
 
Journal of Advanced Research in Numerical Heat Transfer 15, Issue 1 (2023) 43-52 

43 
 

 

Journal of Advanced Research in 

Numerical Heat Transfer 

  

Journal homepage: 
https://semarakilmu.com.my/journals/index.php/arnht/index 

ISSN: 2735-0142 

 

Falkner-Skan Flow of Nanofluid with Convective Boundary Condition 
 

Nurul Diana Mohammad1, Nur Ilyana Kamis1, Mohamad Hidayad Ahmad Kamal1, Sharidan  
Shafie1, Noraihan Afiqah Rawi1,* 

 
1 Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia 
  

ARTICLE INFO ABSTRACT 

Article history: 
Received 29 September 2023 
Received in revised form 20 October 2023 
Accepted 25 November 2023 
Available online 31 December 2023 

This study focuses on the investigation of nanofluid flow with convective boundary 
conditions past a static wedge by considering copper as the chosen nanoparticles and 
water as the conventional base fluid. The governing partial differential equations (PDE) 
are transformed into a set of nonlinear ordinary differential equations (ODE) by using 
an appropriate similarity transformation. The transformed governing equations are 
then solved numerically by using the Keller-box method. The significant impact of 
parameters included wedge angle parameter, mixed convection parameter, volume 
fraction of nanoparticle and Biot number are presented. The graphical analysis on 
velocity and temperature profiles revealed that the increasing values of all considered 
parameters causes the increment of velocity of the flow. Meanwhile, significant 
changes on the temperature profiles are clearly depicted on the increment of 
nanoparticle volume fraction as well as the Biot number. 
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1. Introduction 
 

New heat transfer fluids known as nanofluids have been found to possess unique characteristics 
such as the thermal conductivity, thermal diffusivity and viscosity compared to those conventional 
fluid that make them potentially useful for a broad variety of heat transfer applications, including 
engine cooling, vehicle thermal management, residential refrigerators, chillers, heat exchanges, and 
many others. For the boundary layer flow problem, two well-known nanofluids have been used 
theoretically for studying the characteristic of fluid flow and heat transfer. Buongiorno model [1] 
demonstrated that the mobility of nanoparticle causes enhanced turbulence and thermal dispersion 
by assuming seven slip mechanisms including brownian diffusion, diffusiophoresis, fluid drainage, 
inertia, thermophoresis, magnus effects, and gravity. Among the seven slip processes in nanofluid, 
thermophoresis and Brownian diffusion have been identified as the most important slip mechanism. 
Meanwhile, Tiwari and Das model [2] focused on the effect of types of nanoparticles and base fluid 
as well as the nanoparticles volume fraction. Extensive studies on the convective boundary layer flow 
of nanofluid considering both models have been undertaken by many researchers. Noghrehabadi et 
al., [3] performed the entropy analysis for nanofluid flow over a stretching sheet with the presence 
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of heat generation/absorption and partial by taking into consideration the effect of brownian and 
thermophoresis. Rawi et al., [4] investigated the fully developed heat transfer by mixed convection 
flow of nanofluid in a microgravity environment by choosing two different types of nanoparticles, 
which are aluminium oxide and copper. The suspended nanoparticles substantially improved the 
conductivity and viscosity of the conventional base fluid, and consequently enhanced the heat 
transfer rate of the fluid. Rawat and Kumar [5] carried out the theoretical analysis on the Cu–water 
nanofluid stagnation point flow past a stretching/shrinking sheet in presence of thermal radiation, 
heat generation/absorption, suction, slip, and activation energy. In the recent investigation of heat 
and mass transfer characteristics of nanofluid flow, Reddy and Sreedevi [6] scrutinized the effects 
chemical reaction, thermal radiation, magnetic field, thermal stratification and solutal stratification. 

