Mixed Convection Boundary Layer Flow on A Vertical Flat Plate in Al_2O_3–Ag/Water Hybrid Nanofluid with Viscous Dissipation Effects

Eddy Elfiano1,2, Nik Mohd Izual Nik Ibrahim2,*, Muhammad Khairul Anuar Mohamed3

1 Department of Mechanical Engineering, Faculty of Engineering Universitas Islam Riau, 28284 Pekanbaru, Provinsi Riau, Indonesia
2 Faculty of Engineering and Technology DRB-HICOM University of Automotive Malaysia, Peramu Jaya Industrial Area, 26070 Pekan, Pahang, Malaysia
3 Centre for Mathematical Sciences Universiti Malaysia Pahang, Lebuhraya Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia

ARTICLE INFO

Article history:
Received 29 April 2024
Received in revised form 21 May 2024
Accepted 29 June 2024
Available online 30 July 2024

ABSTRACT

The present research examined the mixed convection boundary layer flow and heat transfer of hybrid nanofluid on a vertical flat plate with various volume concentrations and viscous dissipation effects. The governing non-linear partial differential equations are first transformed to a system of ordinary differential equations through the use of a similarity transformation. Subsequently, these equations are solved numerically using the Runge-Kutta-Fehlberg (RKF45) method in MAPLE. The numerical solution is computed for the temperature profiles, velocity profiles, reduced Nusselt number and reduced skin friction coefficient. The characteristics of flow and heat transfer for the Eckert number, the mixed convection parameter, and the hybrid nanoparticles volume fraction are analyzed and discussed. Numerical analysis demonstrates that increases in the λ value results in a decreasing in the thickness of the thermal boundary layer, Also, variations in the Ec values have no effect on the velocity profiles. The $Ag-Al_2O_3$/water-based hybrid nanofluid examined in this study achieves comparable results to the Ag-water-based nanofluid.

Keywords:
Mixed convection; Hybrid nanofluid; Vertical flat plate; Viscous dissipation

1. Introduction

The flow of convective heat transfer on the surface of a vertical flat plate is a significant subject to investigate. Because of its contributions for engineering and commercial applications include fins of engine cylinder block, radiator fins, electronic components and turbine blades can also be modelled as flat plates with sufficient precision. The concept of convective heat transfer on flat plate was studied for the first time by Heinrich Blasius with his publication in 1908, where he derived the fluid profile for 2D boundary-layer flow over both a flat plate and circular cylinder [1]. While traditional heat transfer fluids like oil, water, and ethylene glycol mixes are inefficient at transferring heat. The use of nanofluids may enhance thermal conductivity by fluid flow, which is the coefficient of heat transfer between the heat transfer medium and the heat transfer surface [2]. Several
researchers have also conducted investigations on the flow of the boundary layer across a flat plate immersed in a nanofluid. Uddin et al., [3] investigated that the volume fraction of nanoparticles is found to decrease as the linear momentum slip parameter increases, moreover that the nanoparticle volume fraction increases as the convective heat transfer parameter increases. Trimbitas et al., [4] found that the range of the mixed convection parameter λ, within which the similarity solution is present, is greater in the event of an assisting flow compared to the opposing flow case. Sahu et al., [5] presented that the velocity of both buoyancy-induced assisting and opposing flows increases as the volume fraction of Cu nanoparticles increases, however, the rate of increase is slowed when there is an opposing flow. Astuti et al., [6] studied three distinct categories of water-based nanofluids, specifically those containing copper Cu, Aluminum oxide Al_2O_3, and Titanium dioxide TiO_2. Observations indicate that the velocity profiles of TiO_2-water and Al_2O_3-water exhibit similarities due to the near proximity of their densities and thermal expansion coefficients.

