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In 1957, the governing equation of mass and heat transport in the soil or porous 
media was popularised, now commonly referred to as PdV theory. This governing 
equation helps to quantify and simulate the water, vapor and heat in porous 
media. But at the same time, due to the fundamental uncertainty parameter in 
the equation, it was continuously updated. The equation predicting vapor flux 
movement in the soil has been the subject of many investigations. The vapor 
enhancement factor (VEF) was introduced to overcome the issue. When VEF was 
introduced, a few researchers were able to quantify the factor, but could not 
provide the guiding mechanism representing the observation. In the latest 
review from a literature study, we found a new form of equation to improve the 
VEF. It comes from the basis of the universal gas law, which describes the volume 
expansion from liquid water to vapor, and also the vapor buoyancy. This study 
aims to review water vapor movement and vapor buoyancy phenomenon. Also, 
to identify the parameters of the equations that contribute to the vapor 
buoyancy effect. The water vapor movement should not be neglected in the 
governing equation because its contribution to the overall mass movement is 
significant. Vapor buoyancy is possible to become a mechanism out from VEF. 
The parameters that contribute to vapor buoyancy effect are gravity, soil 
temperature, vapor density and water salinity. Clearly, understanding vapor 
buoyancy effect helps us better predict the distribution of soil temperature and 
soil moisture content.  
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1. Introduction 
 

Soil and water resources are two components of earth’s ecosystems that interconnected each 
other. This component playing critical role in sustaining life, supporting biodiversity, regulating 
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climate patterns and providing essential to ecology. Protecting and conserving these resources are 
supreme for promoting environment sustainability, resilience to climate change and human well-
being. 

Firstly, study the capability to predict soil temperature and soil moisture content holds immerse 
value in managing soil and water resources effectively. This has many useful applications in land 
management and engineering applications. That resulted to introduction of the PdV theory, which 
refers to the governing equation of mass and heat transfer proposed by Philip and de Vries [1]. The 
main equation was modelled by Richards’ equation, which refers to water movement [2]. With the 
presence of gravity, the water will be moving downward, this is known as water infiltration. While 
the evaporation prosses also happening and causing vapor movement in the pores of the soil. 
Different soil properties and soil textures will affect infiltration, evaporation and moisture content. 
Therefore, the study of the movement of water and heat in soil can be applied in agricultural, 
geoenvironmental, hydrology and other engineering fields [3-6]. 

In theory, the PdV equation simulation can be used to reproduce the field observation of moisture 
content and temperature. However, the discrepancy between experimental data and field 
observation was suggesting incomplete theoretical equation. Hence, vapor enhancement was 
introduced to overcome the limitation, for instance, liquid island effect. This does not seem to 
provide any closure to the problem due to excessive high vapor flux in the soil analysis. There is a 
need to improve the understanding of the guiding mechanism that contributes to the governing 
equation for mass and heat [1,7-10]. The uncertainty of vapor flux movement has become an interest 
in this paper. This paper aims to investigate the existing equation that is responsible for mass and 
heat movement in the soil and to review the equations of vapor buoyancy and its parameters. 
 
2. Mass and Heat Transport 

 
The mass and heat become fundamental importance in agriculture, material engineering and soil 

physical study for many applications. This fundamental can be coupled in simulations such as the 
weather forecast, floods, watering plants, and sea water evaporation [11-17]. Mass and heat 
transport models also are used to simulate at the wall concrete of a nuclear power plant and to 
monitor anthropogenic activities that will increase the naturally occurring radioactive materials 
(NORMs), which has a high risk of impacting humans [18,19]. Therefore, it is important to validate 
the simulation model. In soil treatment, one of the remedial technique is called Soil Vapor Extraction 
(SVE), which involves the combined mass and heat transport across solid, gas and liquid phases [20]. 
Various studies have investigated factors such as the effect of water content and enhanced thermal 
condition during SVE [21,22].  

