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The finite element method (FEM) is a robust and widely applied numerical scheme in 
the simulation of engineering problems, especially in structural mechanics. However, 
FEM is not as popular as the finite volume method (FVM) in Computational Fluid 
Dynamics (CFD), possibly due to its complicated numerical procedures. Indeed, FEM 
possesses tremendous advantages compared with FVM, particularly in dealing with 
complex geometry and rendering attractive flexibility to modify the interpolation 
functions. It is well-known that FEM and FVM differ in mathematical formulation, yet 
there is a lack of practical comparison between them. Therefore, the paper aims to 
develop a Galerkin FEM (GFEM) model, investigate its strengths and weaknesses 
compared with FVM, and discuss the conciliation between FEM and FVM. Our case 
study focuses on a two-dimensional diffusion problem comprising steady and transient 
cases, with and without heat generation. Our investigation revealed that GFEM does 
not possess conservative properties, which might yield spurious heat flux, leading to a 
2 – 4% overestimation of the temperature field, depending on the amount of heat 
generation. Moreover, GFEM incurs approximately 34% higher computational time 
than FVM. However, FVM can be perceived as a special form of GFEM, and their 
relations were discussed. 
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1. Introduction 
 

The finite element method (FEM) is a numerical scheme to solve boundary value problems via 
integration over the weighted variational form of governing equations [1]. Since its introduction, FEM 
has been mainly applied in the analysis of structural engineering, such as welding analysis [2], 
machining of composite materials [3], buckling analysis [4], mechanical vibration [5,6], design of 
biomedical structures [7,8], and fatigue prediction of structures [9,10]. FEM has been well developed 
in solving structural mechanics, and much commercial software such as COMSOL® and SolidWorks® 
are constructed thereunder. 
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However, in thermofluidic simulation, FEM is not as popular as the finite volume method (FVM) 
due to its complexity and high computational cost compared with FVM. In FVM, the nodal fields can 
be correlated via the integration over the surface of the control volume; thus, its stiffness matrix 
formulation is relatively straightforward. FVM solution is formulated based on the analysis of fluxes 
across boundaries, while FEM forms the stiffness matrix by interpolating the nodes around a local 
boundary. Notably, FVM emphasises the conservativeness properties of transport phenomena [11]. 
At the same time, FEM focuses more on approximating suitable local guess functions that can fulfil 
governing equations and boundary conditions. Perhaps, FVM is an indigenous numerical solution for 
Computational Fluid Dynamics (CFD), and as such many essential techniques in CFD, such as SIMPLE 
algorithms [12–14] and immersed boundary methods [15–17], are designed based on FVM. 

Despite these limitations, FEM is more robust in dealing with complex geometry. Its elementary 
integration on the local boundary would relieve the meshing constraints when the geometry of the 
problem domain is arbitrary. Moreover, FEM is the rudiments of meshfree techniques developed to 
solve thermofluidic problems with moving interfaces. Examples of meshfree methods are the 
element-free Galerkin method [18–22], point interpolation meshfree method [23], and meshfree 
local Petrov-Galerkin method [24], to name a few. These meshfree methods could be an alternative 
to immersed boundary methods. It is worth transplanting the formulation of FEM into CFD; thus, a 
more detailed investigation between FVM and FEM is required. 

Most of the previous works comparing FEM and FVM focused only on the theoretical 
explanations, such as in the work of Soln [25] and Vanselow [26]. A general comparison can be seen 
too in the work of Ahmad et al., [27] and Dong et al., [28], who simulated macrosegregation and 
electrical impedance tomography, respectively. Jeong and Seong [29] carried out a comparison 
between FEM and FVM commercial software. However, there needs to be a detailed comparison by 
numerical examples, especially in the heat transfer problem. 

Simulation on pure diffusion can be perceived as CFD’s most straightforward platform for 
numerical testing. The one-dimensional heat transfer problem has been solved using FEM by Wang 
and Mai [30] and Dhawan and Kumar [31], and it is simple and straightforward. Although FEM and 
FVM will not reveal any difference in solving the one-dimensional problem, computational 
complexity would significantly increase when the problem domain is two-dimensional.  