The economic challenges related to the application of nanofluids have led researchers to investigate materials that possess the potential to address these limitations. Hybrid nanofluids represent a novel category of nanofluids for heat transfer applications, wherein two distinct types of nanoparticles are dispersed within heat transfer fluid. However, there is limited of research conducted on boundary layer flows utilizing hybrid nanofluids. Based on the available information, there are several research papers by Dinarvand and Nademi [7] studied mixed convection $Cu-\text{Ag}/\text{water}$ hybrid nanofluid a long vertical cylinder. Rosca et al., [8] studied on the mixed convection stagnation point of classical viscous fluids past a vertical plate flow. Meanwhile, Zainal et al., [9] presented investigates the phenomenon of unsteady mixed convection in a flow of Al_2O_3-Cu/H_2O hybrid nanofluid at the stagnation point, as it passes a vertical plate. Doley et al., [10] and Khan et al., [11] focused in free convective flow of a hybrid nanofluid across a vertical plate.

In recent research investigations, the phenomenon of fluid flow on a vertical flat plate within a hybrid nanofluid has been examined. These studies involve a range of research activities, including the previous publications. Yaseen et al., [12] explored the MHD nonlinear convective SiO_2/water nanofluid and SiO_2-MoS_2/water hybrid nanofluid flow and heat transport over a vertical flat plate. The study revealed that the velocity profile of the SiO_2-MoS_2/water hybrid nanofluid shows a higher magnitude compared to that of the SiO_2/water nanofluid. Furthermore, the increase in the volume fraction of nanoparticles leads to a corresponding increase in the velocity of both hybrid nanofluid and nanofluid. Wahid et al., [13] investigated the mixed convection flow of a hybrid nanofluid past a permeable vertical flat plate with thermal radiation effect. It is discovered that by decreasing the concentration volume of copper and raising the magnetic and radiation parameters, the separation of the boundary layer can be impeded. Lastly, a compelling investigation conducted by Wahid et al., [14] studied hybrid nanofluid radiative mixed convection stagnation point flow past a vertical flat plate.

It is noteworthy to emphasize that the investigation of convective heat transfer on a vertical flat plate remains a subject of ongoing research. Hence, the objective of the current work is to examine the mixed convection boundary layer flow over on a vertical flat plate in $Al_2O_3-\text{Ag}/\text{water}$ hybrid nanofluid with viscous dissipation effects. The governing Partial Differential Equations (PDEs) are solved using numerical methods, and the modification of relevant physical properties has not been previously explored. Therefore, the results presented in this investigation are original.
2. Mathematical Formulations

A constant two-dimensional boundary layer flow across a vertical flat plate immersed in an ambient temperature hybrid nanofluid is assumed, T_w, as illustrated in Figure 1. Let T denote the temperature within the boundary layer, T_w is the temperature of the wall. u_w is the free stream velocity and $u_w(x) = \varepsilon u_\infty$ is the fluid velocity where ε is the fluid velocity parameter. The boundary layer equations that can be produced are as follows [15,16]:

\begin{align*}
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} &= 0 \tag{1} \\
\frac{u}{u_\infty} \frac{\partial u}{\partial x} + \frac{v}{u_\infty} \frac{\partial u}{\partial y} &= \frac{\mu_{nf}}{\rho_{nf}} \frac{\partial^2 u}{\partial y^2} + \frac{(\rho \beta)_{nf}}{\rho_{nf}} g(T - T_\infty) \tag{2} \\
\frac{u}{u_\infty} \frac{\partial T}{\partial x} + \frac{v}{u_\infty} \frac{\partial T}{\partial y} &= \frac{k_{nf}}{(\rho C_p)_{nf}} \frac{\partial^2 T}{\partial y^2} + \frac{\mu_{nf}}{(\rho C_p)_{nf}} \left(\frac{\partial u}{\partial y}\right)^2 \tag{3}
\end{align*}

subjected to the boundary condition:

\begin{align*}
u &= u_w(x) = \varepsilon u_\infty, \quad v = 0, \quad T = T_w \quad \text{at} \quad y = 0 \\
u &= u_\infty, \quad T \to T_w \quad \text{as} \quad y \to \infty \tag{4}
\end{align*}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Physical model and the coordinate system [16]}
\end{figure}

