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Thermogravitational convection in a controlled rotating Darcy-Brinkman nanofluids 
layer saturated in an anisotropic porous medium heated from below is investigated. The 
presence of a uniformly distributed internal heat source and considers the Brinkman 
model for different boundary conditions: rigid-rigid, free-free, and lower-rigid and 
upper-free are considered. The effect of a control strategy involving sensors located at 
the top plate and actuators positioned at the bottom plate of the nanofluids layer is 
analysed. Linear stability analysis based on normal mode technique is employed. The 
resulting eigenvalue problem is solved numerically using the Galerkin method 
implemented with Maple software. The model used for the nanofluids associates with 
the mechanisms of Brownian motion and thermophoresis. The influences of the internal 
heat source strength, mechanical anisotropy parameter, modified diffusivity ratio, 
nanoparticles concentration Darcy-Rayleigh number and nanofluids Lewis number are 
found to advance the onset of convection. Conversely, the Darcy number, thermal 
anisotropy parameter, porosity, rotation, and controller effects are observed to slow 
down the process of convective instability. 
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1. Introduction 
 

Nanofluids are liquids containing nanoparticles, offer improved convective heat transfer and 
thermal conductivity properties to the fluids [1]. The Darcy-Benard problems of nanofluids layer 
involve the investigation of natural convection within a nanofluid layer bounded by two infinite 
parallel planes. These problems have garnered significant attention in numerous scientific, 
engineering, technological, chemical, nuclear, and biomechanical literature reviews due to their 
relevance [2-7]. The Darcy-Brinkman convective instability in nanofluids layer saturated within 
porous media focuses on studying the instability that arises from the interaction between fluid flow 
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and the resistance of the porous medium within a nanofluid layer. Yadav et al., [6] conducted 
research on the effect of internal heat source in nanofluids layer saturated in porous media. 
Shivakumara et al., [8] studied penetrative Brinkman convection in nanofluids layer saturated in an 
anisotropic porous medium. The Darcy-Brinkman equation is an appropriate model for fluid flow with 
highly porous materials. Chand et al., [9] investigated the effects of variable gravity on thermal 
instability in a horizontal layer of nanofluids saturated in an anisotropic Darcy porous medium.  

The occurrence of thermal convection in rotating fluids saturated in porous layer heated from 
below has attracted both experimental and theoretical interest. This phenomenon is particularly 
relevant in geophysical and oceanic flows. The effect of rotation on convective instability is crucial, 
as it has been theoretically proven by several researchers [10-14]. The stabilizing effect of rotation 
on thermal convective instability in fluids saturated in a porous medium has also been investigated 
[15-21]. Many experts have validated the application of feedback control, both experimentally and 
theoretically, to stabilize thermal convection [22-25]. Furthermore, researchers have explored the 
inclusion of other relevant effects, such as feedback control in conjunction with buoyancy and 
surface-tension driven [26-28]. Additionally, the impact of internal heat generation has been 
extensively studied, considering various types of fluids [29-37]. In recent times, Khalid et al., [38-40] 
interplayed the combination effect of rotation, magnetic field, internal heat source and feedback 
control on thermal instability in nanofluids layer subjected to various effects. Besides, Abidin et al., 
[41] focused on binary fluid saturated in anisotropic porous medium problem with variable viscosity 
effect respectively. 

