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The objectives of this work are to build a mathematical model for the nanofluid flow 
problem in the present first-order chemical reaction. The flow over an isothermal 
horizontal circular cylinder is selected due to many engineering applications for this 
geometry. A set of nonlinear partial differential equations (PDE) coupled into system 
of ODE’s that describes the physical behavior of the problem under study was derived. 
In numerical ways, finite element techniques (FET) were used to treat the 
mathematical model. The most important quantities that have a good effect on the 
physical matter that appeared in the mathematical definition are the dimensionless 
chemical reaction parameter, the thermophoresis parameter and the Brownian 
motion parameter. The influence of these dimensionless quantities on the rate, 
temperature, and concentration profiles is drawn graphically. Furthermore, the 
impact on the engineering measures that have a physical implementation, such as the 
local Skin-friction coefficient, Nusselt number and Sherwood number are also 

discussed. It is noticed that increasing chemical reaction   parameter  tends to 
decrease velocity and concentration values but to slightly enhance temperatures in 

the flow field; a rise in   also enhances values of the local Sherwood number but 
strongly reduces the local Nusselt number at the cylinder surface as so as the local 
surface shear stress function. 
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1. Introduction 
 

Heat must be added, removed, or moved from one process stream to another throughout any 
industrial facility, and it has become a significant task for the industrial requirement. These processes 
provide a means of recovering energy and heating/cooling process fluids. Improving heating or 
cooling in an industrial process may save energy, reduce process time, increase thermal rating, and 
extend equipment working life.  The action of enhanced heat transfer has a qualitative effect on some 
techniques. Creating high-performance thermal systems for heat transfer enhancement is becoming 
increasingly popular. Several studies have been conducted to understand better heat transfer 
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performance for practical applications such as heat transfer enhancement. A wide variety of 
industrial processes involve the transfer of heat energy. 

Convective heat transfer of nanofluid has been studied extensively. Choi [1] proposed the 
nanofluid to indicate colloids due to the existence of nanoparticles that detached in a base fluid. A 
Nanofluid is a conventional liquid like water, oil, or ethylene glycol containing a suspension of solid 
nanoparticles up to 100  nm  in diameter. Nanofluids are heat transfer fluids with better thermal 
properties, as described by Masuda et al., [2]. The improved property of nanofluids is thermal 
conductivity such improvement referred to the solid nanoparticle size, shape, concentration, and 
thermal properties. The higher relative surface area of nanoparticles significantly improves the heat 
transfer potential and increases the suspension's stability. The existence of nanoparticles in the fluid 
can also improve abrasion resistance properties over conventional solid-fluid mixtures. Using 
nanofluids will hold up the design of smaller and lighter heat transfer structures, Keblinski et al. [3]. 
Many researchers studied the mechanisms behind the enhancement of heat transfer characteristics 
using nanofluids. Das et al., [4] and Khanafer et al., [5] collected a lot of papers on this matter. The 
study of transfer phenomena of nanofluid flow is of enormous meaning in many divisions of applied 
science applications such as cooling and heating, medical field and safe surgery, and different 
applications manufacturing electronic devices. Buongiorno [6] made a complete review of the 
convective flow of nanofluids. 

Furthermore, He looked at seven slip conditions that could result in a comparable velocity 
concerning the nanoparticles and the base fluid.  The only essential mechanisms were found to be 
Brownian diffusion and thermophoresis. Many studies also discussed the enhancement in nanofluids' 
thermal properties and conductivity. See Bachok et al., [7], Makinde and Aziz [8]. Khanafer et al., [9] 
and Yu et al., [10] show experimentally that the characteristic improvements in thermal conductivity 
are noticed over the ordinary fluid, and the improvements in the heat transfer coefficient will be up 
to 40% . The thermal conductivity increases twice when little quantity of nanoparticles is added to 
the usual fluids, Choi et al., [11]. The convection flow over a horizontal circular cylinder was described 
by Sparrow and Lee [12], Ingham [13], Sadeghipour and Hannani [14]. Additional investigations of 
flow over a cylindrical geometry have been reported by Kaminski et al., [15]. The convective mass 
transfer problem has been presented by Sigwalt et al., [16]. Cesini et al., [17] and Karniadakis [18] 
have studied the force convection case. Damseh [19] also studied the appearance and inclusion of 
dust particles as a viscous, incompressible fluid flows across an isothermal, horizontal cylinder. 

