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ABSTRACT 

The current work is investigating the influence of viscous dissipation on Ellis fluid in peristaltic flow through a rough non -uniform channel. 
The non-linear relationship between shear stress and strain rate is demonstrated by the Ellis liquid model. Dissipation is the process of 

converting downward-flowing water's mechanical energy into thermal and acoustic energy.  Using appropriate non -dimensional 
parameters, the governing equations are transformed into conventional non -linear partial differential equations. The Multi-Step 

Differential Transformation Method is used to find solutions to developing equations.  Velocity near the center of the channe l enhances 

with rising an Ellis fluid parameter, on the contrary, it follows the inverse trend near  the channel wall. Temperature distribution diminishes 

when there is a rise in Brinkman number. Temperature distribution enhances when there is a rise in Ellis fluid parameter.  As  an Ellis fluid 
parameter rises the concentration profile diminishes. Soluta l concentration profile in peristaltic pumping increases by rising the values of 

Brinkman number. The influence of surface roughness in flow of physiological liquids is much helpful in understanding differe nt problems 

related to blood transport in coronary arteries. surface roughness attracted the interest of scientist in chemical engineering to understand 

the significance of roughness of wall formed as a n effect of chemical erosion during flow of chemicals. Graphs depict the influence of 
several parameters on velocity, concentrations, temperature, and streamlines.  
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1. Introduction 
 

Nowadays, Peristaltic transport is one of the most important pumping mechanisms due to its vast 

engineering, medical sciences, and biomechanics appliances. The mechanism of peristalsis is duet to 
a wave transmission along the tube wall or channel. The word “peristalsis” is derived from the Greek 
word “Peristaltikos”, meaning clasping and compression.  In 1966 Latham [1] introduced the 

Peristalsis. Peristalsis is the principle behind many devices, including heart-lung machines, finger and 
roller pumps. The processes of oxygenation and hemodialysis are also biologically significant. Further, 
Shapiro et al., [2] analysed the mechanism of p.eristaltic at low Reynolds number with long 
wavelengths.  Jaffrin et al., [3] demonstrated the mechanism of peristaltic motion in Newtonian and 

non-Newtonian liquids. Non-Newtonian fluid transport phenomena have increased considerably due 
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to their importance in biological and industrial applications. A non-Newtonian fluid model has a non-
linear relationship between shear stress and shear rate. Examples of non-Newtonian liquids are 

polymer solution, ketchup, paint, colloids gel, custard, starch suspension, molten polymer, 
toothpaste shampoo, and blood. An important class of these non-Newtonian fluids constitutes the 
linear viscoelastic model. The reference [4-5] describes how researchers investigated the peristaltic 
transport of fluids in various geometrical configurations. Shapiro et al., (1969) discovered trapping 

theoretically. Trapping can be defined as the region of closed stream lines in the wave frame at high 
flow rates and large conclusions. The streamlines split under certain conditions, forming a 
recirculating closed streamline region. The wave traps the laboratory frame in this region as it 

advances with the wave speed. This is known as "trapping." 
Longwell [6] studied the transport of an Ellis liquid with an impermeable wall through a circular 

tube (1966). The Ellis model combines the power-law and Bingham (viscoplastic) models into a single 

model. The non-linear relationship between shear stress and strain rate is demonstrated by the Ellis 
liquid model. At high shear stresses, it acts like a power-law model, and at low shear stresses, it acts 
like a Newtonian model. The flowing liquid involves water, corrosive or abrasi ve, shear thickening 

elements like oxidizers and gels. Shear-thinning elements like polymer solutions and paints. The 
Power-law model is a motion behaviour that simulates shear-thinning and/or shear thickening 
liquids. When significant departures from the model are observed at low shear rates, the Ellis model 
is appropriate. Due to the power-law liquid model's limiting value behaviour, Ellis proposed a three -

parameter liquid model that switched the roles of shear stress and strain rates to show transport 
characteristics over small shear rate ranges. 