Focus on transport in soil describes the flow of several elements through the soil matrix, including 
air, water, nutrients, and contaminants. As the model enables the removal of surplus water and 
pollutants from the soil and the uptake of vital nutrients by roots, this transport is crucial for 
maintaining plant development and ecosystem function [3]. The mechanisms involved such as 
advection, convection, diffusion, dispersion, and conduction are a few of the mechanisms that 
contribute to mass and heat transport in soil. Diffusion refers to the transfer of compounds from 
regions of high concentration to regions of low concentration. Whereas advection refers to the 
movement of substances through the soil because of the bulk flow of water, and convection is the 
term for the movement of a fluid that results in the transfer of mass because of changes in the fluid's 
temperature. When solute is conveyed by the bulk of soil particles, dispersion occurs. Heat 
conduction occurs in a medium that in direct physical contact, such as soil between soil particles, 
water and air [23,24]. 
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Mass transfer will affect the heat transfer. Therefore, Philip and de Vries introduced the 
governing equations for mass and heat in soil that was expanded from the diffusion equation. Today, 
it is known as PdV theory, which describes the movement of water and heat through the soil matrix 
[25]. For mass transport in soil, there are divided into two fluxes that involve water and water vapor 
[25]. This theory was applied to run a simulation of freezing unsaturated soil that combined the 
coupling of water, vapor and heat [26-31]. The theory also been applied in global climate model 
prediction to study the dry area [32], heavy meter migration in unsaturated soil [33] and  stream 
disinfection transfer into soil for cropping [34] and multiple inquiry reviewed by Massman [35] such 
as wood drying, concrete fracturing and drying in high temperature and sand-water steam system. 

There is a need to reduce the discrepancy between the simulation that is based on theory and 
field observation. Due to the limitations of experimental data, researchers have tried many 
approaches. This is noted in Heitman et al., [36] work on comparing the theoretical equations used 
in simulation with the experimentally measured soil temperature and soil moisture content in 
transient conditions. They also develop an instrument by applying thermal-time domain 
reflectometry (T-TDR) to get the actual result of temperature and thermal conductivity [37]. Besides 
that, X. Zhang et al., [38] also performed a study on two ways of simulating and measuring transport  
in mass (water), heat and salinity in bare soil. The result shows that higher salinity causes a higher 
temperature gradient, while it becomes the greater retention of water in soil. Simulation using the 
partial differential equation that governs liquid water, water vapor and heat flow, Teng et al., [39] 
concluded that the heat diffusion coefficient and vapor flow have significant effects on evaporation 
from unsaturated soil. This finding aligns well with the study conducted by Izzati and Goh [40] where 
they argue that water vapor flux is an important factor that influences the transport of the mass and 
heat. Together, these studies underscore the interconnected relationship between the heat 
diffusion, evaporation from unsaturated soil and the impact of the vapor flux on mass and heat 
transport. 

Izzati and Goh [40] incorporated the data from Heitman et al., [36] who studied the relative 
importance of water vapor flux in the context of movement mass and heat in the soil by running a 
simulation using Eq. (1)-(3). This study focuses on silt loam and sandy soil. The result showed that 
water vapor flux was the most important factor among the other mass flux factors. In addition, water 
vapor heat flux became the second highest from 7 factor of heat flux. This shows an important thing 
that the vapor flux movement affects mass and heat transport. 

For the liquid water flux, there are 3 factors that contribute, which is liquid water-mass flux [40]. 
See Eq. (1): 

 

3

1 2

mL
TL

L

dq dT
D K Ki

dz dz




= − − −                                                                                                    (1) 

 

The liquid water flux, Lq in unit 
2 1kg m s− −

, L  is refer to the liquid water density in unit 
3kg m−

. 

First factor liquid water-mass flux by a temperature gradient in unit 
1m s− . The second factor refer to 

liquid water-mass flux by matric suction gradient in unit 
1m s− and third factor refers to liquid water-

mass flux by gravitational force in unit 
1m s− .    

Meanwhile, there are two factors that contribute the equation which is vapor-mass flux. This 
equation exclude the effect of gravity on water vapor movement [40]. See Eq. (2): 
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
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= − −                                                                                                               (2) 

 

The water vapor flux, vq  in unit 2 1kg m s− − . The first factor is vapor-mass flux by a temperature 

gradient and second is vapor-mass flux by a matric suction gradient, in unit 
1m s− . 

