄�𝑑�̄�

�̄�𝑑�̄�𝑑�̄�

�̄�(𝑧)

0

2𝜋

0
.                      (4) 

 
The dispersion function𝑓1(𝑟, 𝑡) plays an important role in calculating the deviation of the mean 

concentration𝐶𝑚(𝑧1, 𝑡). The whole process of dispersion is  
 
𝑓1(𝑟, 𝑡) = 𝑓1𝑠(𝑟) + 𝑓1𝑡(𝑟, 𝑡),                       (5) 
 
where 𝑓1𝑠(𝑟) is the dispersion function in the steady state and 𝑓1𝑡(𝑟, 𝑡) is the dispersion function in 
the unsteady state that describes the time  dependent nature of the dispersion of the solute. In this 
study, the solution of steady dispersion function is crucial to observe the solute dispersion behaviour. 
The dispersion of solute which is low at the center and high when closes to the wall give improved 
consequences in the medicine since the solute can disperse to the artery wall quicker and efficiently. 
Therefore, the steady dispersion function 𝑓1𝑠(𝑟) is given as follows 
 

𝑓1𝑠(𝑟) = 𝑓1𝑠+(𝑟) = −
1

12
𝑟𝑝

3 +
1

12
𝐵𝐹(𝑡)𝑟𝑝

3 −
1

672

𝑟𝑝
6

𝑅2(𝑧)
+

1

672

𝑟𝑝
6

𝑅3(𝑧)
+

1

48

𝑟𝑝
4

𝑅(𝑧)
 

−
𝐵𝐹(𝑡)𝑟𝑝

4

48𝑅(𝑧)
+

2

21
𝑟𝑝

5/2𝑅1/2(𝑧) −
2

21
𝐵𝐹(𝑡)𝑟𝑝

5/2𝑅1/2(𝑧) −
1

32
𝑟𝑝

2𝑅(𝑧) 

+
1

32
𝐵𝐹(𝑡)𝑟𝑝

2𝑅(𝑧) + 𝐶𝐼,if𝑟𝑝 ≤ 𝑟 ≤ 1,                    (6) 

 
𝑓1𝑠(𝑟) = 𝑓1𝑠−(𝑟) 

= −
1

12
𝑟2𝑟𝑝 −

1

672

𝑟2𝑟𝑝
4

𝑅3(𝑧)
+

1

64

𝑟4

𝑅(𝑧)
−

1

32
𝑟2𝑅(𝑧) −

8

147

𝑟7/2𝑟𝑝
1/2

𝑅(𝑧)
+

4

21
𝑟𝑝

1/2𝑅1/2(𝑧) 𝑙𝑜𝑔( 𝑟𝑝) 

−
1

16
𝑅(𝑧) 𝑙𝑜𝑔( 𝑟𝑝) −

𝑟𝑝
4 𝑙𝑜𝑔( 𝑟𝑝)

336𝑅3(𝑧)
+

𝑙𝑜𝑔( 𝑟𝑝)

16𝑅(𝑧)
−

4𝑟𝑝
1/2 𝑙𝑜𝑔( 𝑟𝑝)

21𝑅(𝑧)
+

1

16
𝑅(𝑧) 𝑙𝑜𝑔( 𝑟) − 

𝑟𝑝 𝑙𝑜𝑔( 𝑟)

6𝑅(𝑧)
−

1

6
𝑟𝑝 𝑙𝑜𝑔( 𝑟𝑝) −

𝑙𝑜𝑔( 𝑟)

16𝑅(𝑧)
+

𝑟𝑝 𝑙𝑜𝑔( 𝑟𝑝)

6𝑅(𝑧)
+

4𝑟𝑝
1/2 𝑙𝑜𝑔( 𝑟)

21𝑅(𝑧)
+

𝑟𝑝
4 𝑙𝑜𝑔( 𝑟)

336𝑅3(𝑧)
+ 

1

6
𝑟𝑝 𝑙𝑜𝑔( 𝑟) +

2

21
𝑟2𝑟𝑝

1/2𝑅1/2(𝑧) +
1

18

𝑟3𝑟𝑝

𝑅(𝑧)
+

115𝑟𝑝
4

28224𝑅(𝑧)
−

4

21
𝑟𝑝

1/2𝑅1/2(𝑧) 𝑙𝑜𝑔( 𝑟) + 
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𝐵𝐹(𝑡) (
1