Recently, these authors have undertaken a novel investigation in their study. Arasteh et al., [42] 
employed Darcy-Brinkman-Forchheimer model with local thermal non-equilibrium model or two 
equations method to model the momentum and energy equations in porous medium, respectively. 
Toghraie et al., [43] proposed a 3D numerical study of convective heat transfer through a micro 
concentric annulus governing non-uniform heat flux boundary conditions employing water-Al2O3 
nanofluid, a two-phase mixture model. Lately, Artificial Neural Networks (ANNs) are widely used in 
many scientific and engineering fields. These networks have shown their potential in predicting the 
nonlinear or complex behaviours of systems. He et al., [44] generated experimental data points of 
Zinc Oxide and Silver (50%-50%)/Water nanofluid and proposed an algorithm to calculate the best 
neuron number in the ANN. Afterwards, they calculated the performance and correlation coefficient 
for ANN. Boroomandpour et al., [45] investigate a comprehensive experimental investigation of 
thermal conductivity of a ternary hybrid nanofluid containing MWCNTs-titania-zinc oxide/water-
ethylene glycol (80:20) as well as binary and mono nanofluids. Yan et al., [46] studied the rheological 
behaviour of MWCNTs-ZnO/Water-Ethylene glycol hybrid non-Newtonian nanofluid by using of an 
experimental investigation. Lakshmi and Rallabandi [47] analysed the effect of Hall current and 
thermal radiation on the MHD flow of an electrically conducting Casson nanofluid across a constantly 
extending surface in the presence of heat source/sink, Brownian motion, and thermophoresis. 

The motivation of this research is to study thermogravitational convection in Darcy-Brinkman 
nanofluids layer saturated in a rotating anisotropic porous medium, considering the effects of 
feedback control and internal heat source. This study is extended from Yadav et al., [6], where the 
effects of rotation, feedback control, and anisotropic parameters was introduced. Therefore, the 
eigenvalue solution is extracted numerically using linear stability analysis and the normal mode 
technique. The Galerkin method is employed, and the solution is computed using Maple software. 
The results are presented graphically and thoroughly discussed. This study’s findings will contribute 
valuable insights into the behaviour of nanofluids layer in porous media and aid in optimizing heat 
transfer systems for various engineering applications. It is important to emphasize that the internal 



Journal of Advanced Research in Numerical Heat Transfer 

Volume 14, Issue 1 (2023) 70-90 

72 
 

heat source significantly alters the temperature distribution in nanofluids, consequently affecting the 
rate of particle deposition in nuclear reactors, electronic chips, and semiconductor wafers.  

 
2. Methodology  

 
The onset of convection in a horizontal layer of a porous medium saturated by nanofluids is 

studied analytically. The model used for the nanofluids incorporates the effects of Brownian motion 
and thermophoresis. For the porous medium, the Brinkman model is employed. Consider an infinite 
horizontal layer of incompressible rotating nanofluids saturated Brinkman anisotropic porous layer 

with feedback control and internal heat source confined between the planes * [0, ]z L  heated 

uniformly from below. The schematic diagram of the system considered here is shown in Figure 1 
below. The continuity equation, momentum equation, energy equation and conservation of the 
nanoparticle equation are discussed in detail below. 
 

 
Fig. 1. Physical configuration and coordinate system 

 
Considering the Brinkman model, the governing momentum equation in the presence of 

Coriolis force takes the form [3, 6] 
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Where  ( )* * * *, ,D u v w=u  is the Darcy velocity, f  is the density of the base fluid, p  is the 

nanoparticle mass density, *t  is time, *p  is the pressure,   is the viscosity, K  is the permeability of 

the porous medium,   is the porosity of the porous medium, g  is the gravitational force, *  is the 

nanoparticle volume fraction, T  is the thermal volumetric coefficient, *T  is the temperature, ( )
m

c  

is the effective heat capacity, c  is the specific heat, pc  is the specific heat of the nanoparticles, *

0Q  

is the uniform internal heat source, m  is the effective thermal conductivity of the porous medium 
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saturated by the nanofluid, BD  is the Brownian diffusion coefficient and TD  is the thermophoretic 

diffusion coefficient. The permeability and thermal conductivity tensors are defined as 
 

( )1 1 1
,

H V

ii j j kk
K K K
= + +                    (5) 

( ) ,m mH mVii j j kk  = + +                    (6) 

 

Where HK  is the permeability and mH  is the thermal conductivity in the horizontal  i  and j  

directions, while VK  and mV  are the corresponding values in the vertical k  direction. It may be 

noted that horizontal mechanical and thermal isotropy has been assumed. 
It assumes that the temperature and volumetric fraction of the nanoparticles are constant on the 

boundaries. Thus, the boundary conditions are: 
 

* 2 *
* * * * *

1 0 0* *2
0, 0, , at 0,

w w
w L T T z

z z
  

 
= + = = = =

 
               (7) 

