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Motivated by the concept of blood flow in a stenosed artery, this present research 
investigates the influence of stenosis shape in terms of height and arterial inclination 
on the blood flow and solute dispersion behaviour through an inclined stenosed artery. 
The blood rheology is depicted using the Herschel-Bulkley model in a laminar, 
axisymmetric and incompressible unsteady flow through the stenosed artery. The 
effect of stenosis is focused on the stenosis height for both sine and cosine stenosis. 
Parameters of arterial inclination are also investigated to observe the effect of 
inclination on the blood velocity and dispersion function. Perturbation method is 
adopted in solving for the blood flow velocity under the effect of stenosis height and 
arterial inclination. The dispersion function of solute dispersion is solved using the 
obtained blood velocity by adopting the Generalized Dispersion Model (GDM) in 
obtaining steady dispersion functions. This present study shows that the increase in 
stenosis height decreases both blood velocity and dispersion function. Meanwhile, the 
increase in arterial inclination increases the blood velocity and dispersion function. The 
effect of stenosis height also affects blood velocity and dispersion function for the sine 
stenosis more than the cosine stenosis. 
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1. Introduction  
 

The research of hemodynamics in stenosed artery is a significant contribution to the biomedical 
field related to the application in treatment of atherosclerosis, angina, heart attacks and many more. 
The presence of stenosis at the arterial could cause the narrowing of the artery and total blockage if 
left untreated. Treatments of stenosed artery include oral medication, drug injection and angiogram 
which considers the aspect of solute dispersion in determining the success of those treatments. For 
instance, the effectiveness of drug injection to treat the stenosed artery is influenced by the blood 
flow and solute dispersion behaviour within the artery. Therefore, it is important to consider the 
stenosis size and arterial inclination to decide the appropriate artery location and drug dosage to 
ensure optimal treatment with minimised complication. 
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In depicting the blood rheology for theoretical study, Newtonian and many other non-Newtonian 
models have been used by researchers depending on the boundary layer problem studied. This 
present study focuses on a very narrow artery problem due to the presence of stenosis at the arterial 
wall. Certain models could not describe the blood flow in a very narrow artery where the yield stress 
is high and shear rate is low. However, the Herschel-Bulkley model containing an additional 
parameter of power-law index can explain the different blood physiological behaviours [2]. Chaturani 
et al. [9] stated that blood behaves like Herschel–Bulkley model rather than Power Law and Bingham 
models for a tube with 0.095 mm diameter. Iida [7] adopted the Hershel-Bulkley and Casson model 
in their study of blood flow in arterioles with diameters less than 0.065 mm and concluded that the 
velocity profiles can be explained using the Herschel-Bulkley model; yet does not obey the Casson 
model. Additionally, the Herschel-Bulkley model can also be reduced to other models such as 
Newtonian, Power Law and Bingham models by assigning a certain value to the power-law index 
parameter. It is clear that Herschel-Bulkley model have advantages compared to other models in 
terms of its capability to explain blood flow in a very narrow artery and be reduced to other models.  

There are numerous studies that investigates the unsteady blood flow through a stenosed artery 
using the Herschel-Bulkley model. Not to mention, the aspect of arterial inclination should be 
considered as many ducts in a physiological system have some inclination rather than being 
horizontal [8]. Priyadharshini and Ponalagusamy [1] studied the blood flow through an inclined, 
tapered stenosed artery with the presence of body acceleration using the Herschel-Bulkley nanofluid 
model. They stated that the resistance experienced by blood flow increases as the stenosis height 
increases. However, increase in the inclination parameter decreases the flow resistance. A researcher 
[6] adopted the Herschel-Bulkley model in their study of unsteady blood flow through an overlapping 
stenosed artery and concluded that the plug core radius decreases as the stenosis size increases. Few 
other studies that utilized the Herschel-Bulkley model in their boundary layer problems of stenosed 
artery can also be seen in these researches [3-5]. However, most of the studies largely focuses on 
investigating the effect of stenosis or inclination on the blood flow behaviour while neglecting the 
aspect of solute dispersion such as the dispersion function solution. An extensive study on solute 
dispersion inside an inclined stenosed artery helps doctors and pharmacists in deciding the dose and 
distribution rate of medication to patients with less risk of causing toxicity. 