12
𝑟2𝑟𝑝 +

1

672

𝑟2𝑟𝑝
4

𝑅3(𝑧)
−

1

64
𝑟4 +

8

147

𝑟7/2𝑟𝑝
1/2

𝑅(𝑧)
−

1

18

𝑟3𝑟𝑝

𝑅(𝑧)
−

115𝑟𝑝
4

28224𝑅(𝑧)
 

−
2

21
𝑟2𝑟𝑝

1/2𝑅1/2(𝑧) +
1

32
𝑟2𝑅(𝑧)

1

6
𝑟𝑝 𝑙𝑜𝑔( 𝑟) −

𝑟𝑝
4 𝑙𝑜𝑔(𝑟)

336𝑅3(𝑧)
+

𝑙𝑜𝑔(𝑟)

16𝑅(𝑧)
−  

4𝑟𝑝
1/2 𝑙𝑜𝑔( 𝑟)

21𝑅(𝑧)
+

𝑟𝑝 𝑙𝑜𝑔( 𝑟)

6𝑅(𝑧)
+

4

21
𝑟𝑝

1/2𝑅1/2(𝑧) 𝑙𝑜𝑔( 𝑟) −
1

16
𝑅(𝑧) 𝑙𝑜𝑔( 𝑟) +

1

6
𝑟𝑝 𝑙𝑜𝑔( 𝑟𝑝) + 

𝑟𝑝
4 𝑙𝑜𝑔( 𝑟𝑝)

336𝑅3(𝑧)
−

𝑙𝑜𝑔( 𝑟𝑝)

16𝑅(𝑧)
+

4𝑟𝑝
1/2 𝑙𝑜𝑔( 𝑟𝑝)

21𝑅(𝑧)
−

𝑟𝑝 𝑙𝑜𝑔( 𝑟𝑝)

6𝑅(𝑧)
−

4

21
𝑟𝑝

1/2𝑅1/2(𝑧) 𝑙𝑜𝑔( 𝑟𝑝) + 

1

16
𝑅(𝑧) 𝑙𝑜𝑔( 𝑟𝑝)) + 𝐶𝐼,if0 ≤ 𝑟 ≤ 𝑟𝑝,                     (7) 

 
where CI is as follows:  
 

𝐶𝐼 = 𝐵𝐹(𝑡) {−
1

12
𝑟𝑝 +

𝑟𝑝
6

672𝑅5(𝑧)
−

𝑟𝑝
2

32𝑅3(𝑧)
+

2𝑟𝑝
5/2

21𝑅3(𝑧)
−

𝑟𝑝
3

12𝑅3(𝑧)
−

𝑟𝑝
4

672𝑅3(𝑧)
− 

𝑟𝑝
6

770𝑅3(𝑧)
+

𝑟𝑝
3

12𝑅2(𝑧)
−

2𝑟𝑝
5/2

21𝑅3/2(𝑧)
+

1

32𝑅(𝑧)
−

2𝑟𝑝
1/2

21𝑅(𝑧)
+

𝑟𝑝

12𝑅(𝑧)
+

𝑟𝑝
2

32𝑅(𝑧)
+ 

47𝑟𝑝
4

14112𝑅(𝑧)
+

2

21
𝑟𝑝

1/2𝑅1/2(𝑧) −
𝑅(𝑧)

32
−

7

360
𝑟𝑝𝑅2(𝑧) +

15

539
𝑟𝑝

1/2𝑅5/2(𝑧) −
1

96
𝑅3(𝑧) 

−
1

6
𝑟𝑝 𝑙𝑜𝑔( 𝑟𝑝) −

𝑟𝑝
4 𝑙𝑜𝑔( 𝑟𝑝)

336𝑅3(𝑧)
+

𝑙𝑜𝑔( 𝑟𝑝)

16𝑅(𝑧)
−

4𝑟𝑝
1/2 𝑙𝑜𝑔( 𝑟𝑝)

21𝑅(𝑧)
+

𝑟𝑝 𝑙𝑜𝑔( 𝑟𝑝)

6𝑅(𝑧)
+

4

21
𝑟𝑝

1/2𝑅1/2(𝑧) 