There is a void in practical comparison and relations between FEM and FVM, although their 
difference in the mathematical formulation has been well explained [32]. Therefore, the paper aims 
to: (1) develop a lucid formulation of the Galerkin finite element method (GFEM) for the convenience 
of future development, (2) discuss the differences between FEM and FVM, and (3) investigate the 
relations and conciliations between FEM and FVM. In our study, both steady and transient diffusion, 
with and without heat generation, are included. The work can provide a detailed reference to assess 
the differences and reconciliations between these two widely applied discretisation techniques. 
 
2. Numerical Formulation 
 

The governing equation for the unsteady diffusion problem can be expressed in Eq. (1). 
 

2 2

2 2P

T T T
C k Q

t x y


   
= + + 

   
           (1) 

 
where T = temperature (K), CP = specific heat (J/kg.K), ρ = density (kg/m3), k = thermal conductivity 
(W/m.K) and Q = heat generation (W/m3). The Dirichlet boundary condition is assumed around the 
problem domain, which is a 1 m × 1 m square plate, as shown in Figure 1. 
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TW, TS, TE, and TN represent the boundary temperature at the West, South, East, and North 
boundary, respectively. In this study, the values of constants applied are CP = 910 J/kg.K, ρ = 2710 
kg/m3, k = 205 W/m.K and Q = 400 kW/m3. Only the Dirichlet boundary condition is assumed. The 
temperatures at the edges at TW, TS, TE and TN are set as 300K, 500K, 700K and 1000K, respectively. 
For the transient case, the initial temperature is assumed as 283 K. To ensure the consistency of 
comparison between both methods; we avoided the interference of mesh structure on the results 
by applying a structured Cartesian mesh with a similar mesh size for both GFEM and FVM. 

 

 

Fig. 1. The problem domain of 
the 2D diffusion problem 

 
2.1 Galerkin Finite Element Method 

 
In GFEM, interpolation function N is included in the governing equation before integration occurs. 

Eq. (1) is integrated to form Eq. (2): 
 

2 2

2 2
0P

T T T
w k Q C d

tx y




    
+ + −  =  

              (2) 

 
where Ω is the problem domain, while w is the weight function. In the GFEM, the weight function is 
equivalent to the interpolation function. Using quadratic interpolation techniques as illustrated in 
Figure 2, the interpolation functions can be assumed as N1 = (1–x)(1–y)/4, N2 = (1+x)(1–y)/4, N3 = 
(1+x)(1+y)/4 and N4 = (1–x)(1+y)/4. 

 

 

Fig. 2. Quadratic interpolation scheme for 
element in GFEM 
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Integrating Eq. (2) by part will form: 
 

( )

0

P

T N T N T
NQ d N C d k d k d

t x x y y

T T
Nk d Nk d

x y


   

 

        
− − −     

         

   
+  +  =  

    

   

 
     (3) 

 
in which the integrated equation in Eq. (3) signifies the integration over the volume (for three-
dimensional cases) or area (two-dimensional cases) of the element. Γ represents the edges of the 
element. Upon integration over the element domain, the first and second terms in Eq. (3) become 
Eq. (4) and Eq. (5), respectively. 
 

( ) ( )e

QNQ d Q x y k


  =   =
             (4) 

 

( )e

P P Tr

t t

T T T
N C d C x y dt k dt

t t t
 



         =   =                       (5) 

 
Meanwhile, the third and fourth terms in Eq. (3) can be developed using the Galerkin approach 

to form a local stiffness matrix. In GFEM, the approximated temperature field is: 
 

( ) ( ) ( ) ( )1 1 2 2 3 3 4 4, , , ,hT T N x y T N x y T N x y T N x y= + + +         (6) 

 
where T1, T2, T3, and T4 represents the temperature at location 1, 2, 3, and 4, respectively, as shown 
in Figure 2. By substituting Eq. (6) into the third and fourth terms in Eq. (3), 
 

 
2 2

1 1

Ty x T

i i i i

y x

N N N NN T N T
k d k d k dxdy

x x y y x x y y 

                 
 −  = +                            

    T    (7) 

 
taking: 
 

( )
2 2

1 1

Ty x T
ei i i i

y x

N N N N
dxdy k

x x y y

             + =                    
          (8) 

 
Then Eq. (7) can be written in a simpler form: 
 

( )  eN T N T
d d k

x x y y 

       −  =            T          (9) 