In previous studies, the Herschel-Bulkley model is widely used in depicting blood rheology for 
solving problems related to solute dispersion in blood flow, mainly in a very narrow artery. However, 
the study on solute dispersion of dispersion function in an unsteady blood flow using Herschel-
Bulkley model in an inclined stenosed artery has not yet been explored. Therefore, this present study 
focuses on the effect of stenosis height and artery inclination on the behaviour of blood flow and 
solute dispersion using the perturbation and generalized dispersion model (GDM) methods to extend 
the study of previous researches. 

 
2. Methodology 
2.1 Mathematical Formulation 
 

Consider the unsteady, axisymmetric, laminar and fully-developed unidirectional blood flow 
represented by the Herschel-Bulkley model through an inclined artery with the presence of stenosis 
at the arterial wall as shown in Figure 1 where ( , )w z t  is the blood velocity in axial direction, r  is 

the artery radius, t  is time, g  is the gravitational acceleration and   is the degree of the arterial 

inclination. Therefore, the gravitational acceleration in the z  direction is given as sing  . The blood 

flow region within the artery is separated into the plug flow region of 0 cr r   and outer flow region 
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of 
cr r R   where 

cr  is the plug flow radius and R  is the full artery radius which can be replaced 

by the formula of cosine or sine stenosis. The presence of stenosis at the arterial wall is indicated by 

( )R z  where   is the stenosis height and 
0l  is the stenosis length. Cylindrical polar coordinates are 

used in the formulation and computation of this present study. 

 
Fig. 1. Geometric depiction of blood flow in an inclined 
stenosed artery. 

 
Since the blood flow is a unidirectional flow in the z  direction, the governing equations of 

continuity and momentum in cylindrical coordinate are reduced into the following form of: 
 
𝜕𝜌̄

𝜕𝑡̄
+

𝜕(𝜌̄𝑤̄)

𝜕𝑧̄
= 0,      (1) 

 

𝜌̄
𝜕𝑤̄

𝜕𝑡̄
= −

𝑑𝑝̄

𝑑𝑧̄
−

1

𝑟

𝜕

𝜕𝑟̄
(𝑟̄𝜏̄) + 𝜌̄𝑔̄ 𝑠𝑖𝑛 𝜃   for  0 ≤ 𝑟̄ ≤ 𝑅̄(𝑧̄),     (2) 

 

where   is the fluid density, p  is the pressure and   is the yield stress. The stenosed artery radius 

( )R z  for cosine stenosis is defined as: 

 

𝑅̄(𝑧̄) = {

𝑅̄                                                        otherwise,

𝑅̄ −
𝛿̄

2
[1 + 𝑐𝑜𝑠 (

2𝜋

𝑙0
(𝑧̄ − 𝑑̄ −

𝑙0

2
))]             when   𝑑̄ ≤ 𝑧̄ ≤ 𝑙0 + 𝑑̄,

           (3) 

 
and for sine stenosis is defined as: 
 

𝑅̄(𝑧̄) = {
𝑅̄                                      otherwise,

𝑅̄ − 𝛿̄ 𝑠𝑖𝑛 [
𝜋(𝑧̄−𝑑̄)

𝑙0
]             when   𝑑̄ ≤ 𝑧̄ ≤ 𝑙0 + 𝑑̄.

     (4) 

 

where d  is the stenosis location. The momentum equation in Eq. (2) has the boundary condition of: 
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𝜏̄ is finite at 𝑟̄ = 0      (5) 
 

The constitutive equation of the Herschel-Bulkley model is defined as: 
 

𝜇̄𝐻 (
𝜕𝑤̄

𝜕𝑟̄
) = −(|𝜏̄| − 𝜏̄𝑦)

𝑛
  if  |𝜏̄| ≥ 𝜏̄𝑦,      (6) 

 

where 
y  is the yield stress, 

H  is the Herschel-Bulkley viscosity, and n  is the power-law index. The 

boundary conditions of Eq. (6) are: 
 
𝑤̄ = 0  at 𝑟̄ = 0, 
𝑤̄ = 0  at 𝑟̄ = 𝑅̄(𝑧̄)      (7) 
 

The governed unsteady convective-diffusion equation for the dispersion of solute is given as: 
 
𝜕𝐶̄

𝜕𝑡̄
+ 𝑤̄

𝜕𝐶̄

𝜕𝑧̄
= 𝐷̄𝑚 (

1

𝑟̄

𝜕

𝜕𝑟̄
(𝑟̄

𝜕

𝜕𝑟̄
) +

𝜕2

𝜕𝑧̄2) 𝐶̄𝑚,      (8) 

 

where C  is the solute concentration and D̅m is the molecular diffusivity. Eq. (8) has the initial and 
boundary conditions of 
 