Surface roughness is one of the components of surface texture. The roughness is seen as minute 

irregularities in the surface texture that emerge throughout the production process. The effects of 
surface roughness were first analyzed by Nikuradse (1933). Surface roughness is assumed along the 
surface of geometry and is modelled as a sine waveform; that is, the roughness over the surface is 

mathematically modelled as a sinusoidal waveform having a high frequency and low amplitude. 
Influence of surface roughness in flow of physiological liquids is much helpful in understanding 
different problems related to blood transport in coronary arteries. Mechanism of biofluids have small 

degree of roughness or uncertain spatial variability in Biological organs. Influence on transport 
because of surface roughness attracted the interest of scientist in chemical engineering to 
understand the significance of roughness of wall formed as an effect of chemical erosion during flow 

of chemicals. Due to its wide range of appliances in engineering, studying the influence of wall 
roughness while considering roughness orientation, roughness structure, and roughness element 
shape has become a key area of research. Shukla et al., [15,16] demonstrated the effect of rough 
surface in peristaltic flow through non-uniform inclined channel. Burton et al., [17] analysed the 

surface roughness of the coronary arteries. Taylor et al., [18] studied Characterization of the effect 
of surface roughness. Viscous dissipation changes the temperature distributions by playing a role like 
energy source, which leads to affect heat transfer rates. Dissipation is the process of converting 

downward-flowing water's mechanical energy into thermal and acoustic energy. Shaheen et al., [19] 
explained influence of convectively heated surface with viscous dissipation on sisko fluid. Mehmood 
et al. [20] demonstrated impact of viscous dissipation in peristaltic flow. Abou-Zeid et al., [21] studied 

viscous dissipation on peristaltic motion of micropolar non-Newtonian nano liquid. 
In the view of the above literature, the current study shows the application of viscous dissipation 

and rough surface effects in peristaltic Ellis fluid movement through non-uniform channel 

mathematically. In recent years, there has been a surge of inattentiveness in developing and applying 
analytical and numerical approaches. Such strategies can aid in overcoming the complexity and non -
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linearity seen in non-Newtonian liquids. Mechanism of peristaltic with non-Newtonian liquid 
necessitates substantially non-linear partial differential equations. It is hard to find precise answers 

to such challenges. We employed a semi-analytical technique known as the Differential Transform 
Method (DTM) in this research. In 1986, Zhou was the first to introduce DTM [22]. The Multi -Step 
Differential Transformation Approach (Ms-DTM) is a dependable semi-analytical method that is an 
excellent enhancement over the traditional DTM. Furthermore, Odibat et al., [23] demonstrated the 

Ms-DTM and its appliances to chaotic or non-chaotic systems. Further work is carried out by Hasona 
et al., [24-26], Tripathi et al., [27], Hatami et al., [28], Beg et al., [29] and Asha et al., [30-31] for 
solving non-linear ODE and PDE. 

  In sight of these appliances, the objective of this study is to provide different predictions about 
the effect of viscous dissipation features and rough surface on the peristalsis of Ellis fluid through a 
non-uniform channel. Ms-DTM is used to solve nonlinear governing equations and physical 

parameters’ temperature, concentration, and velocity are debated through graphs.  
 
2. Construction of governing equations 

 
Consider an Ellis fluid peristaltic motion in a two-dimensional non-uniform channel propagating 

the sinusoidal wave towards its rough surface walls. Take the Cartesian coordinate system ( ,X Y ), the 

physical configuration of the channel wall surface is shown in Fig. 1 
 

   
1

4

1

sin
2

, ( ) cos
X

h X t d X b X ct b
 

 
  

  
   

   
 with  ( )d X a KX                              (1)                                                                     

here b  denotes amplitude of the wave, a denotes half channel width,   denotes length of wave, 

c denotes velocity propagation , t  denotes time, K  denotes the non-uniformity parameter, 1b  

represents  the height of roughness, 1  represents the pitch and X  represents the  axial variable. 

 
Figure 1: Physical Configuration 
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Let V  be the velocity field defined as     , , 0V U V .                                                           (2) 

Where U  and V  are parameters of velocity respectively. 
For an Ellis fluid, the constitutive equations between strain and stress is given as [7]  

 
1

1
2

0

,
1 s

A
S




 





                               (3) 

In above equation   denotes dynamic viscosity,   denotes material constant, 1A represents first 

Rivilin-Ericksen tensor , defines second order stress tensor invariant. The shear stress (s) that 
corresponds to half of (  ) is commonly defined as constant 0 . For 1   and 01 0   the fluid model 

(1) turns to Newtonian model. 
An Ellis liquid's governing equations [7] are as given below: 

0,
U U

X Y

 
 

                       (4)

,
xyxx

f

SSU U U p
U V

t X Y X X Y


   
    

     

 
 

                                                                                          (5) 

,
xyxx

f

SSV V V p
U V

t X Y Y X Y


   
    

     

 
 

 

                                                       (6)

2 ,p

U V r
xx xy yyX Y

qT T T U
U V k T S S S

t X Y X Y

V
c

Y


  
  

  

   
    

    

 
  

                                                (7) 
2 2 2 2

2 2 2 2

m

DKT

T

C C C C C T T
U V D

t X Y X Y X Y

      
     

      

   
   
    ,                                          (8) 

Here mT denotes Fluid mean temperature,
xx

S , 
xy

S , 
yy

S  defines extra stress tensor components 

of fluid, K
T

 is the ratio of thermal diffusion and D represents the mass diffusivity coefficient. 