Studying the problem of heat and mass transfer in a moving chemically reactive fluid undergoing 
exothermic and endothermic chemical reactions is of significant in many physical applications. A 
chemical reaction, in any chemical engineering processes, occurs between a strange mass and the 
occupation fluid. The chemical reaction order depends on a number of means. The straightforward 
chemical reactions are the first order reaction where the rate of reaction is in direct proportion to 
the species' attentiveness. Furthermore, Chamkha [20] and Damseh et al., [21] addressed the heat 
and mass transfer problem of the steady and unsteady flowing fluid of an electrically conducting 
liquid and the visco-elastic fluid in the presence of a first-order chemical reaction. They found that 
the friction coefficient decreased as the values of the chemical reaction parameter were reduced. 
Other articles dealing with chemical reactions and thermophoresis effect on heat and mass transfer 
problems can be construct in Refs. [22–28]. 

This model explores the heat exchange of the flow within the nanofluid flow problem in the 
present first-order chemical reaction. A set of nonlinear (PDE) partial differential equations coupled 
into system of ODE’s that describes the physical behavior of the problem under study was derived. 
In numerical ways, finite element techniques (FET) were used to treat the mathematical model.The 
effects are presented graphically. 
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2. Mathematical Formation of the Problem 
 

Let us use the case of steady, incompressible, laminar, two-dimensional, natural-driven 
convection heat and mass transfer problem. The fluid with the existence of nano-species past flows 
over an isothermal horizontal circular cylinder of r be  the radius, in the presence of a first-order 

chemical reaction, as exposed in Figure 1.The coordination system for tangential x  is portion along 
the circumference of the horizontal cylinder, and the radial y -axis is considered to be perpendicular 

to the cylinder surface.  
 

 
Fig. 1. Configuration of the model 

 
Little concentration of reactive soluble particles are diffuses in the fluid so that thermal energy 

created through the chemical reaction may be discarded. Initially, the nanofluid is kept at the similar 
temperature and concentration as the horizontal cylinder. Immediately, the temperature of the 

nanofluid is higher to a temperature 
WT . The concentration of the reactive species is continued at a 

constant scale. The concentration at 0y   cylinder surface equal 
WC . The reaction of the species at 

bulk nanofluid is considered as a first-order homogenous chemical reaction with a concentration 

equal to C . In the convective flow, the direction of gravity g  acts downward. When applying the 

Boussinesq-approximation and constant thermo-physical properties, the leading boundary layer 
equations, continuity, momentum, heat and mass conservation, can be drawn as below 
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where U  and  V  be the velocity components along the X  and Y  direction, BD  be the Brownian 

diffusion coefficient and TD  be the thermophoretic diffusion coefficient, T  be the temperature and  

C  are the concentration, g be the acceleration due to gravity,   be the fluid density, T  and C  be 

the coefficient of expansion and concentration, v  be the kinematic viscosity.  The no-slip boundary 
situations are given by 
 

0Y  , 0U  , 0V  , WT T , WC C  

Y  , T T , ,C C ,                   (5) 

 
2.1 Mathematical Model for the Thermal Physical Property of a Nanofluid 
 

The viscosity, density, heat capacitance and the effective thermal conductivity of the nanofluid 
are defined as given by Brikman [29] and Hamilton et al., [30] respectively (see Table 1): 
 

Table 1 
Mathematical model for the thermal physical property of a nanofluid 
Physical Quantity Mathematical model 

Influential Dynamic viscosity of the nanofluid  
2.5

1nf f  


 
     

 

The  influential Density of the nanofluids (1 )nf s fp p    
    

 

The Heat capacitance  of nanofluid  ( ) (1 )( )P nf P P fs
C C C        

Thermal conductivity of spherical 
 nanoparticles approximated 
 

2 2 ( )
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


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Where n the nanoparticle is shape factor and   is the nanoparticle volume fraction. 

Solve Eq. (1) to (5) the dimensionless variables were originated 
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Here   x and y  be the dimensionless coordinates. u and v  be the dimensionless velocities. pr  

Prandtl number, Gr  Grashof number, and Sc  Schmidt number respectively.   be the imensionless 
temperature and C  are the concentration.   be the dimensionless chemical reaction parameter, 

TN  is the thermophoresis parameter, N  be the buoyancy ratio parameter, and  BN  is the Brownian 

motion parameter.  
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The transformed boundary situations for the Eq. (7)-(10) are 
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In order to solve equations (7-10), subject to boundary conditions (11). Partial differential 

equations that are non-linear and condensed addicted to non-linear ODE’s deliberated for that 
purpose the stream   function where ( , )x y  routinely satisfy continuity equation, we use the 

subsequent variables ( , )xf x y   
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Substituting Eq. (12) into Eq. (7)-(12), we can finally write the transformed equations as:  
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Eq. (13) to (15) are subjected to the following generated 
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The engineering quantities of physical attention are the local Nusselt number, Skin-friction 

coefficient, and Sherwood number, and they are definite as 
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3. Numerical Solution 
 