There are seven factors that contribute to heat flux. See Eq. (3):  
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 
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  

                                    (3) 

 

The heat flux, hq  in unit 
2 1J m s− −

. The first four are heat conduction, vapor enhancement factor 

vapor movement, vapor movement by diffusion alone and liquid movement. They are governed by 

temperature gradient in unit 
2 1J m s− −

. Terms 5 and 6 are under the matric suction gradient for vapor 

and liquid in unit 
2 1J m s− −

. Lastly, for the heat flux caused by liquid movement due to gravitational 

force in unit 
2 1J m s− −

. 

The mass and heat transport equation can be used for agriculture, engineering, and also to study 
the effects of greenhouse gases and the environment. For example, X. Zhang et al., [38] want to 
determine the water, heat and salinity in transporting bare soil for improving saline soil 
understanding, and  same study conducted by Wen et al., [41]. Also, study on modeling the vapor 
transfer in unsaturated freezing soil was found by Liang et al., [27]. This knowledge was applied in 
the high-speed railway, which has significant importance because the railway faced changes in 
season and weather. The model on phase change behavior of ice crystal was run to study the 
mechanism in saturated soil [42]. Figures 1 and 2 show that the measured of daily evaporation (water 
vapor) is higher compared to diffusion equation simulation result. There could be other factors and 
mechanisms that contribute to the acceleration of water vapor movement during evaporation 
process. Despite that, due to complexity of water vapor movement and pretend vapor enhancement 
factor in the equation, this flow is continued to be discussed by researchers.   
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Fig. 1. Show the difference between the measured with simulating 
diffusion only at equilibrium. Short soil column have length 1 meter and 
long soil column 2 meter [43] 

 

 
Fig. 2. Show the difference between the measured and simulated 
diffusion (only) where the soil surface exposed to wind blow [43] 

 
3. Water Vapor Movement and Vapor Enhancement Factor 

 
The phrase "vapor movement" is divided into two kinds, which are diffusion by matric suction 

and diffusion by temperature gradient. While the diffusion equation could refer to the movement of 
water vapor or other gaseous species in porous media and atmosphere [10]. The diffusion vapor flux 
becomes a complex issue in PdV theory. Vapor enhancement factor was commonly claimed due to 
the presence of liquid island effects and the higher temperature gradient in air space in porous media 
than the temperature gradient of soil solid medium. This leads to a multiplication factor from Fick’s 
law diffusion equation. Philip and de Vries impose the vapor enhancement factor (VEF) to overcome 
this situation [1] and continue the approach for clay loam and medium sand [44]. Few researchers 
pointed  to prove the enhancement factor, such as Cary and Taylor [45]; Cary [46-48]; Cass et al., 
[49]; Cahill and Parlange [8]; Ho and Web [50]; Shokri et al., [51]; Shahraeeni and Or [52]; Lu et al., 
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[53]. Also, the vapor enhancement Eq. (4) was discussed by X. Zhang et al., [38]. After more than a 
decade of discussions, there was still no clear explanation of the process involved [8,54].  

 
4

2.6
3 ( 1)exp 1x l x l

c

S S
f



    
=  + −  − − +         

          (4) 

 

where   is refer to vapor enhancement factor, x refers to the fitting parameter with a value of 9.5, 

cf is the mass fraction of clay ( 1kg kg − ) and lS is liquid water saturated ( 3 3m m− ). This equation is 

among the latest equations cited in the paper compared to the VEF that used by Cass et al., [49] and  
Lu et al., [53]. Different fitting parameters can cause different values of mass and heat flux 
calculation. 

In 1982, Milly proved that the diffusion equation in vapor phase must include the effects of latent 
heat, the heat of wetting, and water storage. This vapor flux movement becomes dominant in dry 
regions [7]. The vapor movement is faster in temperature gradient environment than the diffusion 
by Fick’s Law in isothermal condition, and this is stated in the literature by Goh and Noborio [10]. 
Lopez-Canfin et al., [55] study the link between water vapor absorption in dry areas and the carbon 
cycle. They found new mechanisms underlying water vapor absorption fluxes during hot and dry 
periods. Additionally, they proposed new models that predict the cumulative flux by diel coupling 
water vapor and carbon dioxide. Furthermore, they suggested conducting further investigations to 
observe soil water vapor and carbon dioxide absorption, that will distinguish between biotic and 
abiotic elements.  