Nanofluid flow past wedge-shaped geometries have gained much consideration due to their 
existence range of applications in engineering and science. Yacob et al., [7] studied the Falkner-Skan 
problem for a static and moving wedge with prescribed surface heat flux on nanofluid. They 
discovered that copper-water nanofluids have the highest skin friction coefficient and rate of heat 
transfer at the surface compared to the alumina–water and titania–water nanofluids. Alam et al., [8] 
explored about the solution of Falkner-Skan unsteady MHD boundary layer flow and heat transfer 
past a moving porous wedge in a nanofluid. They revealed that the velocity decreases for increasing 
values of velocity ratio parameter but increases for magnetic parameter, unsteady parameter, 
permeability parameter and pressure gradient parameter. Mishra et al., [9] showed by increasing of 
Falkner-Skan parameter, the flow of nanofluid across the wedge is accelerated. They also showed 
that there is an increasing trend with the Falkner-Skan coefficient for the surface shear stress 
coefficient, mass transfer rate, and heat transfer rate. In the following year, Waqas et al., [10] 
examined the Falkner-Skan bioconvection flow of a cross nanofluid with melting across a moving 
wedge and showed that by improving the values of wedge angle parameter enhanced the velocity 
profile for both scenarios of a static and moving wedge. They also concluded that the bioconvection 
Rayleigh number, buoyancy ratio parameter, and infinite shear rate viscosity reduced the Falkner-
Skan nanofluid's velocity. Recently, Akbar [11] observed that the wedge angle enhanced the surface 
heat flow as well as the coefficient of skin friction, and the applied external electric field changes the 
laminar boundary-layer separation from the static and moving wedge surface. 

Convection boundary conditions, also called Newton boundary conditions in heat transfer, are 
derived from surface energy balances and refer to the presence of convection heating or cooling at 
the surface. This condition has received tremendous attention in the nanofluid boundary layer flow 
due to its substantial heat transfer enhancement. Ray et al., [12] explored that the behaviour of 
temperature and the volume percentage of nanoparticle differs depending on the thermophoresis 
parameter due to the influence of the convective boundary condition and Biot number which leads 
to an improvement in the thickness of the momentum, thermal, and concentration boundary layers. 
Zainal et al., [13] considered the mixed convection stagnation point flow of hybrid nanofluid past a 
vertical flat plate. In the study, dual solutions which are upper and lower solutions have been 
detected and successfully proven for certain range of mixed convection parameter. On the other 
hand, Low et al., [14] who explored the dusty nanofluid flow with the presence of magnetic field 
concluded that an increase in Biot number which represented the influence of convective boundary 
condition on the fluid flow has improved the flow temperature, consequently enhanced the heat 
transfer rate. They also observed that the magnetic field parameter has a tendency to create an 
opposing force to the flow, lowering the velocity boundary layer while increasing the heat boundary 
layer. Later, the free convection flow of magnetic nanofluid with aligned magnetohydrodynamics 
over a moving vertical plate was analyzed by Rosaidi [15]. 
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The literature review above presents the various studies on convection nanofluid flow with 
various geometries including wedge-shaped with the absence or presence of convective boundary 
conditions. Thus, the present study aims to analyze the fluid flow behaviour and heat transfer 
characteristic on mixed convection nanofluid flow with convective boundary condition effect past a 
static wedge. The transformed governing equations are solved numerically using Keller-box method.   
 

2. Problem Formulation  
 
The two-dimensional and incompressible nanofluid flow over a static wedge in the presence of 

convective boundary conditions considered. The nanoparticle and conventional base fluid that have 
been considered in this flow is copper (Cu) and water (H2O). Figure 1 shows the schematic diagram 
of mixed convection flow of nanofluid over a static wedge. 