 
Upon analytical integration on Eq. (7) based on quadratic interpolation techniques, a local 

stiffness matrix can be formed as in Eq. (10). The principle of the derivation of GFEM formulation can 
be found in Ref. [33]. 
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( )

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

2 / 3 1/ 6 1/ 3 1/ 6

1/ 6 2 / 3 1/ 6 1/ 3

1/ 3 1/ 6 2 / 3 1/ 6

1/ 6 1/ 3 1/ 6 2 / 3

e

k k k k

k k k k
k

k k k k

k k k k

− − −   
   

− − −
     = =

     − − −
   

− − −  

                 (10) 

 
The local stiffness matrix in Eq. (10) must be expanded to form a global stiffness matrix. By taking 

the number of nodes in the problem domain as 3 × 3 as an example, a simple, symmetry global 
stiffness matrix can be formed as in Eq. (11). The Dirichlet boundary condition has been included in 
the equation. 

 

8 / 3 2 / 6 0 2 / 3 1/ 6 0 0 0 0

2 / 6 8 / 3 2 / 6 1/ 6 2 / 3 1/ 6 0 0 0

0 2 / 6 8 / 3 0 1/ 6 2 / 3 0 0 0

2 / 3 1/ 6 0 8 / 3 2 / 6 0 2 / 3 1/ 6 0

1/ 6 2 / 3 1/ 6 2 / 6 8 / 3 2 / 6 1/ 6 2 / 3 1/ 6

0 1/ 6 2 / 3 0 2 / 6 8 / 3 0 1/ 6 2 / 3

0 0 0 2 / 3 1/ 6 0 8 / 3 2 / 6 0

0 0 0 1/ 6 2 / 3 1/ 6 2 / 6 8 / 3 2 / 6

0

− − −

− − − − −

− − −

− − − − −

− − − − − − − −

− − − − −

− − −

− − − − −

1,1

1,2

1,3

2,1

2,2

2,3

3,1

3,2

3,3

(2 / 3 1/ 6)(1/ 2)

(2 /0

(1/ 2)

(2 / 3)

0

(2 / 3)

(1/ 2)

0

(1/ 2)0 0 0 1/ 6 2 / 3 0 2 / 6 8 / 3

SW

E

W

E

W

E

T TT

T

T T

T T

T

T T

T T

T

T T

+    
    
    
    
    
    
     = +
    
    
    
    
    
    

− − −    

3 1/ 3)

(2 / 3 1/ 6)

0

0

0

(2 / 3 1/ 6)

(2 / 3 1/ 3)

(2 / 3 1/ 6)

S

S

N

N

N

T

T

T

T

T

 
 

+
 
 +
 
 
 
 
 
 +
 

+ 
 

+ 

           (11) 

 
Eq. (11) must be further expanded according to the prescribed number of nodes. Now by applying 

Green’s Theorem to integrate the last two terms of Eq. (3), Eq. (12) can be formed. 
 

( )i x x y y

S

T T
Nk d Nk d k N q n q n ds

x y 

   
 +  =  +   

                        (12) 

 
In the current study, Green’s integrals of Eq. (12) can be eliminated since zero heat flux is assumed 

throughout the domain. Combining Eqs. (4), (5) and (9) into Eq. (3), Eq. (13) can be formed. 
 

( ) ( ) ( )   0
e e e

Q Tr

t

T
k k dt k k

t

      + + =        T                    (13) 

 
Eq. (14) can be yielded for computation of transient conduction problem by taking the time 

integral via the implicit method, 
 

( )   ( ) ( )  1 1D V
e e ee n n

Tr Q Trk k k k
k

+        + = +        
T T                   (14) 

 
The superscripts D and V represent diagonal and vertical matrices, respectively. If the conduction 

is steady, Eq. (14) is simplified as in Eq. (15). 
 

( ) ( )   0
e e

Qk k k   + =
   

T                       (15) 
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For cases in which there is no heat generation, Q = 0. 
 

2.2 Finite Volume Method 
 
Instead of integrating over the problem domain by incorporating the interpolation function of 

nodes as in GFEM, FVM directly integrates the conservation equation by considering the heat flux 
across the boundary of the domain. The field variables computed via FVM and GFEM are in the middle 
and edges of the domain boundary, respectively.  

In this paper, the time marching method used is the implicit method. By taking a regular grid size 
over x- and y- components, the discretised Eq. (1) via FVM is illustrated as in Eq. (16). 
 