 The relationship between the laboratory frame and wave frame is defined by 
( , ) , ( , ) , , ,u x y U c v x y V x X ct y Y                                                                          (9)  

where ( , )u v  are velocity components, ( , )x y  are coordinates in a wave frame. 

       
The radiative heat flux (

r
q ) and Fourier law of heat conduction are as below 

44

3
,fr k

q T q k T
y

 
  
 


  

                                                                                                    (10)                                    

Here   denotes Stefan-Boltzman constant, k denotes the parameter of the mean absorption 

coefficient, q represents local heat flux vector and T  represents temperature gradient. The 

temperature of the liquid within the fluid flow was also assumed to be low. By expanding
4T  and 0T  

and ignoring higher order terms we obtain 

                                 
4 3 4

0 04 3T T T T                                                                                         (11) 
the expression mentioned above and equation (10) gives  

316
0

3 f

T

r k
q T

y

 
 
 
 




                                                                                                                        (12)  
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The effects of a compliant wall are defined as   0L P P P                                                (13) 

Where 0 0P   refers to the pressure on the outside of the channel wall caused by muscle tension. 

The operator L gives a viscosity damping effect to the strained membrane, which is defined as  
2 2

2 2
X t t

L R M N
  

  
   

                                                                                                         (14) 

where      1 1, ,n m
  are elastic tension in membrane, coefficient of viscous damping effect and 

plate mass/unit area: 
3 3 2

1 2 33 2

P

X X t X t X

h h h
E E E

   

     
  

                                                                                               (15) 

 

where 3 3 3 3 3 2

1 2 3,s s sE Ra c E Ma c and E Na          represents the non-dimensional 

parameters. 
Introducing quantities with no dimension of interest as below: 
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

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                                                                                                                                                     (16) 
Where θ and Ω are the dimensionless temperature and solutal concentration respectively.  

 
                                                                                                                (17)              
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y
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
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    
1

,
1
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
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


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 

 


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      

1

22 2 21
.

2
2XX YY XYS S S
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                                                                                        (20) 
 

The equations (4)-(8) can be reduced to by using the above parameters with no dimension.  
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,
xySp

x y
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

                                                                                                                                      (21)  
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p

y




                                             (22) 
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                                                                                                                        (25) 
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1
.

1
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xy

y
S

S













                                                                                                                        (26) 

Where rP  represents Prandtl number, rS  represents Soret number, rB  Brinkman number, cS

denotes Schmidt number,  and dR denotes the thermal radiation. 

Eq. (21) states that (P) is an independent function of (y), and since (P) is only dependent on 

variable (x), we treat it as a constant in the integration procedure (21). By integrating Eq. (21) for (y ) 
and applying the boundary constraint, we get 

        
.xy

p
S

x
y






                                                                                                                           (27) 

 The boundary conditions with no dimension in the problem’s wave frame are  
2

2

4

1

1

0, 0, 0 at 0,

2
1, 1, 1 at 1 sin 2 ( ) cos .

y
Y

K X
y h x t

Y a



 
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

 
     

 


              
    .         (28)                                                

Consider the average flux q  in the wave frame with no dimension, which is given as 

 

 2

1

h x

h x

q dy
y





,                                                                                                                          (29) 

In wave frame, the mean time is given by 1Q q d   .                                          

 
3. Method of Solution 

 
Using symbolic Mathematica and Ms-DTM, the equations (27, 23 and 24) with the boundary 

conditions (28) are computed. The detail about the Ms-DTM can be found in the reference [22-31]. 

   1( 2)( 1) ( 2) 1 0 .
P P

k k k k k
x x



     
         

                                                  (30) 

( 2)( 1) ( 2) ( 2)( 1) ( 2) 0.
1

r

r d

B
k k k k k k

P R
         

                                                       (31)      
( 2)( 1) ( 2) ( 2)( 1) ( 2) 0.c rk k k S S k k k                                                                                   (32) 

Where Ψ[k], Θ[k] and Φ[k] and are the differential transformation functions of ψ(y), θ(y), and 

Ω(y) respectively and given as  
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0

( ) ( )
m
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k

y k y

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,                     (33) 

0
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m

k

k

y k y


 
,                                                                                                                          (34) 

 
0

( ) .
m

k

k

y k y

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                                                                                                                          (35) 

The transformed form of boundary constraints are given as      

1 2 3 4(0) , (1) , (2) 0, (0) 0, (1) , (0) 0, (1) .m m m m                                                (36) 

where 
4 3 2, ,m m m and

1m are unknown elements that must be determined. 

