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In this communication, blood flow is considered in a two-phase model of the tapered 
stenosed artery. Non-Newtonian and Newtonian models are considered in inner and 
outer regions, respectively. The transverse magnetic field is applied externally on the 
presumed pulsatile flow of blood to examine the nature of blood flow. It is anticipated 
that, in the inner region, blood follows the Jeffrey fluid model, and in the outer region, it 
follows the Bingham Plastic fluid model. The mathematical model of this system is 
formulated, a non-dimensionalization technique is used, and a numerical solution is 
obtained using the Finite difference method, one of the most suitable numerical methods 
for the formulated problem. The expressions for the primary/fundamental characteristics 
in determining the effect of blood flow are developed to explore the consequence of 
hematocrit, time component, tapering angle, and magnetic field. Scilab software is 
employed for mathematical simulations, revealing that flow characteristics within a 
stenosed artery undergo significant alterations, while the presence of a magnetic field 
aids in partially regulating the flow characteristics. 
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1. Introduction 
 

Atherosclerosis, a heart disease, stands as a significant cause of death in the world, including in 
Western countries. Abnormal and unnatural growth in the artery's inner walls results in the artery's 
thickening causing stenosed arteries [1-3]. This is the first phase in the development of 
atherosclerosis, which interrupts blood flow to different parts of the body. Every significant heart 
disease is because of thick blood. When the blood becomes denser, it can lead to artery damage. In 
response, the biological system initiates a repair process, during which fatty materials are set down 
on the artery's inner wall. The primary consequence of arterial stenosis is an increased resistance to 
blood flow and the associated reduction of blood flow. So, to understand the fundamentals of 
circulatory disorders, analysis of fluid dynamical characteristics of blood flow is crucial [4]. 

Although arteries appear to be cylindrical, they are not in reality. They are cylindrical in the 
beginning, and they may be tapered in the later part as the arteries usually bifurcate. Due to a 
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decrease in the radius of the artery, there is an increase in pressure, which disrupts the normal blood 
flow. Therefore, it becomes crucial to investigate blood flow characteristics in a tapered artery [5]. 

Most studies on blood flow in tapered arteries use the fact that the blood is Newtonian, but in 
reality, it is not; the flow is primarily non-Newtonian. It acts like Newtonian when it flows through big 
arteries at a high shear rate, whereas when the radius of the artery is small, in diseased arteries and 
at a low shear rate, its behavior is always found to be non-Newtonian. In narrow arteries, blood flow 
is highly pulsatile; the flow is non-Newtonian in the core region, which is a suspension of 
erythrocytes, and it is Newtonian in the peripheral area, which is the outer region of the artery [6]. 

Several fluid flow models have been used in blood flow research. The Casson fluid model and 
Herschel-Bulkley fluid model are two commonly used models of non-Newtonian flow to represent 
blood flow in the core region of narrow arteries. Herschel-Bulkley model is usually used when the 
shear rate is low, and this model describes the flow characteristics reasonably well. Also, as this fluid 
model has additional parameters compared to other non-Newtonian flow models, it is helpful to 
obtain more thorough facts about the features of blood flow [7]. Jeffrey fluid model is another model 
which is suitable for non-Newtonian fluids. It has different parameters than other preceding models, 
which will help get more accurate and realistic results. 

Different treatment modalities are available for stenosis-related heart diseases based on various 
aspects. One of them is the insertion of the catheter, which affects the blood flow and solute 
dispersion [8]. The other methods include injecting the drug into the blood vessel, which causes the 
occurrence of a chemical reaction between the drug and blood proteins and affects the effectiveness 
of the solute transportation in blood flow, applying a magnetic field externally, which regulates the 
blood flow, etc [9,10]. The existence of hematocrit gives magnetic properties to blood; hence, blood 
attracts both induced and external magnetic fields, influencing the flow [11,12]. Therefore, the 
application of magnetic fields is studied in different areas, such as application of external magnetic 
fields to regulate blood flow, magnetic drug targeting to treat cancer, etc [13,14]. It is recognized in 
one of the experimentations that the externally applied magnetic field on blood in the direction of 
flow reduces the viscosity of blood by 20 % – 30 %, and it remains the same almost for more than 
two hours. Further investigation is required on how and to what level magnets can dilute blood [15]. 
The thickness of blood is not the same at all times. In non-Newtonian fluid, the thickness fluctuates 
with the shear rate, inversely or directly, depending on whether the fluid is shear thinning or 
thickening. 