* 2 *
* * * * *

2 1 1* *2
0, 0, , at 1.

w w
w L T T z

z z
  

 
= − = = = =

 
               (8) 

 

Here, the parameters 1  and 2  each takes the value   for the case of free boundary and 0 for 

a rigid boundary. To nondimensionalize the governing Eq. (1) – Eq. (4), the variables are scaled as 
follows: 
 

( ) ( )

( ) ( )
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* * * * * * *

* *

* *
* * *

*

, , , , , , , , , ,

, , , , , ,

v l z v
z

V v u l v

v u

p t L t L
x y z L x y z p t t

LK

T T
u v w u v w T

L T

     
 

   



−
= = = = = =

−

−
= =



          (9) 

 

Where 
( )

m

v

f
c





=  is the effective thermal diffusivity and 

( )

( )
m

f

c

c





=  is the heat capacity ratio 

respectively. Substituting Eq. (9) into Eq. (1) – Eq. (4), we obtain: 
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with boundary condition as 
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1 2
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where 
2

VK
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u  is the anisotropic modified velocity vector, ( )0,0,1z =e  is the unit vector in the z-
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* 2

0
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Q L
Q

c T 
=


 represents the 

dimensionless heat source strength. 
In the quiescent basic state, the temperature and volumetric fraction of nanoparticles vary only 

in the vertical z-direction and satisfy the following equations: 
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b b
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The above equations are solved subject to the boundary conditions: 
 

( ) ( )0 1, 0 0 at 0,b bT z= = =                                             

( ) ( )1 0, 1 1 at 1.b bT z= = =                                            (19) 

 
Integrating Eq. (18) with respect to z and using the boundary condition Eq. (19), we get 
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( )1 .b A b A AN T N z N = − + − +                                            (20) 

 
Using Eq. (20) in Eq. (17), we obtain 
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On integrating Eq. (21) with respect to z twice and using the boundary conditions Eq. (19), we get 
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According to Buongiorno [1], for most of the nanofluids, 1AN   to 10, 210Ln   to 310 , 
410BN −  

to 210− , and consequently 
( )1A BN N
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−
=  is very small of order 710−  to 410− . Hence, expanding 

( )bT z  and ( )b z  in power series of   and retaining up to the first-order terms we have, 

 

( ) ( ) ( )2 2 2 31 1
2 2 6 6 3 2 ...,

2 12
bT z z Qz Qz z Qz z Qz Qz = − + − + − − + − +                                 (24) 

( ) ( )
2

2 2 31
6 6 3 2 ...,

2 2 12

A A
b A A A A A

N Qz N Qz
z z N z N Qz N z N Qz N Qz 

 
= − + + − + + − + + 
 

               (25) 

 



Journal of Advanced Research in Numerical Heat Transfer 

Volume 14, Issue 1 (2023) 70-90 

76 
 

Here 710 −  to 410− , as compared to ( )2 01
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Which demonstrate quadratic distribution in z . 
Suppose that the basic state is disturbed by an infinitesimal thermal perturbation. We now 

superimpose perturbations on the basic solution. We write: 
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We substitute Eq. (28) into Eq. (10) – Eq. (13) and linearize them by neglecting the products of 

primed quantities and obtain: 
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Taking operation of the ( )curlz  e  on Eq. (30), we get: 
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and retaining the z-component, we obtain: 
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Operating on Eq. (33) with curl twice, together with curl identity and the continuity Eq. (29). Then, 
retaining the z-component, and simplified with Eq. (34), we obtain: 
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The normal mode expansion of the dependent variable is assumed in the form: 
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Substitute the normal mode expansion of Eq. (36) into Eq. (31), Eq. (32) and Eq. (35), we obtain: 
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Where 2 2

x ya a a= +  is the wavenumber, and
d

D
dz

= . 