Besides that, Balugani et al., [43] study the influence evaporation (water vapor) on the dry soil 
layer, divided into four situations. Which is the daily effect on evaporation and condensation; 
atmospheric pressure; wind effect; and nonlinear thickness of the dry soil layer. They conclude that 
atmospheric pressure becomes the main factor for water vapor to move out from the soil. This 
conclusion based on saturated water vapor from the air out when atmospheric pressure decreases 
and vice versa atmospheric increase pushing the water vapor inside the soil layer. Other evidence on 
water vapor movement shows the relative significance of water vapor in comparison with other 
mechanisms in the soil, as in [40]. Their studies indicate vapor movement is significant in mass 
transport relative to other mechanisms, similarly in silt loam and sand. Water vapor mass flux 
becomes the highest flux among the other mass fluxes and water vapor heat flux is the second 
highest among the seven heat fluxes. Other factors that dominate VEF show that VEF should separate 
to another phenomenon that contributes to diffusion governing equation. Goh and Noborio [54] 
hypothesize a new mechanism not yet consider in the PdV theory, which is vapor buoyancy under 
temperature gradient and isothermal condition. Vapor buoyancy potential could be affected due to 
soil properties. A bigger soil porosity potentially gives a higher vapor buoyancy effect, which allow 
the water vapor to move freely. See illustration at Figure 3, buoyancy effect allows water vapor to 
move upward and become higher at C, then B and final at A. B have higher porosity than A. 
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Fig. 3.  Illustration of surface table silt loam soil [56], sandy soil [57] and water 

 
After a decade of applying the vapor enhancement factor, there must be improvements to 

unravel the mechanism enhancing the water vapor movement. Based on the literature, a mechanism 
can be coming from the vapor buoyancy. This paper will list out the parameters and discuss the 
mechanism that contributes to the mass and heat transport equations from the perspective vapor 
buoyancy. 

 
4. Vapor Buoyancy Mechanism and Relative Parameters that Contribute 
 

The movement of water vapor upward in the soil as a result of differences in densities between 
the vapor and the soil's surroundings is referred to as "vapor buoyancy". In 2012, vapor buoyancy as 
a mechanism that separated from water, water vapor and heat was mentioned by Shahraeeni and 
Or [52]. This follows a hypothesis by Goh and Noborio [54] state that the lack of essential upward 
mass flux may exist for water vapor buoyancy. This hypothesis was validated after running a 
simulation using data from Heitman et al., [36] to study of couple heat and water transfer theory 
under transient. Goh and Noborio [10] also completely replaced the VEF with an imaginable 
mechanism that included the vapor volume expansion with variable temperature, pressure and 
water content in the soil. An extended work was found in Othman and Giap [58] to compare 
buoyancy effect flux with other existing mechanisms. They hypothesized buoyancy vapor was one of 
the possible factors at the root of the fundamental problem in predicting moisture. 

The significant presence in the movement of vapor buoyancy signifies the necessity for 
researchers to study water vapor buoyancy and the parameters that drive the mechanism. Water 
vapor buoyancy movement at atmosphere was introduced in parcel theory that plays an important 
role in the prediction of weather forecast [59]. This allows tracking the movement of a parcel of water 
vapor as it moves up or down, which is a crucial part of the parcel theory method for analyzing 
atmospheric air movement [60]. The liquid water phase will evaporate when it receives enough 
energy and allows the vapor to move around soil (porous media) and from the soil surface to the 
atmosphere. Besides the movement vapor buoyancy in the soil or on soil surface, the movement also 
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happened at ocean and lake surface to the atmospheric, which comes together with the processes 
of evaporation and condensation [14,61]. The existence vapor buoyancy will give negative climate 
feedback, which it will stabilize climate [62].   

Vapor buoyancy effect was described in literature to take place at various surfaces, for example, 
at the surface of soil, ocean, and lake. The laboratory studies also through series investigation shallow 
annular pool to understand effect of surface evaporation on thermocapillary buoyancy convection as 
reported Li et al., [63]. Their consumption during the weak of evaporation, the flow destabilization 
can be suppressed by the effect of buoyancy and surface evaporation. The Table 1 summary of 
equation vapor buoyancy with respect the certain factors are taken into the equation.  