𝐶̄(𝑟̄, 𝑧̄, 0) = 𝐶̄0   if   |𝑧̄| ≤
𝑧̄𝑠

2
, 

𝐶̄(𝑟̄, 𝑧̄, 0) = 0     if   |𝑧̄| >
𝑧̄𝑠

2
,        (9) 

 

𝐶̄(𝑟̄,∞, 𝑡̄) = 0,    (10) 
 

𝜕𝐶̄

𝜕𝑟̄
(0, 𝑧̄, 𝑡̄) =

𝜕𝐶̄

𝜕𝑟̄
(𝑅̄(𝑧̄), 𝑧̄, 𝑡̄) = 0,    (11) 

 
where C̅0 is the reference solute concentration and z̅s is the solute length. 
 
2.2 Method of Solution 
 
Consider the non-dimensional variables as below: 
 

𝑟 =
𝑟̄

𝑅̄
,   𝑤𝑐 =

𝑤̄𝑐

𝑈̄
,   𝑤𝑜 =

𝑤̄𝑜

𝑈̄
,   𝑡 =

𝑡̄𝑤̄𝑚

𝑅̄
,   𝑝 =

𝑝̄𝑅̄

𝜇̄𝑈̄
,   𝜏𝑦 =

𝜏̄𝑦𝑅̄

𝜇̄𝑈̄
,   𝑧 =

𝑧̄

𝑅̄
, 

 𝜌 =
𝜌̄𝑅̄𝑈̄

𝜇̄
,   𝑔 =

𝑔̄𝑅̄

𝑈̄2 ,   𝛼 =
𝑅̄𝑤̄𝑚𝜌̄

𝜇̄
,   𝐶 =

𝐶̄

𝐶̄𝑜
,   𝐷𝑚 =

𝐷̄𝑚

𝑈̄𝑅̄
,   𝑅(𝑧) =

𝑅̄(𝑧̄)

𝑅̄
,   (12) 

 

where ( )
1n

H R U  
−

=  is in the dimension of the viscosity of Newtonian fluid. Substituting the 

non-dimensional variable into the momentum equation in Eq. (2) and constitutive equation in Eq. 
(6), the non-dimensionalized momentum and constitutive equations are respectively obtained as: 
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𝛼
𝜕𝑤

𝜕𝑡
= −

𝑑𝑝

𝑑𝑧
−

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏) + 𝜌𝑔 𝑠𝑖𝑛 𝜃,    (13) 

 

where   is the Reynolds number defined by 
mRw  =  and 

 

𝜏 = (−
𝜕𝑤

𝜕𝑟
)

1/𝑚
+ 𝜏𝑦.    (14) 

 
The series expansion of the perturbation method is obtained using the Reynolds number   as 

the small parameter (where 1  ). Velocity w  and shear stress   are expanded in perturbation 
series as follows: 
 
𝑤(𝑟, 𝑧, 𝑡) = 𝑤0(𝑟, 𝑧, 𝑡) + 𝛼𝑤1(𝑟, 𝑧, 𝑡)+. . . ..    (15) 
 

𝜏(𝑟, 𝑧, 𝑡) = 𝜏0(𝑟, 𝑧, 𝑡) + 𝛼𝜏1(𝑟, 𝑧, 𝑡)+. . . . .  .    (16) 
 
Substituting w  in Eq. (15) and   in Eq. (16) into Eq. (13) and (14) respectively and equating the 
coefficient of constant and   term in the left-hand side (LHS) to the right-hand side (RHS), the 
equations obtained are: 
 
𝜕

𝜕𝑟
𝑟𝜏0 = 𝑟 (−

𝑑𝑝

𝑑𝑧
+ 𝜌𝑔 𝑠𝑖𝑛 𝜃)      (17) 

 

𝜕𝑤0

𝜕𝑡
= −

1

𝑟

𝜕

𝜕𝑟
𝑟𝜏1    (18) 

 

𝜕𝑤0

𝜕𝑟
= −(𝜏0

𝑚 − 𝑚𝜏0
𝑚−1𝜏𝑦)    (19) 

 

𝜕𝑤1

𝜕𝑟
= −(𝑚𝜏0

𝑚−1𝜏1 − 𝑚(𝑚 − 1)𝜏0
𝑚−2𝜏1𝜏𝑦)    (20) 

 

where ( )( )2 / sinc yr dp dz g  = − − .The non-dimensionalized boundary conditions are: 

 
𝜏0 and 𝜏1 are finite at 𝑟 = 0      (21) 
 

for Eq. (17) and (18) and: 
 