where u and v are the velocity components along the x and y axes, respectively, μ_{nf} is the dynamic viscosity of hybrid nanofluid, ρ_{nf} is the hybrid nanofluid density, g is the gravity acceleration, β_{nf} is the hybrid nanofluid thermal expansion, $(\rho C_p)_{nf}$ is the heat capacity of hybrid nanofluid, v_{nf} is the kinematic viscosity of hybrid nanofluid and lastly, k_{nf} is the thermal conductivity of hybrid nanofluid which can be expressed as follows [17,18]:
\[v_{\text{hnf}} = \frac{\mu_{\text{hnf}}}{\rho_{\text{hnf}}}, \quad \mu_{\text{hnf}} = \frac{\mu}{(1-\phi_2)^{2.5}(1-\phi_2)^{2.5}}, \quad \rho_{\text{hnf}} = (1 - \phi_2)\left[(1 - \phi_1)\rho_f + \phi_1\rho_{s1}\right] + \phi_2\rho_{s2}, \]

\[(\rho\beta)_{\text{hnf}} = (1 - \phi_2)\left[(1 - \phi_1)(\rho\beta)_f + \phi_1(\rho\beta)_{s1}\right] + \phi_2(\rho\beta)_{s2} \]

\[(\rho C_p)_{\text{hnf}} = (1 - \phi_2)\left[(1 - \phi_1)(\rho C_p)_f + \phi_1(\rho C_p)_{s1}\right] + \phi_2(\rho C_p)_{s2}, \]

\[k_{s2} \frac{k_{\text{hnf}}}{k_{s2}} = k_{s2} + 2k_{bf} - 2\phi_2(k_{bf} - k_{s2}), \quad k_{f} = k_{s2} + 2k_{bf} + \phi_2(k_{bf} - k_{s2}), \]

\[\eta = \left[\frac{u_{\infty}}{v_x} \right]^{1/2} y, \quad \psi = (u_{\infty} v_x)^{1/2} f(\eta), \quad \theta(\eta) = \frac{T - T_{\infty}}{T_w - T_{\infty}} \quad (6) \]

where \(\eta, \theta \) and \(\psi \) are non-dimensional similarity variable, temperature and stream function. The Eq. (1) is satisfied by definition of \(u = \frac{\partial \psi}{\partial y} \) and \(v = -\frac{\partial \psi}{\partial x} \), respectively. Then, \(u \) and \(v \) can be derived as

\[u = u_{\infty} f'(\eta), \quad v = \frac{u_{\infty} y}{2x} f' - \left(\frac{u_{\infty} v}{x}\right)^{1/2} f \quad (7) \]

Next, the Eq. (5) and (6) are substitute into Eq. (2) and (3) which gives the following ordinary differential equations (ODEs) as follows:

\[\frac{v_{\text{hnf}}}{v_f} f''' + \frac{ff''}{2} + \frac{(\rho\beta)_{\text{hnf}}}{\rho_{\text{hnf}}\beta_f} \lambda \theta = 0 \quad (8) \]

\[\frac{1}{Pr} \quad \frac{a c}{f'} + \frac{f\theta'}{2} + ad Ec f''^2 = 0 \quad (9) \]

Other dimensionless expressions, such as \(Gr, Re, Ec \) and \(\lambda \), respectively represent for the Grashof, Reynold, Eckert and Richardson numbers.

\[Gr = \frac{g\beta_f(T_w - T_{\infty})x\theta}{u_{\infty}^2}, \quad Re = \frac{u_{\infty} x}{v_f}, \quad Ec = \frac{U_{\infty}^2}{C_p(T_w - T_{\infty})}, \quad \lambda = \frac{Gr}{Re^2} \]