Following the proportional feedback control [26], the continuously distributed actuators and 
sensors are arranged in a way that for every sensor, there is an actuator positioned directly beneath 

it. The determination of a control, ( )q t  can be accomplished using the proportional-integral-

differential (PID) controller of the form: 
 

( ) ( ) ,q t r K e t= +                                                        (40) 

 

where r is the calibration of the control, ( ) ( ) ( )e t m t m t= +  an error or deviation from the 

measurement, ( )m t , from some desired reference value, ( )m t , K is the scalar controller gain where 

0

t

P D L

d
K K K K dt

dt
= + +  , 

PK  is the proportional gain, 
DK  is the differential  gain and LK  is the 

integral gain. 
Based on Eq. (40), for one sensor plane and proportional feedback control, the actuator modifies 

the heated surface temperature using a proportional relation between the upper, 1z =  and the 
lower, 0z = , thermal boundaries for the perturbation field 

 

( ) ( ), ,0, , ,1, ,T x y t KT x y t = −                                                    (41) 
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Where T   denotes the deviation of the temperature of fluid from its conductive state. 
Eq. (37) – Eq. (40) are solved subject to the appropriate boundary conditions. Considering the 

proportional controller; K positioned at the lower boundary of nanofluid layer, we will have: 
 

( ) ( )0 1 at 0.W DW K D z= =  +  =  =  =  =                                                 (42) 

 
We assumed that the upper boundary is non-deformable and insulating to temperature 

perturbations. The suitable upper boundary conditions are as below. 
 
For lower free and free boundaries 

 

( ) ( )2

2

0 1 0 at 0,

0 at 1.

W D W K z

W D W D z

= =  +  = = =

= =  = = =
                                                               (43) 

 
For lower rigid and upper free boundaries 

 

( ) ( )
2

0 1 0 at 0,

0 at 1.

W DW K z

W D W D z

= =  +  = = =

= =  = = =
                                                              (44) 

 
For lower rigid and upper rigid boundaries 

 

( ) ( )0 1 0 at 0,

0 at 1.

W DW K z

W DW D z

= =  +  = = =

= =  = = =
                                                              (45) 

 
The Galerkin type weighted residuals method is applied to find an approximate solution of the 

system. The variables are written in a series of bases functions: 
 

1 1 1

, , ,
n n n

i i i i i i

i i i

W AW B C
= = =

=  =   =                                                                                (46) 

 

Where iA , iB  and iC , are constant and the bases functions iW , 
i  and i  where 1,2,3,...,i =  will 

be chosen corresponding to the free-free, rigid-free and rigid-rigid lower-upper boundary conditions. 
Substitute Eq. (46) into Eq. (37) - Eq. (39) and make the expressions on the left-hand side of those 
equations (the residuals) orthogonal to the trial functions, thereby obtaining a system of 3N linear 
algebraic equations in the 3N unknowns. The vanishing of the determinant of the coefficients 
produces the eigenvalue equation for the system. One can regard Rd as the eigenvalue solution; thus, 
Rd is found in terms of the other parameters and solve by Maple software. 
   
3. Results  
 

Thermogravitational convection of Darcy-Brinkman nanofluids layer saturated in a rotating 
anisotropic porous medium with feedback control and internal heat source is investigated. The 
nanofluid model integrates the influences of Brownian motion and thermophoresis mechanisms, 
whereas the Brinkman model is considered for porous medium. Three distinct lower-upper boundary 
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conditions are taken into account: both boundaries being free (free-free), both boundaries being rigid 
(rigid-rigid), and lower boundary being rigid while the upper is free (rigid-free). The numerical 
solution to the resulting generalized eigenvalue problem is obtained using the Galerkin method. The 
parameters values are selected based on the recommendations made by Yadav et al., [6] and Agarwal 

et al., [21]. The parameters are fixed with Ta = 500, K = 5, 0.6 = , 0.8 = , 0.6 = , 1AN = , 

0.01BN = , Rn = 2, Ln = 100, Q = 0.5 with Da = 0.2 and 0.9 for the configuration of Darcy-Rayleigh 

number, Rd versus wavenumber, a in Figures 2-10. As for the critical Darcy-Rayleigh number, Rdc 
versus the various of effects is plotted in Figures 11-16 with parameters fixed at Ta = 500, K = 5,

