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ABSTRACT 

The problem of Rayleigh-Benard convection in a compressible, viscous and heat-conducting gas is considered. By solving the complete 
nonlinear system of equations of gas dynamics, the neutral curve for air under normal conditions is calculated as function of the domain 
height. The formula for critical height of domain is derived analytically. It is established that the isobaric convection regime is realized 
when the height of the region is less than the critical value, and when the height of the region exceeds this critical value, the convection 
regime is superadiabatic. During convection in the superadiabatic regime, its adiabatic suppression is observed. Within the framework of 
the isobaric convection regime, the limits of applicability of the Boussinesq approach are determined. 
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1. Introduction 

 
Rayleigh-Benard convection is a classical problem which has a mathematical model developed 

based on the Boussinesq approach for an incompressible fluid and corresponding numerical methods 
[1,2]. However, in case of gas convection, the Boussinesq approach can be used only in the 
laboratory, while convection in regions with typical heights of a few tens of centimeters or more 
requires that we should take into account gas compressibility based on complete equations of gas 
dynamics due to a relatively big variation of hydrostatic pressure and a corresponding adiabatic 
suppression of the convection. Thus, gas convection based on full nonlinear equations of the gas 
dynamic theory needs additional attention [3,4]. 

The somewhat compromise is simplified gas convection models. Obtained from the equations of 
gas dynamics while assuming Mach number and hydrostatic compressibility to be small, such systems 
of equations describe the media where sonic disturbance of the flow propagates at infinitely high 
velocities. In terms of mathematics, the structure of the systems obtained is in a way similar to that 
of the equations of a viscous incompressible liquid [5]. As a result, such a system can be used to 
calculate convection in the regions with low heights and a wide range of temperature and density 
[6], but convective flows in the regions with large heights, where the effect of adiabatic suppression 
of the convection is noticeable, should be calculated using full nonlinear equations of gas dynamics.   
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In [7], the authors consider gas convection in a horizontal layer with the horizontal boundaries 
free from shear stresses in linear approximation. Convection is shown to develop at the value of the 
Schwarzschild number less than 1. 

In [8], the area of application of the Navier-Stokes equations to the case of compressible flows 
was expanded by taking into account the work of compression forces in the heat transfer equations. 
The condition for the occurrence of convection in this case takes the form: 

                                    
               (1) 
 

where Ra is the Rayleigh number for a compressible medium and Racr is its critical value for an 
incompressible one in the Boussinesq approximation, and Sc is the Schwarzschild number equal to 
the ratio of the adiabatic temperature gradient to the given one. The proposed relation (1) describes 
with satisfactory accuracy the dependence of the critical Rayleigh number on the height of the region 
and predicts adiabatic suppression of convection at its large value. 

The same formula is used in [9] and in experimental works [10,11] to correct the obtained data 
in order to reduce the effect of the adiabatic gradient. We emphasize that in [10,11] a significant role 
of the adiabatic temperature gradient was shown at a region height of 0.2 m. 

Numerous works (all references can be found in [7]) on the numerical study of convection in a 
compressible gas have shown qualitatively the presence of adiabatic suppression of convection. 
However, due to technical difficulties, the specified values of the defining dimensionless parameters 
are far from real, for example, the value of the criterion of hydrostatic compressibility, which 
characterizes the relative change in pressure and relative change in density, is overestimated by three 
orders of magnitude. Insufficient information on the gas convection based on full nonlinear equations 
for gas dynamics is due to some technical restrictions including two main factors, namely a stiff 
system of equations, which results in calculating using very small steps in time, and a very low relative 
change in the pressure [4,5].  

Nevertheless, new technological capabilities appear that allow us to use CUDA-enabled GPUs and 
explicit scheme with massive-parallel data treatment. Note that the advantages of such massive-
parallel data treatment are even more evident as the volume of processed information increases 
[12].  

It should be noted that if the region has a simple geometry and small supercriticality, convection 
develops as two-dimensional rolls [13], which allows us to consider the convective flows of 
compressible and incompressible fluids as two-dimensional. 

This work includes two parts. In the first part, a convective flow of a viscous incompressible fluid  
in the Boussinesq approximation is considered. The purpose of this stage of work is to calculate the 
critical value of the Rayleigh number, with its subsequent comparison with its value for a 
compressible gas. In the second part, we analyze the influence of the region height on the stability 
of the equilibrium regime of the compressible viscous and heat-conducting gas by calculation a 
neutral curve using full equations of gas dynamics. 
 