𝑙𝑜𝑔( 𝑟𝑝) −
1

16
𝑅(𝑧) 𝑙𝑜𝑔( 𝑟𝑝) +

1

6
𝑟𝑝 𝑙𝑜𝑔[𝑅(𝑧)] +

𝑟𝑝
4 𝑙𝑜𝑔[𝑅(𝑧)]

336𝑅3(𝑧)
−

𝑙𝑜𝑔[𝑅(𝑧)]

16𝑅(𝑧)
+

4𝑟𝑝
1/2 𝑙𝑜𝑔[𝑅(𝑧)]

21𝑅(𝑧)
 

−
𝑟𝑝 𝑙𝑜𝑔[𝑅(𝑧)]

6𝑅(𝑧)
−

4

21
𝑟𝑝

1/2𝑅1/2(𝑧) 𝑙𝑜𝑔[𝑅(𝑧)] +
1

16
𝑅(𝑧) 𝑙𝑜𝑔[𝑅(𝑧)]}.                 (8) 

 
3. Results and Discussions  
3.1 Velocity and Mean Velocity of the Blood Flow 

 
The effect of stenosis, slip velocity, and body acceleration on velocity is graphically computed in 

this section. The results of velocity and mean velocity are obtained and discussed by fixing various 
parameters in the flow analytic expression after solving the momentum equation and defining the 
yield stress.  

Figure 1 shows variation of velocity, 𝑢 for different values of yield stress,𝜏𝑦 in the blood flow with 

𝐴0 = 2, 𝜔 = 1, 𝑡 = 1, 𝜙1 = 0, 𝑃 = 2, 𝑎 = 1, 𝑏 = 2.3, 𝑧 = 3and𝐵 = 2.5. The existence of a stenosis 
inhibits blood flow in the narrow artery, resulting in yield stress changes. The increment of yield stress 
0.1 to 0.5, the velocity decreases. As yield stress rises, the amplitude of velocity falls, allowing the 
plug flow to emerge. Yield stress is significant in viscoelasticity modification because it works as a 
path for human blood to circulate. 

Figure 2 shows variation of velocity, 𝑢 for different values body acceleration,𝐴0 with𝜔 = 1, 𝑡 =
1, 𝜙1 = 0, 𝜏𝑦 = 0.1, 𝑃 = 2, 𝑎 = 1, 𝑏 = 2.3, 𝑧 = 3and𝐵 = 2.5. The velocity increases when the body 

acceleration increases as the cross-sectional area narrows. The impact of body acceleration on blood 
flow is to increase flow rate while lowering artery resistance to flow. The body's acceleration has an 
effect on the average velocity and flow rate, lowering the body's acceleration. The body acceleration 
parameter has been discovered to play a significant role in blood flow, causing not only quantitative 
but also qualitative alterations in velocity profiles. 
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From Figure 3 illustrates variation of velocity, 𝑢 for different values of slip velocity,𝑢𝑠  with 𝐴0 =
0, 𝜔 = 1, 𝑡 = 1, 𝜙1 = 0, 𝜏𝑦 = 0.1, 𝑃 = 2, 𝑎 = 1, 𝑏 = 2.3, 𝑧 = 3and𝐵 = 2.5. When slip velocity 

increases, axial velocity increases as well. Increasing of slip velocity lead to decreasing in flow 
resistance. Slip velocity plays a crucial role in blood flow modelling in a stenosed artery, according to 
Casson model. It's also possible to deduce that with slip, vessel wall damage could be reduced. 

 

 
Fig. 1. Variation of velocity, 𝑢 for different for values of yield stress, 𝜏𝑦 in 

the blood flow with body acceleration, 𝐴0 = 2, 𝜔 = 1, 𝜙1 = 0, 𝑡 = 1, 𝑃 =
2, 𝑎 = 1, 𝑏 = 2.3, 𝑧 = 3 and 𝐵 = 2.5 

 

 
Fig. 2. Variation of velocity, 𝑢 for different values of body acceleration, 
𝐴0 in the blood flow with 𝜔 = 1, 𝑡 = 1, 𝜙1 = 0, 𝜏𝑦 = 0.1, 𝑃 = 2, 𝑎 =

1, 𝑏 = 2.3, 𝑧 = 5 and 𝐵 = 2.5. 
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Fig. 3. Variation of velocity, 𝑢 for different values of slip velocity, 𝑢𝑠 
in the blood flow with 𝐴0 = 0, 𝜔 = 1, 𝑡 = 1, 𝜙1 = 0, 𝜏𝑦 = 0.1, 𝑃 =

2, 𝑎 = 1, 𝑏 = 2.3, 𝑧 = 3 and 𝐵 = 2.5. 