In order that the similarity solution for Eq. (8) and (9) exist, it is assumed \([19,20]\)

\[\beta = mx^{-1} \quad (10) \]

where \(m \) is constant. Note that the assumption in Eq. (10) is necessary for the Eq. (8) and (9) to be independent of \(x \). The boundary condition (4) become
\(f(0) = 0, \ f'(0) = \varepsilon, \ \theta(0) = 1 \)
\(f'(\eta) \to 1, \ \theta(\eta) \to 0, \ \text{as} \ y \to \infty \) \quad (11)

The physical quantity interests are the wall temperature \(\theta(0) \), the heat transfer rate \(-\theta(0)\) and the skin friction coefficient \(C_f \) which given by

\[
C_f = \frac{\tau_w}{\rho_f u_\infty^2}
\]

with surface shear stress \(\tau_w = \mu_{nf} \left(\frac{\partial u}{\partial y} \right)_{y=0} \). Using the similarity variables in (6) gives

\[
C_f (Re/2)^{1/2} = \frac{f''(0)}{(1-\phi)^{2.5}}
\]

which are referred as the reduce skin friction coefficient.

Other hybrid nanofluid quantities are listed below [21]:

1. \(\frac{v_{hnf}}{v_f} = \frac{1}{(1 - \phi_1)^{2.5}(1 - \phi_2)^{2.5}(1 - \phi_3)[(1 - \phi_1) + \phi_1(\rho_{s1}/\rho_f)] + \phi_2(\rho_{s2}/\rho_f)} \)
2. \(\frac{(\rho\beta)_{hnf}}{\rho_{hnf}\beta_f} = \frac{(1 - \phi_2)[(1 - \phi_1)\rho_f + \phi_1(\rho\beta)_{s1}/\beta_f] + \phi_2(\rho\beta)_{s2}/\beta_f}{(1 - \phi_2)[(1 - \phi_1)\rho_f + \phi_1\rho_{s1}] + \phi_2\rho_{s2}} \)
3. \(k_{hnf}(\rho C_p)_f = \frac{k_{hnf}/k_f}{(1 - \phi_2)[(1 - \phi_1)\rho_f + \phi_1\rho_{s1}] + \phi_2\rho_{s2}} \)
4. \(\frac{\rho_{hnf}(\rho C_p)_f}{(\rho C_p)_{hnf}} = \frac{(1 - \phi_2)[(1 - \phi_1)\rho_f + \phi_1(\rho C_p)_{s1}/(\rho C_p)_f] + \phi_2(\rho C_p)_{s2}/(\rho C_p)_f}{(1 - \phi_2)[(1 - \phi_1)\rho_f + \phi_1\rho_{s1}] + \phi_2\rho_{s2}} \)

3. Results and Discussions

The known Runge-Kutta-Fehlberg method is used to numerically solve the ordinary differential equations (8-9) subject to boundary conditions (11). This method, also known as RKF45, implements a 4th order approximation with an error estimator of order 5. The boundary layer thickness ranging from 7 to 10 is considered adequate for obtaining precise numerical results. Three relevant factors, namely the Prandtl number \((Pr) \), the mixed convection parameter \((A) \), and the Eckert number \((Ec) \) are taken into consideration. The nanoparticles Copper \(Cu \), Silver \(Ag \), Alumina oxide \(Al_2O_3 \), and Titanium oxide \(TiO_2 \) were tested with water as the base fluid. The thermophysical characteristics of nanoparticles are presented in Table 1. To evaluate the success of the numerical method and mathematical formulation employed, a comparative analysis have been performed with previously investigated results. Table 2 shows a comparison of the obtained results with the previously published findings for \(Al_2O_3/water \) and \(TiO_2/water \) nanofluid, as reported by references [22-
The findings of this study demonstrate an excellent degree of agreement among the outcomes, which inspires trust in the accuracy and reliability of the overall findings.