Putting equation (36) into equations (30)-(32) and further values of Ψ[k], Θ[k] and Φ[k] can be 

determined by recursive method. Hence, substitute all Ψ[k], Θ[k] and Φ[k] into equations (33)-(35), 
obtained series solutions are as 

3 4

1 2

1
( ) ...

6 12

P P
y m m y y y

x x




 
    

                                                                                         (37) 
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1 1
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6 1 12 1
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y m y y y
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


 
   

   
                                                                 (38) 

   
3 4

4

1 1
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6 1 12 1

c r r c r r

r d r d

S S B S S BP P
y m y y y

P R x P R x

 
    
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                                                    (39) 

Differentiating equation (41) partially with respect to y we get the velocity equation as  
2 3

2

1
( ) ...

2 3

P P
U y m y y

x x

 
   

                                                                                                    (40) 

Using boundary conditions of equation (28) we can obtain the values of 1 2 3, ,m m m and 4m . 

1 2 3 40.3301, 0.5033, 0.98342, 1.0165.m m m m      
 

4. Results and Discussion 
 
The study shows the application of viscous dissipation and rough surface effects in peristaltic   Ellis 

liquid movement though non-uniform channel. The results obtained by Ms-DTM have been 

compared with the results obtained by NDSolve. The results show that they matched nicely as can 
be seen from Tables 1. Here the development of temperature, velocity and concentration distribution 
also streamline graphs corresponding to variation of Ellis fluid parameter  , parameter of wall 

rigidity 1E  , parameter of wall tension 2E , parameter of mass characterization 3E , Thermal radiation 

dR , Schmidt number cS , Brinkman number rB , Prandtl number rP  and Soret number rS are discussed. 

 
4.1.  Velocity Profile 

 
The effects of  , 1E , 2E  and 3E on velocity distribution  u y  are shown through  figures 2 to 5. 

In Fig.2, velocity near the centre of channel enhanceses with rising  on the contrary, it follows the 

inverse trend near the channel wall. Fig. 3 and Fig. 4 demonstrates the behavior of parameter of wall 

rigidity 1E  and parameter of wall tension 2E  respectively. Velocity in peristaltic pumping decreases 

with an increase in parameter of wall rigidity 1E  it follows the inverse trend near the channel wall. 

Similar behavior is seen in parameter of wall tension 2E . Fig. 5 shows the velocity in peristaltic 
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pumping rises with a rise in parameter of Mass characterization 3E  it follows the inverse trend near 

the channel wall. 

 
4.2. Temperature Profile 

 

Figures 6 to 9 demonstrates the temperature profile through  , rB , rP and dR . Fig. 7 shows that 

temperature distribution dimnishes when there is a rise in Brinkman number rB . Fig. 6 demonstrates 

that the temperature distribution enhaces when there is a rise in Ellis fluid parameter  . Fig. 8 

demonstrates that the temperature distribution enhaces when there is a rise in Prandtl number rP . 

Physically, low Prandtl numbers indicate high heat diffusivity, while high Prandtl numbers indicate 
progressive momentum. The Prandtl number is always positive to control the force and thermal 
boundary layer thickness. Fig. 9 demonstrates that the temperature distribution enhaces when there 

is a rise in Thermal radiation dR . When the radiation parameter increases, it improves the movement 

of electromagnetic waves while suffocating heat conduction. Because dispersion heat exchange 

occurs as a result of irregular atom proliferation, when it is extinguished, the neighbouring particles 
spread less, and the vitality exchange rate between them becomes less productive. Furthermore, 
diffusive heat exchange has a longer time scale than radiative heat exchange.  

 
4.3 Concentration Profile 

 
Figures 10 to 13 demonstrates the concentration distribution influenced by Ellis fluid parameter

 , Schmidt number cS  , Brinkman number rB and Soret number rS . Fig.10 shows that as an Ellis 

fluid parameter   rises the concentration profile diminishes. Fig.11 shows that solutal concentration 

profile in peristaltic pumping increases by rising the values of rB . Fig.12 demonstrates the solutal 

concentration profile in peristaltic flow increases by rising the values of cS .Schmidt number cS  have 

an increasing effect on concentration. Schmidt number cS  is a rate of viscous diffusion to molecular 

diffusion. Hence, a greater Schmidt number cS  enhances the rate of viscous diffusion. Fig.13 shows 

that solutal concentration profile in peristaltic transport increases by increasing the values of rS .The 

ratio of the thermodiffusion coefficient to the diffusion coefficient is known as the Soret number.   
 