 

 
Fig. 1. Schematic diagram of mixed 
convection flow of nanofluid over a 
static wedge 

 
Consider Falkner-Skan flow situation illustrated in Figure 1 where water-based nanofluids are 

present along a heated static wedge inclined at an angle 
2

  with respect to the horizontal where 

2

1

m

m
 =

+
 is the Hatree pressure gradient. Let denote the velocities along the x-direction and y-

directions as u and v respectively where x -coordinate extends along the surface of the wedge, while 
the y-coordinate is perpendicular to it. This study focuses on a static wedge where a pressure gradient 
is employed to achieve a desired velocity profile in the free stream, denoted by 

 

( ) mU x ax=   (1) 

 
where 0a  is a constant and m is a wedge angle parameter. While, the temperature of the wedge 
as follows  
 

2 1m

wT T bx −

= +              (2) 

 

where T  represent the ambient temperature and b is a constant [7]. The basic governing equations 

for this problem are given by: 
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with boundary conditions, 
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( ),  as 
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where 1, ( ) , , ( ) , , , , ,nf p nf nf nf f f wv C k g h T T T   represent the effectiveness kinematic viscosity, heat 

capacity of nanofluid, thermal conductivity, coefficient of thermal expansion, gravity, convective heat 
transfer coefficient, temperature of the fluid, convective fluid temperature, and temperature of the 
wedge wall respectively. The expression of nanofluid constants is defined as [4,16], 
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 (7) 

 
Here, f is the nanoparticles volume fraction which is the concentration of the nanoparticles to be 

added in the chosen base fluid, where subscript f and s represent the fluid and solid component in 
the nanofluid mixture respectively. The thermophysical properties of copper and water are shown in 
Table 1 [16,17]. 
 

Table 1 
Thermophysical properties of the base fluids (H2O) and 
nanoparticles (Cu)  

Physical Properties Base Fluids (H2O) Nanoparticle (Cu) 

𝐶𝑃(J/kg K) 4179 385 
𝐾(W/mK) 0.613 400 
𝜌(kg/m3) 997.1 8933 
𝛽1 × 10−5(mK) 21 1.67 

 
The following similarity transformation are adopted from studies by Bhatti et al., [18], given as 

follows: 
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where   is the similarity variable, f is a dimensionless stream function,   is the dimensionless 

temperature profile and   is the stream function defined as u
y


=


and v
x


= −


. The governing 

Eq. (4) and (5) are then simplified to ordinary differential equations using similarity transformation 
(8) as follows 
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where 
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with transformed boundary conditions given as, 
 

 '( ) 0, ( ) 0, '( ) 1 ( )  at 0
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where 
2

( 1) ( )

f fh v x
Bi

k m U x
=

+
 is the local Biot number. 

 
3. Results and Discussion 
 

An implicit finite difference scheme called Keller-box method is employed to numerically 
compute the transformed governing Eq. (9) and (10) together with the transformed boundary 
condition (11). Table 2 presents the comparison of the steady state numerical solutions where 
( 0)Bi = = =  with those obtained by Yih et al., [19], Yacob et al., [7], Dinarvand et al., [20] and 

Bhatti et al., [18] for various values of wedge angle parameter, m. Compared to the published results, 
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our results appear to be in close agreement, demonstrating the reliability of the numerical method. 
This table also clearly shows that the skin friction, ''(0)f  increases with wedge angle parameter, m. 

 
Table 2 
The result comparison for skin friction, ''(0)f  with 0Bi = = =  for various values of wedge angle 

parameter, m 
m Yih et al., [19] Yacob et al., [7] Dinarvand et al., [20] Bhatti et al., [18] Present 

results 

0 0.46960 0.4696 0.469600 0.469600 0.469645 
0.2 0.80213 0.8021 0.802125 0.802126 0.802129 
0.5 1.03890 1.0389 1.038903 1.038900 1.038904 
1 - 1.2326 1.232587 1.232590 1.232588 