2 22
1 1 1 1 1

, 1, 1, , , 1 , 14n n n n n nP P
i j i j i j i j i j i j

C x C xQ x
T T T T T T

k t k k t

 + + + + +
− + − +

  
− − = + − + + + 

  
              (16) 

 
Eq. (16) is transformed into a matrix form to be solved iteratively. Since the detailed formulation 

of FVM has been widely discussed, such as in the work of Versteeg and Malalasekara [34] and 
Kajishima and Taira [35], the procedure of matrix formation via FVM will not be elaborated further 
here.  

Perhaps, Eq. (16) can be obtained by the Finite Difference Method (FDM) as well because at a 
uniform structured grid, both FVM and FDM can be simplified to form a similar equation. However, 
the FDM is formulated by Taylor series expansion, which differs from the integration over the control 
volume surface as applied in the FVM. Therefore, although FVM and FDM would lead to a similar 
equation as in Eq. (16), they are similar but not identical.  
 
Meanwhile, Eq. (16) can be for steady-state diffusion simplified to form Eq. (17). 
 

( )1 1 1 1 1
1, 1, , , 1 , 12

4n n n n n
i j i j i j i j i j

k
T T T T T Q

x

+ + + + +
− + − ++ − + + = −


                  (17) 

 
Similarly, for a case in which there is no heat generation, Q = 0. 
 
3. Results and Discussion 
3.1 Steady-state Heat Conduction 

 
As discussed in the last section, solvers for both GFEM and FVM were developed using MATLAB. 

The number of nodes applied is 15 × 15, while the grid size is uniform across all the domains, as 
manifested in Figure 3. For validation purposes, a more straightforward case is applied here. We take 
TW, TS, TE, and Q are zero while TN = 1000 K. The analytical solution for the validation case is: 
 

( ) ( ) ( )
1

, sin sinhn

n

T x y A n x n y 



=

=                     (18) 

 

where 
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( )

( )1 cos2000

sinh
n

n
A

n n



 

− 
=  

 
                     (19) 

 
By taking the temperature along the middle of the x-axis, the comparison between the analytical 

solution, GFEM solution and FVM solution can be shown in Figure 4. Although the GFEM solution is 
slightly overpredicting the temperature field, its temperature distribution follows the trendline of the 
analytical solution, in general. Anyhow, FVM has higher accuracy compared with GFEM [36]. The 
coefficient of the multiple determination (R2) plot in Figure 5 further proved that FVM could predict 
the temperature field slightly better than GFEM. The curve’s derivative in Figure 5 for GFEM and FVM 
solution is about 1.0115 and 0.1069, respectively. The lower the curve’s derivative, the more accurate 
the result is. The root means square error (RMSE) for the solution using GFEM and FVM is 48.6076 
and 4.4496, respectively. This phenomenon implies that the GFEM solution would give a higher and 
over-estimated temperature field than the actual solution compared with FVM. 

 

 
Fig. 3. Uniform meshing for the problem domain 

with 15 × 15 number of nodes 

 

 
Fig. 4. Comparison between analytical solution, GFEM and 

FVM for validation case 
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Fig. 5. Coefficient of multiple determination (R2) plot 

between analytical solution, GFEM, and FVM 

 

The simulation is expanded with non-zero values for TW, TS, TE, and TN, as the last section 
prescribes. The temperature distribution for steady-state conduction, with and without heat 
generation, has been illustrated in Figure 6. It can be observed that the temperature field predicted 
by GFEM would have higher value, which is in line with the trendline as shown in Figure 4. The over-
prediction of GFEM becomes more apparent when there is heat generation, and this phenomenon 
can be observed by comparing Figure 6(c) and Figure 6(d). 

Upon further scrutiny of the heat fluxes across the boundary (see Eq. 19), based on the 
temperature computed by GFEM, it can be found that there is a spurious heat flux across the problem 
domain. By taking steady conduction as an example, the results computed by FVM are almost free 
from spurious heat flux, while the field variable computed from GFEM is susceptible to spurious heat 
flux. These residuals of the GFEM results could be because GFEM formulation cannot ensure the 
conservativeness of heat flux. The erroneous heat flux of GFEM can be demonstrated in Figure 7. 
 