Table 1
Water and nanoparticle thermophysical characteristics [24]

<table>
<thead>
<tr>
<th>Physical Properties</th>
<th>Water (f)</th>
<th>$Al_2O_3 (\phi_1)$</th>
<th>$Ag (\phi_1)$</th>
<th>$TiO_2 (\phi_2)$</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ (kg/m3)</td>
<td>997</td>
<td>3970</td>
<td>10500</td>
<td>4250</td>
<td>8933</td>
</tr>
<tr>
<td>Cp (J/kg.K)</td>
<td>4179</td>
<td>765</td>
<td>235</td>
<td>686.2</td>
<td>385</td>
</tr>
<tr>
<td>k (W/m.K)</td>
<td>0.613</td>
<td>40</td>
<td>429</td>
<td>8.95</td>
<td>400</td>
</tr>
</tbody>
</table>

Table 2
Value of $C_f Re_x^{1/2}$ in comparison to previously reported findings of various ϕ_1 for Al_2O_3 /Ag-water and TiO_2 /water when $Ec = \lambda = \phi_2 = 0$ and $Pr = 6.2$

<table>
<thead>
<tr>
<th>ϕ_1</th>
<th>Al_2O_3 /water</th>
<th>TiO_2 /water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Blasius [22]</td>
<td>Ahmad [23]</td>
</tr>
<tr>
<td>0</td>
<td>0.3321</td>
<td>0.3321</td>
</tr>
<tr>
<td>0.002</td>
<td>0.3339</td>
<td>0.33388</td>
</tr>
<tr>
<td>0.004</td>
<td>0.3357</td>
<td>0.33571</td>
</tr>
<tr>
<td>0.008</td>
<td>0.3394</td>
<td>0.33939</td>
</tr>
<tr>
<td>0.01</td>
<td>0.3412</td>
<td>0.34123</td>
</tr>
<tr>
<td>0.02</td>
<td>0.3506</td>
<td>0.35056</td>
</tr>
<tr>
<td>0.1</td>
<td>0.4316</td>
<td>0.43161</td>
</tr>
<tr>
<td>0.2</td>
<td>0.5545</td>
<td>0.55451</td>
</tr>
</tbody>
</table>

Graphs of results demonstrate the temperature profiles (θ) and velocity profiles for different values of parameter λ and the Eckert number (Ec), which represents the viscous dissipation parameter. Based on the temperature profiles shown in Figure 2, it can be observed that the addition of the viscous dissipation effect, leads to an enlargement in the thickness of the thermal boundary layer. An increase in the Eckert number leads to an augmentation in the kinetic energy and a corresponding amplification in the dissipation effects resulting from internal fluid friction. This phenomenon will lead to self-heating, thereby causing a change in the temperature gradient.
Based on the findings presented in Figure 3, it can be observed that an increase in the λ value leads to a decrease in thickness of the thermal boundary layer. This phenomenon is due to the dominance of buoyancy force over inertial force. From the numerical computation, the varies Ec values have no effect on the velocity profiles, as shown a unique curve in Figure 4. Physically, the viscous dissipation effect denoted by Ec is the transformation of kinetic energy into thermal energy, therefore, the velocity is constant. This provided evidence that viscous dissipation effects have no influence on the velocity boundary layer thickness, velocity gradient, or skin friction coefficient. In Figure 5, it can be observed that the increase of mixed convection parameter leads to an increase of the velocity boundary layer, whereas a negative mixed convection value has the opposite effect. The appearance of this problems can also be due to the large buoyancy force produced by the fluid.
Fig. 3. Temperature profiles $\theta(\eta)$ for λ when $Ec = \phi_1 = 0.1, \phi_2 = 0.06$ and $Pr = 6.2$

Fig. 4. Velocity profiles $f'(\eta)$ for Ec when $Pr = 6.2, \phi_1 = 0.1, \phi_2 = 0.06$ and $\lambda = 0$
Fig. 5. Velocity profiles $f'(\eta)$ for λ when $Ec = \phi_1 = 0.1$, $\phi_2 = 0.06$ and $Pr = 6.2$.