0.6 = , 0.8 = , 0.6 = , 1AN = , 0.01BN = , Rn = 2, Ln = 100, Q = 0.5 and Da = 0.8 except for the 

varying parameters. 
We conducted test computations and compared our results with those of Yadav et al., [6] and, 

Char and Chiang [29], specifically for the limiting case of nanofluids (regular fluids) without porous 
media. The critical Darcy-Rayleigh number, Rdc for the rigid-free and free-free boundary conditions 
were compared, and the results are presented in Tables 1-3. The tables clearly demonstrate that our 
results align well with the findings reported by Yadav et al., [6], and Char and Chiang [29], thereby 
confirming the accuracy of our analysis. 

 
Table 1 
Comparisons of critical Darcy-Rayleigh number, Rdc for different values of Q with 
Char and Chiang [29] and Yadav et al., [6] for regular fluids in the absence of 
porous media in rigid-rigid boundary conditions 

Q 
Rdc 

Char Chiang [29] Yadav et al., [6] Present Study 

0 1707.85 1707.75 1707.85 

1 1704.61 1704.52 1705.41 

2 1695.04 1694.94 1702.97 

10 1463.05 1462.86 1463.13 

20 1118.66 1118.45 1118.35 

 
Table 2 
Comparisons of critical Darcy-Rayleigh number, Rdc for different values of Q 
with Char and Chiang [29] and Yadav et al., [6] for regular fluids in the absence 
of porous media in rigid-free boundary conditions 

Q 
Rdc 

Char Chiang [29] Yadav et al., [6] Present Study 

0 1100.65 1100.64 1100.65 

1 1055.58 1055.57 1055.16 

2 1011.44 1011.43 1011.43 

10 725.60 725.60 725.59 

20 517.87 517.83 517.73 
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Table 3 
Comparisons of critical Darcy-Rayleigh number, Rdc for different values of Q with 
Yadav et al., [6] for regular fluids in the absence of porous media in free-free 
boundary conditions 
 
Q 

Rdc 

Yadav et al., [6] Present Study 

0 657.51 657.59 
1 656.69 656.59 
2 654.25 654.26 
10 589.46 589.53 
20 473.46 473.67 

 
Figure 2 illustrates the plot of Darcy-Rayleigh number, Rd and the corresponding wavenumber, a 

for selected values of feedback control K = 5 and 7. Two values of Darcy number, Da = 0.2 and 0.9 are 
considered. Increasing the feedback control K causes the marginal stability curves to shift upwards, 
indicating that the controller stabilizes the motionless state for all wavenumbers. This phenomenon 
occurs as the sensors detect the deviations from the conductive state of the nanofluids layer, 
prompting the actuators to suppress any disturbances [25]. Simultaneously, the Darcy-Rayleigh 
number, Rd increases with higher values of the Darcy number Da. This observation suggests that the 
Darcy number, Da has a delaying effect on the onset of convection within the nanofluids layer 
saturated in porous medium, as previously indicated [2, 3, 6]. In the work analysed by Kuznetsov and 
Nield [3], which explored the thermal instability of nanofluids layer saturated in a porous medium 
using the Brinkman model, the expression for the thermal Darcy-Rayleigh number, Rd is provided by  

 

( ) ( )
2 2

2 2 2 2

2
.A

a Da aLn
Rd N Rn

a

 



+ + + 
+ + = 
 

                                                              (47) 

 
Based on their expression of Rd in Eq. (47), we performed an analysis to investigate the influence of 
the Darcy number parameter. Increasing the Darcy number results in a higher Darcy-Rayleigh number 
Rd and stabilizes the system [2, 3, 6]. These findings validate the accuracy of our results. Notably, the 
effects of both K and Da are significant in slowing down the onset of convective instability in the 
system. Furthermore, it is noteworthy that the rigid-rigid boundary conditions exhibit the most 
substantial stability compared to rigid-free and free-free boundaries. 