Eq. (13)-(15) are coupled, nonlinear partial differential equations (PDE’s), and no analytical 
solution can be defined. The local similarity solutions for the set of governing equations can be 
achieved when assigning zero value to x , which is the lower stagnation point. Nazar et al., [31] 
simplify the present model conservation equations to simpler (ODE’s) ordinary equations. Here, at 
the upper stagnation point ( )x  , the local Nusselt number, local Sherwood number, and local skin 

friction coefficient at the cylinder surface are defined by Eq. (17)-(19). 
In the present analysis, the derived Eq. (13)-(15) are nonlinear partial differential equations 

(PDE’s), and may be solved using the implicit finite difference approach discussed by Cebeci and 
Bradshaw [32, 33]. This technique is the most powerful and is used extensively in many viscous fluid 
simulations. More newsworthy studies in nanofluid dynamics are given in Refs. [34–36]. 

The computations were carried out for uniform grid of 0.05, 0.05y x    . The criterion of 

convergence is employed between any two successive iterations. At the boundary's edge, the grid 

size and the thickness of the boundary layer y  has been examined. The results at hand are 

independent of the grid size, and the thickness of the boundary layer is considered up to the fourth 
decimal point. 
 
4. Results and Discussion 
 

In this paper, we have examined the effect of chemically reactive nanofluid flowing across 
horizontal cylinder. The rate and temperature profiles (2) to (16) the results are generated graphically 
in Figures 2-15. The partial governing differential equations are numerically solved, and the variation 
of relevant physical parameters is analyzed and discussed in detail using tables and figures. The 
graphical representation of the numerical results are present for the results of Brownian motion 

parameter ( )BN , thermophoresis number ( )TN , and chemical reaction parameter ( )  on 

temperatures profiles ( ) , concentration profiles ( )  and velocity profiles '(f )  with y coordinate 

which is normal to the cylinder surface, at the stagnation point ( ).x  Extensive computations are 

presented for the water case (Pr 7) . A set of numerical results are carried out for different values 

of the physical parameters that describe the flow behavior. The local skin friction coefficient  xCf , 

Nusselt number  xNu  and Sherwood number  xSh  are calculated with curvature parameter x .  

In all results a constant values is assigned for the buoyancy ratio parameter ,Sherwood number 
and Prandtl number are 0.5, Pr 7.0, Sc 0.7.N     Since the effect of such parameters were 

addressed in the literature. The values of the other parameters are set as 

  7.0,    0.7,    0.5,    0.1,    1.0TPr Sc N N       and different 
BN  values. From  figures 2–3 

illustrate the upshot of the Brownian motion parameter (
BN ) on the temperature profiles    , and 

concentration profiles    with  y  coordinate at the stagnation point    .x   The Brownian 

motion's physical reasons come from the random motion of suspended nanoparticles in the base 
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fluid. This motion's power results from speedy moving atoms or molecules in the main fluid. It is clear 
that the Brownian motion significantly affects temperature and concentration shape. The boundary 

layer velocity decreases with increasing Brownian motion number 
BN . The temperature is somewhat 

increased, and the concentration decreases. Moreover, the nanoparticle volume fraction tends to 

decrease with an increase in the Brownian motion number
BN , which may also contribute to the 

enhancement in the temperature gradient. The Brownian motion number also works to elevate 
thermal conductivity. This may be caused directly by the nanoparticles that carry the thermal energy 
or by a roundabout contribution due to the micro convection of the fluid surrounding the individual 
nanoparticles. The Brownian motion is physically powerful for small particles, and the opposite will 
be relevant for large particles. The values of the other parameters are set as 

  7.0,    0.7,    0.5,    0.2,    1.0,BPr Sc N N       and different TN  values. Figures 4–6 show 

the effect of thermophoresis number ( TN ) on velocity profiles   '  ,f temperature profiles   ,  and 

concentration profiles    with distance normal y  at the stagnation point    .x    It is noticed 

from these figures that increasing of thermophoresis number ( TN ) decreases rates inside the 

boundary layer; this is explained by the small positive buoyancy forces that exist. The temperature 
increases inside the thermal boundary layers and the thicknesses of the boundary layer are 
broadened. To make this, the particles next to the hot surface generate a thermophoretic force, and 
as well these forces bear the particle decomposition away from the fluid at the cylinder surface. This 
is the reason for the augmentation in the temperature boundary layer thickness. 

The skin friction coefficient (
xCf ) and Nusselt Number (

xNu ) at the cylinder surface are presented 

in Figure 7 and Figure 8. Both are increased very slightly with increasing the thermophoresis number 

( TN ) due to extra thermophoretic forces. Finally, increasing of thermophoresis number cause to 

decrease in the concentration inside boundary layers and, as a result, decreases mass flux. 
Thermophoresis account for the elevated concentration (nanoparticle) magnitudes. Figure 9 shows 

that the mass transfer rate (
xSh ) decreases by increasing the thermophoresis number. The values of 

the other parameters are set as   7.0,    0.7,    0.5,    0.2,     0.2B TPr Sc N N N      . 

variation of velocity   '  ,f  temperatures   ,  and concentration    distributions for different 

values of dimensionless chemical reaction parameter    is shown in Figure 10–12.  