Figure 6 shows the distribution of velocity profiles with different values of epsilon, ϵ. The velocity ratio parameter is denoted by $\epsilon = u_w/u_\gamma$. $\epsilon = 0$ (moving fluid or stationary plate), $\epsilon = 1$ (velocity of fluid = velocity of plate) and $\epsilon > 1$ (velocity of plate is faster than velocity of fluid). The assumption is made that the solid particle behaves like a fluid. Figure 6 illustrates that when $\epsilon = 0$, the fluid velocity is significantly higher in comparison to cases where $\epsilon = 1$ and $\epsilon > 1$.

Fig. 6. Velocity profile $f'(y)$ for various value of ϵ when $Pr = 6.2$, $\lambda = 1$ and $Ec = \phi_1 = 0.1, \phi_2 = 0.06$.
Figure 7 shows the distribution of reduced Nusselt number $Nu_x Re_x^{-1/2}$ with different values of Ec. This study examines four distinct forms of fluid, mainly those that are water-based ($\phi_1 = \phi_2 = 0$), 0.1 vol. Al$_2$O$_3$/water nanofluid ($\phi_1 = 0.1$, $\phi_2 = 0$), Ag-Al$_2$O$_3$/water hybrid nanofluid ($\phi_1 = 0.1$, $\phi_2 = 0.06$), and the 0.16 vol. Ag/water nanofluid. Particularly Ag Water/nanofluid mixture containing metal nanoparticles Ag with high-density and thermal conductivity. According to the data presented in Figure 7, the Ag/Water nanofluid exhibited the greatest $Nu_x Re_x^{-1/2}$ value, with the following closely Ag-Al$_2$O$_3$/water hybrid nanofluid. The fluid that is based on water exhibited the lowest score, indicating a very limited convective heat transfer performance when compared to other nanofluids. Formally, large values of Ec enhance heat transfer capability. The use of Ag Water, nanofluid is considered feasible due to the significantly higher thermal conductivity exhibited by Ag nanoparticles in comparison to other nanoparticles that have been examined. However, it is imperative to take consideration of the role of nano oxide in order to achieve cost reduction for mass production.

Finally, Figure 8 illustrates the distribution variation of $C_f Re_x^{1/2}$ for different values of λ. The analysis of the figure reveals that the introduction of a ($\lambda < 0$) value has resulted in a decrease in the skin values. The enhancement of the parameter λ results in an elevation of the skin friction coefficient. The Ag/water nanofluid exhibited the highest $C_f Re_x^{1/2}$ score, with the Ag-Al$_2$O$_3$/water hybrid nanofluid following closely behind. The increase of nanoparticle concentration within a fluid, associated with the higher density of these nanoparticles, have resulted in an escalation of the skin friction coefficient. The findings of this investigation indicate that the $C_f Re_x^{1/2}$ value remains constant with all concentrations of nano particles in relation to the Ec value.
Fig. 8. Distribution of $C_f R_e_x^{1/2}$ to λ when $Pr = 6.2$ and $Ec = 0$

4. Conclusions

As a conclusion, the enlargement of Ec value leads to greater temperature profiles $\theta(\eta)$ and thermal boundary layer thicknesses. In contrast, it can be noticed that an increase in the λ value results to a decrease in the thickness of the thermal boundary layer. This phenomenon occurs because buoyancy force predominates over inertial force. Based on the results obtained from numerical computation, it can be concluded that the different values of Ec lack any influence on the velocity profiles. The results of this study demonstrated that the thickness of the velocity boundary layer remains unchanged by the influence of viscous dissipation effects. In addition, the $Ag-Al_2O_3/water$ hybrid nanofluid examined in this investigation demonstrates comparable outcomes to the Ag-water nanofluid. This indicates the possibility of hybrid nanofluids as an alternative to nanofluids, particularly in cases where costly nanomaterials are applied.

Acknowledgement

Authors gratefully acknowledge the financial and facilities support from the Malaysia Ministry of Education (FRGS/1/2019/STG06/ DHUAM/02/1), DRB-HICOM University of Automotive Malaysia.

References