𝑤0 and 𝑤1 = 0 at 𝑟 = 𝑅(𝑧)    (22) 
 

For Eq. (19) and (20). Solving Eq. (17) and (18) subject to boundary conditions in Eq. (21) and Eq. (19) 
and (20) subject to boundary condition in Eq.  (22), the solutions for velocity at the outer flow and 
plug flow region are obtained respectively as: 

 

𝑤0 = − (−
1

2
(

𝑑𝑝

𝑑𝑧
− 𝜌𝑔 𝑠𝑖𝑛 𝜃))

𝑚

[
𝑟𝑚+1−1

𝑚+1
− 𝑟𝑐(𝑟𝑚 − 1)].   (23) 
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( )

( ) ( ) ( )

( )( )( )

( )( )
( )( )( )( )

( )

( ) ( )

( )
( )( )( )( )

( )( )

( )

( ) ( )

( )

2 1

1

1 2 2

3 2

2 2

2

1 2 1

2 2

21 1
sin

2 2 1 3 2 1

2 3 2 5 2

1 3 2 2 2 1 2 3 2 1

2 5 11

2 1 2 1 1 2 3 2 1

1 1 1 1

2 2 2 2 2

m

m

m

c

m m m

c c c

m

c c c

m mdp m
w g r

t dz m m m

m m m mm
r r

m m m m m m m

m m mm m
r r r r r r

m m m m m m

m m m m
r r r r

m m

 

−

+

+

+ +

 +  
= − − − +  

  + + +  
+ + − −

− +
+ + + + + + +

+ +−
− − +

+ + + + + +

− + − −
− + −

+ +

2 2 .mr




       (24) 

 

The expression of velocity in the core flow region can be obtained by evaluating cr r=  in the 
ow  

to obtain 
cw . The velocities obtained are then utilized to solve for the dispersion function by 

adopting the GDM method. According to the GDM method, the steady dispersion function 1sf  can 

be solved from Eq. (8) in the form of: 
 

( )11
,s

m

f
r w w

r r r

  
= − 

  
   (25) 

 

where mw  is the mean velocity obtained using the formula: 

 
( )

( )

2

0 0

2

0 0

 

.

 

R z

m R z

wr drd

w

r drd









=
 

 

   (26) 

 
The boundary condition for Eq. (25) is: 
 

( ) ( )( )1 10 0,    for   1,2,3,...s sf f
r r R z j

r r

 
= = = = =

 
   (27) 

 

Eq. (25) is solved using integration with respect to r subject to the boundary conditions in Eq. (27) to 

obtained the solution of the steady function 1sf . 

 
3. Results 
 

The main objective of this study is to analyse the effects of the stenosis height and arterial 
inclination on the blood velocity and dispersion function of the Herschel-Bulkley flow through an 
inclined stenosed artery. Hence, other parameters such as the power-law index, pressure gradient, 

gravitational acceleration and plug core radius are given a constant value of 0.95,n = 1,sp = 10g =  

and 0.04cr =  respectively throughout the data plotting for the purpose of discussion on the effects 

of stenosis height and arterial inclination. As for the stenosis height, the other variables affecting the 
stenosis size are given constant values of  𝑙0 = 3, d = 2 and z = 4. Meanwhile, the stenosis height is 
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mainly analysed at 𝛿 = 0, 0.1, 0.2, 0.3. The plotted results exhibited by all these variations of 
parameters were analysed at an angle of inclination in the range of 0 90     where the numerical 
value is arbitrary as long as it shows an increase in arterial inclination for the purpose of observation. 

The influence of stenosis height and and arterial inclination on the blood flow velocity are 
investigated in Figure 2 (a) to (b). Figure 2 (a) shows the blood velocity at arterial inclination 0 =   
and stenosis height 0,0.1,0.2,0.3 =  for both cosine and sine stenosis (dashed line). The graph 

shows a decrease in blood velocity as the stenosis height increases. However, it can be observed that 
the decrease in velocity affects the sine stenosis more as the stenosis height increases. Increase in 
stenosis height reduces the flow region within the artery. Hence, the blood has less space to flow 
efficiently. The fatty substance deposited at the arterial wall increases the resistance flow; hence the 
decrease in blood velocity. Not to mention, decrease in the flow region causes the yield stress to 
increase which also increases the blood viscosity. Similar trend can be observed when the arterial 
inclination is increased to 90 =   in Figure 2 (b). Increase in stenosis height reduces the blood 
velocity and the blood flow through the sine stenosed artery is affected more by the increase in 
stenosis height. However, it can also be observed that increasing the arterial inclination from 0 =   
to 90 =   increases the overall blood velocity. This is due to the blood flow velocity being 
accelerated by the gravity as the artery inclined towards vertical position. It can be said that inclining 
the artery helps the blood flow faster if the stenosis slows down the flow. 
 