Figure 3 depicts the relationship between the Taylor number, Ta = 500 and 700 for two values of 
Darcy number, Da = 0.2 and 0.9 in the plot of Darcy-Rayleigh number, Rd versus wavenumber, a 
respectively. As the Taylor number, Ta increases, the Darcy-Rayleigh number, Rd also rises. This 
behaviour indicates that the Coriolis force resulting from the rotation inhibits the onset of convection 
within nanofluids layer. The rotational motion causes the nanofluids to move more vigorously in the 
horizontal plane due to the vorticity introduced by the rotation mechanism. Consequently, the 
velocity of the nanofluids in the vertical plane decreases, resulting in a reduction in thermal 
convection. 
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Fig. 2. Variation of K on Rd against a for different values of Da 

 

 
Fig. 3. Variation of Ta on Rd against a for different values of Da 

 

Figure 4 illustrates the relationship between the Darcy-Rayleigh number, Rd and the 
wavenumber, a for different values of the mechanical anisotropy parameter 0.3 = and 0.8 for two 

values of Darcy number, Da = 0.2 and 0.9. It is observed that increasing the mechanical anisotropy 
parameter,   leads to a corresponding increase in the value of Rd, indicating a stabilizing effect on 
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thermal instability [21]. Conversely, decreasing the value of  exhibits the opposite trend. Briefly, 

permeability is defined as the ability of a porous material to transmit fluids. Considering the definition 
of the mechanical anisotropy parameter, an increase in the mechanical anisotropy parameter   

causes the permeability HK  in the x-direction to increase or the permeability in the z-direction VK , 

to decrease. Consequently, it becomes more challenging for nanofluids layer to flow in the z-
direction, resulting in the onset of convection at a higher Darcy-Rayleigh number, Rd. Furthermore, 
in Figure 5, the effect of the thermal anisotropy parameter 0.5 =  and 0.7 for two values of Darcy 

number, Da = 0.2 and 0.9 on the instability is demonstrated. The Darcy-Rayleigh number, Rd increases 
as the thermal anisotropy parameter,  increases, indicating that the effect of thermal anisotropy 

parameter,   has a stabilizing effect on the system [21]. According to the definition of the thermal 

anisotropy parameter,  , an increase in   leads to an increase in the thermal conductivity, 
mH  in 

the x-direction increases or a decrease in the thermal conductivity, 
mH  in the z-direction. 

Consequently, this delay in the onset of convection occurs. 
 

 
Fig. 4. Variation of   on Rd against a for different values of Da 
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Fig. 5. Variation of   on Rd against a for different values of Da 

 

Figure 6 demonstrates the influence of the porosity parameter  = 0.3 and 0.9 for two values of 
Darcy number, Da = 0.2 and 0.9, on the stationary convection. It is observed that the Darcy-Rayleigh 
number, Rd increases as the porosity parameter   increases. This indicates that the porosity 
parameter   inhibits the onset of Rayleigh-Benard convection and stabilizes the system. It was found 
that increasing the values of the porosity parameter leads to an increase in the Darcy-Rayleigh 
number, Rd, thus stabilizing the system. Porosity   in a porous medium is defined as the fraction of 
the total volume occupied by void spaces. An increase in porosity increases the volume of void 
spaces, thereby retarding the flow of nanofluids and delaying the onset of Rayleigh-Benard 
convection. The presence of an internal heat source, Q in the system significantly affects its stability 
of the system. To examine the effect of the internal heat source, Q on the criterion for the onset of 
thermal convection in nanofluids, Figure 7 is plotted for different values of Q = 0.5 and 1 when Darcy 
number, Da = 0.2 and 0.9 in three types of boundary conditions. This plot demonstrates that as the 
strength of the internal heat source Q increases, the Darcy-Rayleigh number, Rd value decreases. 
Increasing the internal heat source, Q implies an increased energy supply to the system, leading to 
larger deviations in temperature distributions. These deviations, in turn, enhance disturbances in the 
nanofluids layer, rendering the system unstable. 
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Fig. 6. Variation of   on Rd against a for different values of Da 
 

 
Fig. 7. Variation of Q on Rd against a for different values of Da 

 
The effects of the Taylor number, Ta on the internal heat source, Q = 0.5 and 1 are presented in 

Figure 8, respectively. It is evident that increasing the Coriolis force due to rotation within nanofluids 
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layer helps to mitigate the disturbances caused by the internal heat source, Q, thereby promoting 
stability within the nanofluids layer system. Analysing the critical Darcy-Rayleigh number, Rdc under 
different boundary conditions, it is observed that the rigid-rigid boundaries consistently exhibit 
higher values of Rdc compared to the free-free and rigid-free boundaries. 