 
3.2 Steady Dispersion Function 
 

The purpose of analysing the steady dispersion function in this study is to observe the changes of 
the steady dispersion function when the input of yield stress and body acceleration increases. 

Figure 4 shows the variation of steady dispersion function, 𝑓1𝑠 for different values of yield stress, 
𝜏𝑦 in the blood flow with 𝐴0 = 0.5, 𝜔 = 1, 𝑡 = 2.8, 𝜙1 = 0.02, 𝑃 = 1, 𝑎 = 0.01, 𝑏 = 0and 𝑧 = 0.05. 

When yield stress increases, the steady dispersion function decreases near the wall and opposite 
behaviour at the center of artery. Casson fluids are non-Newtonian fluids with a yield stress, making 
them ideal for narrow arteries. It is due to the flow rate of Casson fluids decreases as the viscosity of 
the fluid increases, and the value of the dispersion function decreases.  

Figure 5 shows variation of steady dispersion function, 𝑓1𝑠 for different values of body 
acceleration, 𝐴0 in the blood flow with 𝜔 = 1, 𝑡 = 2.8, 𝜙1 = 0.01, 𝑃 = 1, 𝜏𝑦 = 0.01, 𝑎 = 0.01, 𝑏 =

0and𝑧 = 0.05. The dispersion function increases as the amplitude of body acceleration increases at 
the center of artery and decreases in the outer region near the wall. As the amplitude of body 
acceleration increases, the blood flow drops, causing the dispersion function to decrease and the 
solute dispersion to be impacted by the fluctuating blood flow. With the increase of body 
acceleration, the amplitude increases, lowering the value of relative axial diffusivity in the blood flow.  
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Fig. 4. Variation of steady dispersion dispersion function, 𝑓1𝑠 for 
different values of yield stress, 𝜏𝑦in the blood flow with𝜔 = 1, 

with 𝐴0 = 0.5, 𝑡 = 2.8, 𝜙1 = 0.02, 𝑃 = 1, 𝑎 = 0.01, 𝑏 =
0 and 𝑧 = 0.05. 
 

 
Fig. 5. Variation of steady dispersion function, 𝑓1𝑠 for different values 
of body acceleration,𝐴0 in the blood flow with 𝜔 = 1, 𝑡 = 2.8, 𝜙1 =
0.01, 𝜏𝑦 = 0.01, 𝑎 = 0.01, 𝑏 = 0, 𝑧 = 0.05 and 𝑃 = 1 

 
4. Conclusions 
 

With the increase of body acceleration, the velocity increases as the cross-sectional area narrows. 
The impact of body acceleration on blood flow is to increase flow rate while lowering artery 
resistance to flow. The dispersion function increases, body acceleration increases at the center of 
artery and decreases in the outer region near the wall. The unsteady dispersion function grows as 
body acceleration rises. The value of the unstable dispersion function decreases when the radius 
enhances. It is noticed that the dispersion function increases with body acceleration increase and it 
approaches zero when the value of body acceleration keep increasing. As the height of the stenosis 
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increases the velocity of the stenosis reduces then the artery becomes extremely narrow, then it is 
the reason the velocity decreases. Limitation in this research is the dispersion of solute in blood flow 
is solely investigated theoretically, not empirically. Another limitation of the study is no adequate 
experimental data is available and the results of solute dispersion cannot be compared to genuine 
data from earlier literature experiments. It is hoped that this study would help researchers to have 
better understanding about the behaviour of blood flow and dispersion of solute in blood flow, as 
well as provide insight into the issue of cardiovascular disease. The current findings are helpful in 
addressing the issue of dispersion in the cardiovascular system. This study helps doctors diagnose 
and treat cardiovascular disorders by observing blood flow characteristics. In future, to research can 
be extended to two Casson fluid model. It should also be noticed that the two-fluid blood flow 
model's velocity and flow rate are significantly higher than the single-fluid blood flow model's. Future 
to research also can be conducted on the experimental side on the real situation if the dispersion and 
diffusion of blood flow in arteries are known. 
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