( )
22

1 1

Heat flux

yx

i x x y y i i

x y
S S

T T
k N q n q n ds k N N ds

x y

  
 =  +  = +
  
 

                  (20) 

 
However, FVM may suffer spurious heat flux if there is heat generation, yet it is much lower than 

GFEM. The spurious heat flux produced by FVM is also more consistent, as shown in Figure 7(d). The 
spurious heat flux suffered by GFEM is more severe near the corners and boundaries. We also further 
computed the average spurious heat flux for both methods when heat generation ranges from 0 
kW/m3 to 700 kW/m3, as illustrated in Figure 8. The magnitude of spurious heat flux increases 
proportionally with the amount of heat generation. It shows that GFEM generates more spurious 
heat flux as heat generation increases. Perhaps, GFEM is having approximately 2% more spurious 
heat flux than FVM. 
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(a) 

 

(c) 

 
(b) 

 

(d) 

 
Fig. 6. Temperature distribution on the problem domain without heat generation when: (a) GFEM and 

(b) FVM are applied; with heat generation (400 kW/m3) when (c) GFEM and (d) FVM are applied 

 

(a) 

 

(c) 

 
(b) 

 

(d) 

 
Fig. 7. Spurious heat flux (W/m2) across the problem domain without heat generation when: (a) GFEM 

and (b) FVM are applied; with heat generation when (c) GFEM and (d) FVM are applied 



Journal of Advanced Research in Numerical Heat Transfer 

Volume 15, Issue 1 (2023) 24-42 

33 
 

 
Fig. 8. Average spurious heat flux (W/m2) across 
the problem domain using GFEM and FVM due 
to different amounts of heat generation (W/m3) 

 

3.2 Transient Heat Conduction 

 
The simulation results for transient heat conduction without and with heat generation (400 

kW/m3) computed using GFEM and FVM are shown in Figure 9 and Figure 10, respectively. The 
temperature contours were plotted with consistent contour values and spatial coordinates for 
possible benchmarking in the future. The change of temperature field is captured at 633 seconds, 
1265 seconds, 1898 seconds, and 2531 seconds. The initial temperature is set constant at 283 K for 
all the cases. In the transient case computation, the Courant number (see Eq. 21) of 0.5 ensures stable 
time marching. 

 

Courant number
k t

x


=


                      (21) 

 
The computed temperature change concerning time using GFEM and FVM is demonstrated in 

Figure 11. The comparison is made when the heat generation is ignored, from top to bottom, at the 
middle of the x-axis. At the early stage of computation, FVM shows a higher value than GFEM. 
However, when the solution is close to converge, the GFEM would appear to have a 2 – 4% over-
prediction of temperature. 

 
3.3 General Comments for Comparison between GFEM and FVM 

 
In general, GFEM exhibits greater numerical errors and spurious heat flux than FVM. Further 

examination was made to study the effect of mesh size towards its numerical accuracy and 
computational cost. The mesh size was increased exponentially from 15 × 15 to 55 × 55. The average 
error (%) for GFEM remained the same (26%) although the mesh size increased exponentially. The 
high error of GFEM can be due to its un-conservativeness, which will be discussed in detailed later in 
this section. Meanwhile average error for FVM decreases as the mesh size increased, as illustrated in 
Figure 12. Moreover, it can be discovered also that the computational time required by GFEM is 
about 34% than higher than FVM, in all mesh size tested, as shown in Figure 13.  
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(a) t = 633 seconds, GFEM 

 

(e) t = 633 seconds, FVM 

 
(b) t = 1265 seconds, GFEM 

 

(f) t = 1265 seconds, FVM 

 
(c) t = 1898 seconds, GFEM 

 

(g) t = 1898 seconds, FVM 

 
(d) t = 2531 seconds, GFEM 

 

(h) t = 2531 seconds, FVM 

 
Fig. 9. Temperature field computed using GFEM at (a) 633 seconds, (b) 1265 seconds, (c) 1898 seconds, 
and (d) 2531 seconds; and FVM at (e) 633 seconds, (f) 1265 seconds, (g) 1898 seconds, and (h) 2531 
seconds without heat generation 
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(a) t = 633 seconds, GFEM 

 

(e) t = 633 seconds, FVM 

 
(b) t = 1265 seconds, GFEM 

 

(f) t = 1265 seconds, FVM 

 
(c) t = 1898 seconds, GFEM 

 