 
The values for nanoparticles volume fraction for all graphs lies in the range of 0 0.3   as 

suggested by Zainal et al., [13]. When 0 = , it indicates the regular base fluid. Meanwhile, Prandtl 

number, Pr is set to be 6.2 since the base fluid used in this study is water. Figures 2 to 5 depicts the 
influences of wedge angle parameter m, mixed convection parameter , solid volume fraction of 
nanoparticles,   and Biot number, Bi respectively on the variations of velocity and temperature 

profiles. For all graphs, the nondimensional values are fixed to 0.5, 1.0, 0.1m  = = = and 0.3Bi =  

except the varies values presented in the figures. 
From Figure 2, it can be observed that by the increasing values of m indicate a favourable pressure 

gradient, which improves flow within the boundary. This also can be illustrated that boundary layer 
thickness is inhibited by improving the pressure gradient [18]. While temperature of the nanofluid is 
reduced by enhancing the magnitude of m for situations static wedge. These findings aligned closely 
with the outcomes reported by Yacob et al., [7] that the thermal boundary layer thickness diminishes 
as m increases and resulting in a decrease in surface temperature. Consequently, the heat transfer 
rate at the surface increases progressively. 

 

 
Fig. 2. Velocity profile '( )f   and temperature profile ( )   for various value of m 

 

From Figure 3, it can be analysed that λ influenced the fluid flow over the wedge. Higher values 
of λ typically result in a stronger forced convection component and leading to increased fluid velocity 
near the wedge surface. This, in turn, affects the boundary layer thickness and heat transfer 
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characteristics. Therefore, a thinner boundary layer implies a faster velocity near the surface. While 
tempearure of the nanofluid decrease as the λ increases because the forced convection component 
becomes more dominant, resulting in enhanced heat transfer in the nanofluid flow on the wedge. 
This is because the enhanced fluid movement induced by mixed convection helps in carrying heat 
away from the heated surface more efficiently.  

 

 
Fig. 3. Velocity profile '( )f   and temperature profile ( )   for various value of λ 

 

From Figure 4, the addition of copper nanoparticles increases the velocity of the fluid. On the 
other hand, temperature inside the boundary layer exhibits an upward trend as ϕ rises. These 
findings aligned closely with the outcomes reported by Zainal et al., [13]. In accordance with their 
study, it can be inferred that increasing of ϕ in the fluid results in an increment of the boundary layer 
thickness. Therefore, the thermal conductivity of the nanofluid rises and leading to the growth of 
temperature of the fluid. 

 

 
Fig. 4. Velocity profile '( )f   and temperature profile ( )   for various value of ϕ 
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From Figure 5, it is clear that the temperature distribution show increases as Bi increases. 
Referring to the Khan et al., [21], they stated that when 0Bi = , the surface of the wedge is 
completely isolated, indicating a remarkably high internal thermal resistance. Consequently, there is 
no convective heat transfer taking place from the surface of the wedge to the fluid located far away 
from the wedge. However, as predicted, by enhancing the values of Bi, corresponds to a stronger 
convective heat transfer (the temperature inside the boundary layer increase) and leading to a 
thinner thermal boundary layer. As a result, thinner boundary layer typically associated with higher 
velocities near the surface of the wedge. 

 

 

Fig. 5. Velocity profile '( )f   and temperature profile ( )   for various value of Bi 

 
4. Conclusions 
 

The Falkner-Skan flow of nanofluid with convective boundary condition is investigated. The 
numerical results are plotted to explore the significant impact of wedge angle parameter m, mixed 
convection parameter λ, volume fraction of nanoparticle, ϕ and Biot number, Bi on velocity and 
temperature profiles. Main outcomes of the graphical analysis are listed via the following points: 
 

i. Larger values of wedge angle, mixed convection, nanoparticle volume fraction and Biot 
number enhance the velocity of nanofluid. 

ii. Temperature declines by the increment of m and λ but rises in the increment of ϕ and Bi. 

iii. Boundary layer thickness are increase as the velocity of the nanofluid are decrease and 
temperature of nanofluid are increase. 

iv. Enhancing the values of m and λ are leading to a thinner thermal boundary layer.  

v. Increasing of ϕ and Bi in nanofluids results in an increment of the boundary layer 
thickness. 

vi. Increasing ϕ, the viscosity of the fluid is enhanced and leading to increased resistance to 
flow in the presence of shear stress 
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