 
Table 1 
Shows the summary of equation relative to vapor buoyancy 

No Equation Unit Reference 

1. 3( )Sg T h
Ra
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12 
B aF V g=  N  [71] 
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B v vF g N N N
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Notes: Ra  refer to Rayleigh number, Gr  refer to Grashof number, B  refer to vapor buoyancy 

flux, 2w refer to kinetic energy of buoyancy,   refer to the density, sB refer to buoyancy rate per 

volume, g refer to gravity ( 2m s− ),   refer to coefficient of the thermal water expansion ( 1K − ), sl  

refer to thermal expansion coefficient of salinity ( 1K − ), h  refer to heigh layer ( m ), v  refer to 

kinematic viscosity ( 2 1m s− ), a  refer to liquid thermal diffusivity ( 2 1m s− ), D  refer to surface 

characteristic dimension,   refer to the kinematic viscosity (m2s−1),   refer to density ( 3kg m− ), 
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  refer to perturbation density ( 3kg m− ), a refer to air density ( 3kg m− ), vT  refer to virtual 

temperature ( K ), vT  refer to virtual temperature at steady state/reference state ( K ), 
vT   refer to 

Virtual temperature at constant pressure ( K ),
v MLT refer to absolute virtual temperature in the mixed 

layer, sT  refer to temperature between two layer ( K ),  iz  refer to height of the atmosphere ( m ), 

  refer to potential temperature ( K ). 
v s f c  as the potential temperature parameterization ( K ), 

v M L  as the potential temperature mixes layer ( K ), e as the potential temperature for 

hydrostatically balance environment ( K ), 0  as the base state temperature potential ( K ). While, 

refer to thermal expansion coefficient ( K ),  refer to thermal expansion coefficient of seawater at 

surface 1K − ,  refer to specific volume of air at constant pressure ( 3 1m kg− ),   refer to specific 

volume at steady state ( 3 1m kg− ), l refer to liquid water content ( 1kg kg − ), wC refer to specific heat 

of water ( 1 1J kg K− − ), E  refer to evaporation rate ( 1m s− ), P  refer to  precipitation rate ( 1m s− ), s  

refer to surface salinity ( 1g L− ), Q  refer to upward heat flux ( 2W m ), BQ  refer to upward flux of long-

wave radiation from the ocean ( 2W m ), sQ refer to upward sensible heat flux ( 2W m ), lQ refer to 

absorption of solar radiation heat flux ( 2W m ), VL
refer to latent heat of vaporization (

1Jkg −

),   refer 

to rate of heating per unit volume ( 1 3J K m− − ), BF  refer to force buoyancy, radF refer to divergence 

radiative heat flux ( 2W m ), 
pc refer to specific heat ( 1 1J kg K− − ) at reference pressure, rp   ( Pa ) and 

reference potential temperature. Other that, V is the volume ( 3m ), PV  refer volume of droplet ( 3m ), 

p

x




 as pressure gradient ( 1Pa m− ), refer to the ratio gas constant water vapor over gas constant 

dry air minus 1, N refer to total condensate and precipitation liquid and ice mixing ratio, VN  refer 

to water vapor mixing ratio and e

VN refer to corresponding environmental water vapor mixing ratio 

profile. 
The first equation from Table 1 represents the Rayleigh Number (Ra). Rayleigh number is the ratio 

of buoyancy to viscosity. It is employed in some applications, including the transfer of water vapor, 
to analyze fluid dynamics and heat transfer. In the context vapor movement Ra can be used to predict 
the onset of buoyancy-driven motion in the atmosphere, which can help to understand and model 
the transport of water vapor and other gases in the atmosphere. This equation was used by Misyura 
et al., [64] to study water droplet evaporation. With an increase in droplet diameter, the water 
droplet experiment showed that the rate of evaporation increased by 60% due to the vapor 
buoyancy; nevertheless, they assert that there is no buoyancy for radii less than 0.5-1 mm and that 
the buoyancy increases at radii of 2 mm. 

The second equation in Table 1 refers to Grashof number (Gr) dimensionless equation. This 
equation was mentioned by Rodrigues et al., [65] in the book Fundamental Principles of 
Environmental Physics as the formula to approximate the ratio of buoyancy forces due to differences 
in density and viscous forces that either increase or decrease. Azizi et al., [66] use Gr to study the 
effect of buoyancy in a vertical channel for mixed layer. 