4.4 Trapping Phenomenon 
 

Figures 14 to 17 demonstrate that the streamlines influenced by  , 1E , 2E  and 3E . Basically, 

trapping is the creation of internally circulating bolus. The volume of the bolus is defined as the fluid 

bounded by the closed streamlines. Fig.14 shows that an Ellis fluid parameter   rises then the 

magnitude of the bolus is increased. Fig.15 shows that as wall rigidity parameter 1E rises strength of 

trapped bolous observed in the wider part of the channel dimnishes. Fig.16 shows that as wall tension 

parameter 2E  rises strength of trapped bolous observed in the wider part of the channel decreases. 

Fig.17 shows that as Mass characterization parameter 3E  rises the strength of the trapped bolous in 

the wider part of the channel is decreasing. 
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Table 1 
Comparison of the solution obtained by Ms-DTM with the NDSolve for           

13 11 2 ., 0.8, 0.016, 0.1, 0.1, 0.1, 0.1, 0.75, 0.2, 0.005, 0.0.001, 0.01, 0.01 25.E a x t kE FE                  

 
y Velocity  NDSolve Temperature 

 
NDSolve Concentration NDSolve 

0 0.143353 0 0. 0 0. 0 

0.2 0.182485 0.18248 0.198057 0.19805 -0.00136615 -0.001366 

0.4 0.300091 0.30009 0.406886 0.40688 0.01568 0.01568 

0.6 0.496482 0.49648 0.64423 0.64423 0.114941 0.11494 

0.8 0.771971 0.77197 0.935436 0.93543 0.402757 0.40275 

1 1.012687 1 1.01345 1 1.028 1 

 
 

 
Fig. 2. Influence of β on distribution of Velocity 
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Fig. 3. Influence of 1E  on distribution of Velocity 
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Fig. 4. Influence of 2E on distribution of Velocity 
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Fig. 5. Influence of 3E on distribution of Velocity 
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Fig. 6. Influence of   on distribution of Temperature 
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Fig. 7. Influence of rB  on distribution of Temperature 
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Fig. 8. Influence of rP  on distribution of Temperature 
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Fig. 9. Impact of dR on distribution of Temperature 
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Fig. 10. Impact of  on distribution of Concentration 
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Fig. 11. Impact of rB on distribution of Concentration 
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Fig. 12. Impact of CS  on distribution of Concentration 
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Fig. 13. Impact of rS  on distribution of Concentration 
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(a)                                     (b)                                   (c) 

 
Fig. 14. Streamlines for (a) 1  ,(b 5  ,(c) 20   
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Fig. 15. Streamlines for (a) 1 0.1E  ,(b) 1 0.2E  ,(c) 1 0.3E                                              
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                                  (a)                                       (b)                                     (c)  

 
Fig. 16. Streamlines for (a) 2 0.1E  ,(b) 2 0.3E  ,(c) 2 0.5E                    
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Fig. 17. Streamlines for (a) 3 1E  ,(b) 3 2E  ,(c) 3 3E   
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5. Conclusion 
 

This study reports the different predictions about the effect of viscous dissipation features and 
rough surface on the peristalsis of an Ellis fluid through a non-uniform channel. Non-linear governing 
equations are solved by using Ms-DTM. 

The followings are the main findings of the paper: 

 It shows that velocity near the centre of channel enhances with rising Ellis fluid parameter 

on the contrary, it follows the inverse trend near the channel wall. Similar behavior is seen in 

Mass characterization parameter 3E .  

 It is observed that velocity in peristaltic pumping decreases with an increase in wall rigidity 

parameter 1E  it follows the inverse trend near the channel wall. Similar behavior is seen in 

wall tension parameter 2E also.  

 Temperature distribution diminishes when there is a rise in Brinkman number rB . 

  Ellis fluid parameter  , Prandtl number rP  and Thermal radiation dR have similar behavior 

in temperature distribution. 

 Ellis fluid parameter   rises the concentration profile diminishes. 
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 It is observed that rB , cS and rS  have similar behavior in concentration profile. 

 an Ellis fluid parameter   rises then the magnitude of the bolus is increased 

 Wall rigidity parameter rises strength of trapped bolous observed in the wider part of the 

channel diminishes. Similar behavior is seen in wall tension parameter 2E and in Mass 

characterization parameter 3E . 
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