2. Methodology  
 

For the system of equations describing the Rayleigh-Benard convection of an incompressible 
viscous fluid in the Boussinesq approximation, using a numerical method on the basis of the finite-
difference representation of the solution and a technique for calculating of the vorticity values at 
rigid boundaries of the region [2], it was obtained that the critical Rayleigh number is equal to 1971.4 

(1 ) ,crRa Sc Ra× - >
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for a relative horizontal extent of flow domain is equal to π. All boundaries of the region were 
considered rigid and isothermal, calculations were carried out on a grid of (240·80) nodes. 

Convective motion in a compressible, viscous and heat-conducting gas within the gravity field can 
be described with the following system of equations (2) [1,14]: 

 
 
 
 
    (2) 
 

 
 
 
 

where M = ν/((γT0R)0.5H) = 4.608·10-8·H-1 is the convection Mach number, where velocity calculated 
according to the kinematic viscosity and related to the adiabatic sound velocity, T0 = 300⁰K chosen 
as characteristic temperature and pressure of 1 atm, R = 287 J/(кg·K), adiabatic index γ = 1.4, 
kinematic viscosity ν = 16·10-6 m2/sec and Pr = 0.71 corresponding to air, with  
CF = gH/(γRT0) = 8.130·10-5·H as hydrostatic  compressibility. The scale of the size is the height of 
the region H, temperature and density - values at their low horizontal boundaries, adiabatic sound 
velocity (γRT0)0.5, pressure Rρ0T0 and time H/(γRT0)0.5.  

We neglect the dependence of viscosity and heat conductivity coefficients from temperature. The 
geometry of the region was not changed, i.e., the relation between the vertical and horizontal sizes 
of the region was always equal to π.   

By analogy with the Boussinesq approximation, the equation for the density of system (2) 
includes the mass diffusion term, taking into account the fact that in an ideal gas the coefficients of 
kinematic viscosity and diffusion are equal. 

All the walls of the region were considered rigid with the no-slip condition for velocity; the 
temperature on horizontal boundaries was considered constant, equal to T0 and T0-ΔT at the lower 
and upper boundaries respectively. On vertical boundaries, the temperature, its initial and 
equilibrium distribution were considered linear. The density on all the boundaries of the region was 
equal to its values in the state of hydrostatic equilibrium, which was defined by relation (3):   

 
       (3) 

 
Our calculations were done according to explicit time scheme, and as we didn’t expect shock 

waves in flow, we used a non-divergence form for the system of equations, where convective 
nonlinear and diffusive members were approximated according to the monotonous scheme [2]. Thus, 
we used the numeric method of the first order approximation on time and second order on space.  

In the calculations, we used the mesh with (240·80) knots and the step on dimensionless time of 
0.01. By conducting some test calculations on more detailed space and time meshes, our choice was 
justified. 

All the calculations were done in the vicinity of the instability threshold, so the Reynolds number 
defined by relation (4) and  

 
(4) 
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calculated according to the mean-square velocity, kinematic viscosity and height of the layer was not 
greater than 1. Here Ek stands for the total kinematic energy.  

Due to the low velocities of the convective flow, the pressure is determined mainly by the 
hydrostatic component [4]. 

Our numerical investigation was organized as follows. 
We changed ΔT in our calculations and determined the critical temperature difference at which 

the solution has a zero increment, i.e., it neither increases nor fades with respect to time. Then we 
used this temperature difference to calculate by relation (5) the critical Rayleigh number:   

 
(5) 

 
Here and below, always the dimensionless temperature difference is used.  

It should be noted that this method is accurate at small H, when disturbances of the equilibrium 
solution develop monotonously with respect to time. However, at relatively large H (about 0.5 m in 
this case) fluctuations might appear, so corresponding data should be treated as crude data. Note 
that the appearance of fluctuations is typical for convective flows [2]. 

 
3. Results  

 
Figures 1 and 2 show data as functions of the size height in region H, where H is measured in 

meters for illustration purposes.  
The blue solid lines in Figures 1 and 2 defined by relation (6) correspond to the dimensionless 

adiabatic difference of temperatures [9-11,14]:    
 

(6) 
 

while the red lines defined by relation (7) correspond to the critical Rayleigh number 1971.4 for 
incompressible media at the Boussinesq approximation with 

 
      (7) 
 

and the dots represent data obtained by numerical integrating of full nonlinear equations for gas 
dynamics.    