(g) t = 1898 seconds, FVM 

 
(d) t = 2531 seconds, GFEM 

 

(h) t = 2531 seconds, FVM 

 
Fig. 10. Temperature field computed using GFEM at (a) 633 seconds, (b) 1265 seconds, (c) 1898 seconds, 
and (d) 2531 seconds; and FVM at (e) 633 seconds, (f) 1265 seconds, (g) 1898 seconds, and (h) 2531 
seconds with heat generation (400 kW/m3) 
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(a) 

 
(b) 

 
Fig. 11. Comparison of nodal temperature computed using GFEM and FVM at 
the middle line of the x-axis at the different capturing times for the case: (a) 
without heat generation and (b) with heat generation (400 kW/m3) 
 

 
Fig. 12. The relationship between average error (%) with the mesh size of 

GFEM and FVM 
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Fig. 13. The computational time required at different the mesh 

size for GFEM and FVM 

 

3.4 Relations between GFEM and FVM 

 
If we take the weight function w in Eq. (2) as unity, i.e., 1, the first derivative of the weight function 

will produce zero, i.e., 
 

( )1 0
w N

X X X

  
= = =

  
 

 
The weak formulation of the governing equation in Eq. (3) can then be simplified to form Eq. (22), 

perhaps the FVM discretisation technique. Therefore, FVM can also be perceived as a unique form of 
FEM if N = 1 and the heat flux is non-zero. Meanwhile, in FEM, zero heat flux is assumed within the 
element, and thus Eq. (23) can be formed. The detailed and generic mathematical explanation of the 
conciliation can be referred to in the work of Wu et al., [37].  
 

( ) 0P

T T T
NQ d N C d Nk d Nk d

t x y


   

      
− + +  =    

                           (22) 

 

( ) 0P

T N T N T
NQ d N C d k d k d

t x x y y


   

        
− − −  =    

                                   (23) 

 
From Eq. (22) and Eq. (23), it can be observed that only the heat fluxes across the boundary are 

considered in FVM, while only the temperature gradients within the control body are considered in 
FEM. These formulations, despite contradictory, may lead to an almost similar solution. Such a fact 
is due to the difference in the configuration of nodal-element integration. The configuration can be 
visualised in Figure 14.  

In FEM, the integration boundary is located at the line/surface, which links the nodes, while in 
FVM, the integration boundary is located at the line/surface, which separates the nodes. In FVM, the 
heat flux can be applied to define the relations between the nodes because the heat flux vector is 
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positioned precisely in the adjacent nodes. Meanwhile, it is impractical, too, if we try to estimate the 
temperature distribution within the control volume because the corner of the control volume is not 
pinned with a node to store any variables’ value. On the contrary, for FEM, there is no node located 
in adjacent heat flux of similar direction, and thus it is impractical too to estimate any temperature 
via heat flux across the integration boundary. To compensate for this shortcoming, FEM applies an 
interpolation function to predict the temperature distribution within the integration boundary; as 
we can see, the nodes are located at the corner of its integration boundary. 

 

 
Fig. 14. Nodal-element configuration for FEM and FVM 

 
Let us observe the central node in Figure 14 and prescribe the relations between the nodes via 

FEM and FVM. Apparently, the relations between the central node and its nodes can be formed using 
one integration domain when FVM is applied. However, we need four integration domains to form 
similar relations if FEM is applied. Moreover, FVM only interpolates four adjacent nodes to compute 
the value of a variable at the central node, while FEM interpolates eight adjacent nodes. The 
interpolation values formed via FEM and FVM can be illustrated in Figure 15. The nodal interpolation 
function for FVM can be shown in Eq. (24). If we re-write the nodal interpolation function for FEM in 
a way similar to FVM, Eq. (25) can be formed. The additional four nodal points required in FEM also 
implies that the formation of stiffness matrix and boundary conditions of FEM would be more 
complicated than FVM. Such a relatively complicated matrix would slow down the execution time, 
i.e., the time required for computer to generate the stiffness matrix and inverse the matrix. 
 