From Figure 13-15, one can observe that a significant increase in chemical reaction parameter 

   accounts for the reduction in the nanofluid velocity and the increase in temperature 

distributions. We see also that the concentration profiles are affected and also decelerated with the 
elevated values of the chemical reaction parameter. The utilization of chemical particles results in a 
drop in the concentration fields, which in turn reduces the gravitational effects due to concentration 
gradients.  In theory, the nanoparticle volume fraction decreases as the chemical reaction parameter 
increases. When the chemical reaction is more potent than the thermophoresis particle deposition, 
the nanoparticle volume fraction of the fluid regularly shifts from a higher value to a lower value. 
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Fig. 2. Influence of Brownian motion parameter on temperature profile at 
upper stagnation point 

 

 
Fig. 3. Influence of Brownian motion parameter on concentration profile 
at upper stagnation point 
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Fig. 4. Influence of thermophoresis number on velocity profile at upper 
stagnation point 

 

 
Fig. 5. Influence of thermophoresis number on temperature profile at upper 
stagnation point 

 
 



Journal of Advanced Research in Numerical Heat Transfer 

Volume 12, Issue 1 (2023) 1-17 

10 
 

 
Fig. 6. Influence of thermophoresis number on concentration profile at 
upper stagnation point 

 

 
Fig. 7. Local skin friction coefficient versus x for various values of 
thermophoresis number 
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Fig. 8. Local Nusselt number versus x for various values of 
thermophoresis parameter 

 

 
Fig. 9. Local Sherwwod number versus x for various values of 
thermophoresis parameter 
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Fig. 10. Influence of chemical reaction parameter on velocity 
profile at upper stagnation point 

 

 
Fig. 11. Influence of chemical reaction parameter on temperature 
profile at upper stagnation point 
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Fig. 12. Influence of chemical reaction parameter on concentration 
profile at upper stagnation point 

 

 
Fig. 13. Local skin friction coefficient versus x for various values 
of chemical reaction parameter 
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Fig. 14. Local Nusselt number versus x for various values of 
chemical reaction parameter 

 

 
Fig. 15. Local Sherwwod number versus x for various values 
of chemical reaction parameter 
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5. Validation 
 

To square the accuracy of the current computations, the results have been verified and related 
with the outcomes reported by Merkin and Pop [37] for the non-reactive, purely fluid, i.e., with 

0B TA N N    . It is observed that there is a strong connection between both outcomes up to the 

acceptable level of accuracy, and that validates the convergence criteria of the present methodology 
adopted.  The outcomes obtained by Merkin and Pop [37] and also the present solutions are all 
shown in Table 2 below. 
 

Table 2 

Calculations come to the local skin-friction coefficient 
xCf  for Pr 0.72 , 0B TA N N    for selected 

values of x  
x  Merkin and Pop[37] Present work 

0 0.000 0.000 
0.4 0.609 0.603 
0.8 1.602 1.158 
1.2 1.602 1.600 
1.6 1.855 1.867 
2 1.971 1.968 
2.4 1.824 1.821 
2.8 1.403 1.401 
  0.738 0.722 

 
6. Conclusion 
 

In this article, the buoyancy-driven boundary layer problem is formulated mathematically using 
the continuity, momentum, and heat & mass transfer principles. The addressed geometry considers 
the fluid flow of a nanofluid past an isothermal horizontal cylinder in the existence of a chemical 
reaction effect. The produced partial differential equations (PDE’s) are nonlinear, and the numerical 
methods are used to find an approximate solution. The influence of the various parameters that 
appear in the problem are discussed and analyzed. The results are generated and represented by 
graphs. Following the results and discussion section, we draw the following conclusions: 

 
I. Due to the Brownian motion number, thermophoresis number, and chemical reaction 

parameter, the temperature profiles accelerate, whereas the concentration decelerates in 
the boundary layer. 

II. A rise in the (
BN ) Brownian motion parameter decreases the velocity, and the heat transfer 

rate is decelerated. 

III. An increase in thermophoresis number ( TN ) will accelerate the flow and concentration and 

also tends to decelerate the mass transfer rate. 
IV. Fluid motions as well as concentration of the nanofluid are retarded due to existence of 

chemical reaction. Increasing the ( ) chemical reaction parameter  increases the 
dimensionless rates of mass transfer and decrease the heat transfer rate due to the decrease 
in flow resistance. 
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