In Figure 1, the yellow curve also shows described by relation (8) the result predicted theoretically 
[8] 

 
(8) 

 
which, taking into account the discrepancy (excess) of 25% at H = 0.4 m, corresponds with satisfactory 
accuracy to the result of this work. We also note that as H increases, the result [8] asymptotically 
coincides with the adiabatic temperature difference. 

Point A (here it corresponds to H = 0.2173 m), where curves meet in Figures 1 and 2, is the place 
where the convection regime changed, since the damping of the critical temperature difference with 
an increase in the height of the region is replaced by its increasing. The height of the region 
corresponding to the position of point A will be called critical. 

2 3Pr / / ( ).FRa C T M gH T cn= D = D

0( 1) , ( 1) / ( ),FT C T gH RTg g gD = - D = -

3 31971.4 / ( ), / ( ) 1971.4,crT gH Ra gH Tcn cnD = = D =

2 4
01971.4 ( 1) / ( ),T g H RTg g cnD = + -
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The area to the left of A has a smaller height and isobaric convection (a relatively small variation 
of hydrostatic pressure). The position of point A gives the order estimation of the region from above 
where Boussinesq approximation (the private case of isobaric convection) may be used. The area to 
the right, with a bigger height and a relatively big variation of hydrostatic pressure, has a 
superadiabatic regime. The strong adiabatic suppression can be seen in the area. 

 

  
Fig. 1. Critical temperature difference 

 
Fig. 2. Critical Rayleigh number 

With the increase in the characteristic temperature T0, point A moves to the right according to the 
fourth power root law following relation (9): 

 
   (9) 

 
where ν and χ are the constant kinematic viscosity and temperature conductivity of the medium 
expressed in SI system respectively. The dependence of kinematic viscosity and thermal conductivity 
can be taken into account using the Sutherland’s formula [15]. 

More exactly, according to the constant condition of the calculated critical Rayleigh number in 
Figure 2, we see that the range of applying Boussinesq approximation varies with the height of the 
region changing from 1 cm to 10 cm. In the region with lower heights, Boussinesq approximation 
cannot be used correctly due to big changes in temperature and density, while in the case with bigger 
heights - due to a relatively big change in hydrostatic pressure and resulting compression.   

When the height of the region is greater than the critical one, the convective motion is observed, 
as a rule, in the superadiabatic regime, when the given temperature gradient exceeds the adiabatic 
one. 

We note, however, that at H > 0.322 m, convective motion near the critical point can be observed 
at a given temperature gradient noticeably, by 14% less than the adiabatic one, and, as a 
consequence, Sc > 1. Thus, the critical temperature gradient here is less than the value of the 
adiabatic gradient. This seems surprising and may appear due to the action of viscosity and thermal 
conductivity. The results of our studies show that the statement about the sufficiency and 
overestimation of the condition Sc > 1 for the absence of convection in the linear and nonlinear 
approximations [7] is too rough and needs to be corrected. 

When the height of the region is less than the critical one, the isobaric critical temperature 
gradient is always greater than the adiabatic one. 
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4. Conclusions and Discussion 
 

The problem of Rayleigh-Benard convection in a compressible, viscous and heat-conducting gas is 
considered. By solving the complete nonlinear system of equations of gas dynamics we have 
obtained: 

(1) A neutral curve, where the critical temperature difference and the critical value of the Rayleigh 
number are presented as functions of the height of the region over a wide range of its variation. The 
obtained numerically dependences refine the already existing analytical ones; 

(2) The critical Schwarzschild number as a function of the height of the region. It is shown that 
convection can develop at a temperature gradient noticeably less than the adiabatic one and, at the 
same time, convection may not develop at the temperature gradient greater than the adiabatic one. 

(3) An analytical formula for the critical height of the region. The critical height of the region is the 
boundary of the separation of convection modes. At a lower height of the region, an isobaric 
convection mode is realized, while at a higher one, the mode is superadiabatic where the adiabatic 
suppression is observed. A special case of isobaric convection is the convection regime described by 
the Boussinesq approximation.  

Note that the characteristics of the convective flow in the isobaric and superadiabatic regimes 
should differ significantly, which is due to the activation of adiabatic processes in the superadiabatic 
convection regime. Therefore, it is of great interest to simulate convection at subcritical and 
supercritical heights with subsequent comparison and analysis of all integral characteristics. 
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