( ), 1, 1, , 1 , 1

1

4
i j i j i j i j i jT T T T T+ − + −= − + + +                     (24) 

 

( ) ( ) ( ), 1, 1, , 1 , 1 1, 1 1, 1 1, 1 1, 1

1 1 1

8 4 16
i j i j i j i j i j i j i j i j i jT T T T T T T T T+ − + − + + + − − + − −= − + − + − + + +                (25) 
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Fig. 15. Relations of interpolation constants for (a) GFEM and (b) FVM 
 

According to the Leibniz theorem on fluid flow (see Eq. 26), the rate of change of an unsteady 
vector ϕ is equivalent to the net generation of ϕ within the control volume and the net flux of ϕ 
across the control surface [38].  
 

( ) ( )

( )
( )

  
V t V t A t

d d
dV dV v n dA

dt dt


 = +                       (26) 

 
Make note that n  signifies that the inflow and outflow of ϕ are directed orthogonally to the 

control surface. In other words, only the x- and y- direction adjacent nodes of the central node will 
be involved in the computation in a two-dimensional context. With this regard, the residuals of 
interpolation constants for FVM will be 0, which implies that FVM would ensure the conservativeness 
of the transport equation. Whereas in FEM, the residuals of the constants would be 2/3 if only the x- 
and y- adjacent direction nodes are considered. Such a residual would lead to unwanted under-
prediction or over-prediction of results. This residual is also an important reason why the numerical 
error remained un-addressed, although the mesh size for GFEM is increased exponentially. 
Moreover, since the formulation of FVM can directly answer the call of Leibniz’s theorem on fluid 
flow, FVM appears to be more conservative than FEM. 

Several research studies also further verified our findings. Sváček et al., [39] applied both FEM 
and FVM for 3D turbulent flow, and they concluded that FEM requires extra algorithm for executing 
the boundary conditions. Moreover, the stabilising technique in FEM requires further validation. 
Molina-Aiz et al.,[40] simulated the natural ventilation in greenhouses via FEM (ANSYS®/FLOTRAN v. 
11.0) and FVM (ANSYS®/FLUENT v 6.3), and they found that FEM would provide a slightly larger value 
of ventilation rate. Moreover, FEM requires twice of the computational time taken by FVM, and 10 
times of memory storage as required by FVM. Lopes et al.,[41] also compared the computational 
performance between FEM and FVM commercial software by simulating the fluid-structure 
interaction of blood flow, and they concluded that with sufficient number of grid size, both FVM and 
FEM would give identical results. Nonetheless, FEM (COMSOL®) required 483 hours of simulation time 
and 73.3 GB of memory storage, compared with 220 hours and 26.6 GB of FVM (ANSYS®). However, 
Frisani and Hassan [42] presented an interesting comparison of FEM and FVM in Immersed Boundary 
Method environment for flow across a stationary and moving cylinder at low Re. In IBM, FEM would 
provide a solution with superior accuracy compared with FVM, yet with the expense of extremely 
high computational effort. 

Efforts are constantly made by various researchers to leverage the advantages of FEM and FVM 
for simulation by introducing hybrid FEM-FVM simulation techniques. Often, such FEM-FVM methods 
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were applied in fluid-structure Multiphysics problems. For instance, Sargado et al.,[43] and Asadi et 
al.,[44] proposed such strategy to simulate phase-field fracture and hydro-mechanical interactions in 
porous media, respectively. Moreover, it is a good idea to integrate the consideration of heat flux of 
FVM into FEM, whereby the spurious heat flux in this paper can be regarded as the residuals to be 
corrected by modifying the interpolation functions. Such refinement strategy can be done by 
incorporating the Residual Distribution method or Fluctuating Splitting method into FEM, and the 
mathematical discussion on the technique can be found in the work of van der Waide [45], Rossiello 
et al.,[46], Abgrall et al.,[47], Neoh and Ismail [48], and Colombo and Re [49]. There are more room 
of improvement for modifying FEM to be more conservative. 
 

4. Conclusion 

 

Despite the advantages and potentials explained in the Introduction, GFEM is prone to spurious 
heat flux and is not conservative compared with FVM in the two-dimensional domain. Over-
prediction of temperature field between 2% to 4% can be observed. Moreover, GFEM is 
computationally more expensive (34% higher than FVM) and complex and is not as straightforward 
as FVM. Nonetheless, the temperature distribution pattern interpolated via GFEM is similar to the 
results obtained via FVM. More efforts need to be made to increase the accuracy and applicability of 
GFEM in CFD, such as improving the interpolation function and incorporating Residual Distribution 
method or Fluctuating splitting method into GFEM.  
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