The graphs of critical Darcy-Rayleigh number, Rdc against feedback control, K for selected values 
of nanoparticles concentration Rayleigh number, Rn = 1 and 3 are depicted in Figure 9, respectively. 
As previously mentioned, increasing the nanoparticles concentration Rayleigh number, Rn 
monotonically decreases the critical Darcy-Rayleigh number, Rdc, thereby promoting thermal 
instability in the system. However, increasing the feedback control, K helps to delay the onset of 
convection induced by the nanoparticles concentration Rayleigh number, Rn parameter in the 
rotating nanofluids layer, thus maintaining system stability. 

Meanwhile, Figure 10 displays the variation of the critical Darcy-Rayleigh number, Rdc as a 
function of the Darcy number, Da for the selected values of porosity   = 0.2 and 0.8. The results 
highlight the significant role of porosity,   and Darcy number, Da in stabilizing the system. Finally, 
the impact of anisotropic parameters on the onset of convection is depicted in Figure 11. The 
variation of the critical Darcy-Rayleigh number, Rdc against the thermal anisotropy parameter   is 

presented for selected values of the mechanical anisotropy parameter   = 0.4 and 0.8. It is observed 

that increasing the mechanical anisotropy parameter   and thermal anisotropy parameter   both 

contribute to slowing down the onset of convection, thus stabilizing the nanofluids layer system [21]. 
 

 
Fig. 8. The plot of Rdc in the function of Ta for selected values of Q 
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Fig. 9. The plot of Rdc in the function of K for selected values of Rn 

 

 
Fig. 10. The plot of Rdc in the function of Da for selected values of   
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Fig. 11. The plot of Rdc in the function of   for selected values of   

 
4. Conclusions 
 

A theoretical analysis is conducted on the thermogravitational convection of Darcy-Brinkman 
nanofluids layer saturating in a rotating anisotropic porous medium, considering the effects of 
feedback control and internal heat source heated from below is analysed theoretically. The model 
used for nanofluids combines the Brownian motion and thermophoresis mechanism, as proposed by 
Buongiorno [1]. The Brinkman model is employed to describe the porous medium, considering three 
different lower-upper boundary combinations: free-free, rigid-free, and rigid-rigid. The linear stability 
analysis is performed using the normal mode technique, and the resulting eigenvalue problem is 
numerically solved using the Galerkin technique implemented in Maple software. 

The obtained results from the analysis lead to the following conclusions: 
 

i. The implementation effects of feedback control, K, Taylor number, Ta, Darcy number, 
Da, porosity, , mechanical anisotropy parameter,   and thermal anisotropy 

parameter,   significantly slows down the Rayleigh-Benard convective instability when 

their values are increased. Therefore, these factors act as stabilizing agents within the 
system. 

ii. The effects of internal heat source, Q, modified diffusivity ratio, NA, nanofluids Lewis 
number, Ln and nanoparticles concentration Darcy-Rayleigh number, Rn enhance the 
heat transfer mechanism, and act as the destabilizing factors within the system when 
their values are increased. 

iii. Regarding the effect of the modified particles density increment, NB no visible 
observation of convective instability is observed. This finding aligns well with the results 
reported earlier by Shivakumara and Dhananjaya [8] and Yadav et al., [12]. 

iv. Among the three types of lower-upper boundary conditions, the system exhibits the 
highest stability when both boundaries are rigid-rigid compared to free-free and rigid-
free configurations. 
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v. Overall, this research contributes practically by improving thermal management in 
electronics through a better understanding of nanofluids behaviour in porous media 
under the influence of rotation and heat source. It also has optimizing energy extraction 
and advancing environmental and industrial processes. 
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