  
(a) (b) 

Fig. 2. Variation of non-dimensionalized velocity of unsteady Herschel-Bulkley fluid with 

fixed values of 1.05m = , 10g = , 1t = , 0.04cr =  for 0,0.1,0.2,0.3 =  at (a) 0 =   

and (b) 90 =   

 
The impact of stenosis height and and arterial inclination on the blood flow velocity are 

investigated in Figure 3 (a) to (b). The blood velocity at arterial inclination 0 =   and stenosis height 
0.1,0.3 =  for both cosine and sine stenosis for increasing time parameter of 0.1,0.5,1t =  is shown 

in Figure 3 (a). Observation shows that he blood velocity increases as the time increases. It can be 
noted that the increase in velocity is high at the stating point and slows down as the time increases. 
After a certain amount of time, the blood flow reaches a steady state velocity flow. However, the 
increase in stenosis height reduces the increase in velocity as the time increases. Graphical plotting 
showns that the the increase in stenosis height for sine stenosis amplify the reduction of the blood 
velocity. Therefore, it can be said that the sine stenosis affects the changes in blood velocity more 
compared to the cosine stenosis.  Similar pattern behaviour is observed when the artery is inclined 
to 90 =   as shown in Figure 3 (b). Increase in time parameter increases the blood velocity for both 
sine and cosine stenosed artery. Nevertheless, graphical plotting shows that increasing the arterial 
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inclination from 0 =   to 90 =   increases the overall blood velocity. The gravitational acceleration 
helps amplify the blood flow as the artery inclined towards vertical position. From this theoretical 
result, inclining the artery can help counter the reduction of blood velocity due to the presence of 
stenosis; for a situation where a high blood velocity is preferred.  
 

  
(a) (b) 

Fig. 3. Variation of non-dimensionalized velocity of unsteady Herschel-Bulkley fluid with fixed 

values of 1.05m = , 10g = , 0.04cr =  at 0.1,0.3 =  for 0.1,0.5,1t =  when (a) 0 =   and (b) 

90 =   
 

The effect of stenosis height and and arterial inclination on the dispersion function are 
investigated in Figure 4 (a) to (b). Figure 4 (a) illustrates the dispersion function of solute dispersion 
at arterial inclination 45 =   and stenosis height 0,0.1,0.2,0.3 =  for both cosine and sine stenosis 

(dashed line). It can be seen that the dispersion function decreases as the stenosis height increases. 
This is due to the solutes having less space to disperse smoothly. The blood cells and all the other 
materials suspended in the blood fluid are cramped and having difficulties in diffusing efficiently. 
Nevertheless, the decrease in dispersion function due to the increase in stenosis height affects the 
sine stenosis more compared to the cosine stenosis. Additionally, flow region decrease causes 
increase in yield stress which in turn increases the blood viscosity. Similar trend can be observed 
when the arterial inclination is increased to 90 =   in Figure 4 (b). As the stenosis height increases, 
the dispersion function decreases and the dispersion through the sine stenosed artery is affected 
more by the increase in stenosis height. Nevertheless, the increase of arterial inclination from 

45 =   to 90 =   increases the overall dispersion function. The gravitational acceleration helps the 
dispersion of solute along the artery as the artery inclines toward vertical position.  
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(a) (b) 

Fig. 4. Variation of steady dispersion function with fixed values of 1.05m = , 10g = , 0.04cr =  for 

0,0.1,0.2,0.3 =  at (a) 45 =   and  (b) 90 =   

 
4. Conclusions 
 

This present research investigates the influence of stenosis height and arterial inclination on the 
blood velocity and dispersion function through an inclined stenosed artery. The effects are observed 
on both artery with sine and cosine stenosis and a comparison is made. This present study concluded 
that: 

 
i. Increase in stenosis height decreases the blood velocity and dispersion function. 

ii. Increase in arterial inclination decreases the blood flow and dispersion function. 
iii. The blood velocity increases and reaches a steady state as the time increases for both cosine 

and sine stenosed artery. 
iv. The decrease in blood velocity and dispersion function due to increase in stenosis height and 

arterial inclination affects the artery with sine stenosis more compared to the cosine stenosis. 
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