Doswell and Markowski [67] review the relative quantity for equation third and fourth from Table 
1 show that the vapor buoyancy flux depends on fluid density and temperature. This will produce the 

unit 2m s− , this equation also noted by Yang and seidel. While, Stull [59] reviewed the air parcel 

theory, the buoyancy defined as the product of air that rises in the upward motion. Parodi and 
Emanuel [69] interpreted the vapor buoyancy, B  using the modal of Weather Research and 
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Forecasting (WRF), which follows equation as in No. 6 in Table 1. By integrating the equation No. 6 in 

the table will get the vertical velocity as equation No. 7 which produces the terms of unit 1m s− . Then, 

the effect of solar radiation the vapor buoyancy on the surface ocean can be predicted using equation 
8. The operation of this mechanism is intricately linked to surface salinity, denoting the concentration 
of dissolved salt in water [61]. Salinity plays a crucial role in influencing both density and water 
balance. An alternative equation as presented in No. 9, offers another avenue for consideration. The 
volume of buoyancy rate can be determined using equation No. 10. Buoyancy force for water vapor 
movement can be predicted using the equations No. 11 and 12 in the term of unit force, as in Newton 
(N), but in equation No. 13 buoyancy force was reported in unit kg. 

From equations No. 1 and 2 in Table 1, buoyancy appeared in the form of ratio in comparison 
with viscosity, the higher the ratio value, the higher the potential to influence of vapor buoyancy. 
Therefore, the equations could not produce direct quantification of the vapor buoyancy without 
knowing the information of fluid viscosity. To express vapor buoyancy in Newtons, equations No. 11 
and 12 from Table 1 can be utilized, with subsequent incorporation of unit mass as defined in 
equation No. 13 of the same table. Vapor buoyancy is viewed as the anti-gravity force, which is the 

force that attracts to object against the gravity. This suitable with unit of 2m s− as show from few 

equations in Table 1.  But some equations unit as in 1m s− which is the velocity unit. This relates to 

the moving speed without accounting for the acceleration of the vapor due to buoyancy. When vapor 
buoyancy is represented, will affect the moisture content distribution in the soil and it is expected to 
have high evaporation rate occur on water surface such in ocean and lake.  

Quantification of water vapor buoyancy is needed so that it can be distinguished from water 
vapor diffusion. To plan for the measurement unit for the future study, must consider few things: 1) 
phase transition effect from liquid water to vapor phase; 2) measuring vapor buoyancy in the 
presence of atmospheric air; 3) the effect of temperature gradient; 4) the effect of fluid density, and 
5) design a pattern of measuring unit that able to distinguish the vapor buoyancy movement from 
that of vapor diffusion. A proper experimental design will allow the water vapor to move upward as 
the buoyancy mechanism to be predicted. 
 

5. Conclusion 
 

A few decades ago, VEF was used as the number factor in the transport equation, but regarding 
the model's prediction, there is a significant issue that contributes, especially the movement of vapor. 
Water vapor movement is an important factor contributing to the mass transport equation. From the 
review, we have suggested an unaccounted mechanism of vapor movement, namely vapor buoyancy. 
Even though this mechanism has not been proven yet by experiment, the current review from the 
literature clearly suggests that it is a likely unexplored mechanism to account for the VEF. There are 
three main factors that contribute to the vapor buoyancy such as gravity, temperature and density. 
Surely, in soil the porosity and water content also will appear as the contributing parameters. Then, 
the water phase that changes to vapor phase must follow ideal gas law that ultimately points to a 
liquid mass expanded in volume by evaporation contributing to vapor flux. For further studies, there 
is needed instrumentation design to quantify vapor buoyancy. The instrument measure that will be 
developed must be able to distinguish between vapor buoyancy and water diffusion mechanisms. 
The designing instrument study must completely understand the basic evaporation concept and 
Philip and de Vries theory. Fundamental research is crucial for gaining a thorough understanding of 
vapor movement in soils and atmospheres. Better model prediction by proper accounting 
mechanisms used in mass and heat transfer equation has a far-reaching application to real-world 
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issues like soil conservation, crop productivity and environmental cleanup, including making better 
decision in overcoming the climate change effect.  
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