Numerous research scholars have conducted a simulation of blood flow through stenosed tubes. 
Flow is deliberated as pulsatile during simulation, and diverse models are used to study the flow. 
Many studies have been conducted comparing 2D and 3D axially symmetric models. The authors 
discussed how hemodynamic factors play a dynamic role in stenosed arteries. It is witnessed that the 
magnitude and distribution of wall shear stress are strongly affected by stenosis features, location, 
and size. It is also seen that resistance to flow and skin friction increases with the highest depth of 
stenosis, whereas the opposite tendency is observed with increased yield stress. Three-pore model 
is used to find the role of significant flow characteristics, and it is witnessed that the model can 
qualitatively capture the plaque change in the intima layer [16-19]. 

Several numerical procedures, such as the finite volume, finite element, and finite difference 
methods, are used to investigate the nature of blood flow in a constricted artery by considering blood 
non–Newtonian. The model is solved by solving Navier–Stoke equations governing the fluid motion. 
The characteristics of shear-thinning fluid are taken into account to study the nature of blood flow, 
and it is modeled using different flow models, namely, cross model, generalized power law model, 
etc. A detailed numerical study is conducted to reach the desired conclusion [20-22]. 
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It is found from the literature that, although the Jeffrey fluid model is used in the studies related 
to blood flow, in all the studies, it is used for one phase model, and that too mostly in finding the 
effect of stenosis on blood flow characteristics, but not to regulate the flow in diseased condition 
using a magnetic field. In the current study, an effort is made to regulate the blood flow in the area 
affected by stenosis by treating the flow as Jeffrey's fluid model. 

This study aims to identify the importance of the transverse magnetic field in regulating the blood 
flow in tapered stenosed arteries, in which viscosity is one of the leading parameters to be explored. 
To apply the model in blood rheology, blood viscosity is considered constant in one case and allowed 
to vary in the other. In the second case, viscosity can vary concerning hematocrit (percentage volume 
of erythrocytes) to improve the results, which are very close to real-life situations. This study may be 
helpful for further research, which will help medical practitioners treat the patients of 
atherosclerosis. 

The outline of the paper is as follows. In Section 2, the mathematical problem is formulated in 
terms of a set of non-linear partial differential equations comprising governing and constitutive 
equations, viscosity profile, geometry of the model, and initial and boundary conditions. A non-
dimensionalization technique is used to simplify the problem thus obtained. Radial transformations 
are used to streamline the problem further. The model thus obtained is solved using the finite 
difference method to get the expressions for axial velocity, volumetric flow rate, and wall shear stress 
in Section 3. Scilab is used for simulation to find the effect of stenosis, tapering angle, magnetic field, 
time, and hematocrit, and the results are presented in Section 4. 
 
2. Mathematical Formulation 
 

The geometry of the tapered stenosed artery with tapering angle 𝜑 is shown in Figure 1. The 
artery is converging if 𝜑 <  0, diverging if 𝜑 >  0, and the artery is non-tapered if 𝜑 =  0. 
 

 
Fig. 1. Schematic representation of tapered two-
fluid model 

 
Mathematical system of tapered stenosed arteries in peripheral and core regions are derived 

respectively as [23] 
 

𝑅𝑝∗(𝑧∗) = [(𝑚𝑑∗ + 𝑅𝑝
∗ ) + {𝑚 − (

ℎ𝑝∗

𝑙∗
)} (𝑧∗ − 𝑑∗) +  (

ℎ𝑝∗

(𝑙∗)2
)

⬚

(𝑧∗ − 𝑑∗)2]  in 𝑑∗ ≤ 𝑧∗ ≤ 𝑑∗ + 𝑙∗
⬚ 

𝑅𝑝∗(𝑧∗) = (𝑚𝑧∗ + 𝑅𝑝
∗ )   in all other cases          (1) 

 

𝑅𝑐∗(𝑧∗) = [(𝑚𝑑∗ + 𝑅𝑐
∗) + {𝑚 − (

ℎ𝑐∗

𝑙∗
)} (𝑧∗ − 𝑑∗) +   (

ℎ𝑐∗

(𝑙∗)2
)

⬚

(𝑧∗ − 𝑑∗)2]  in 𝑑∗ ≤ 𝑧∗ ≤ 𝑑∗ + 𝑙∗
⬚ 

𝑅𝑐∗(𝑧∗) = (𝑚𝑧∗ + 𝑅𝑐
∗)   in all other cases         (2) 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 121, Issue 2 (2024) 48-64 

51 
 

Here, 𝑅𝑝∗(𝑧∗) and 𝑅𝑐∗(𝑧∗) are radii of the stenosed part of an artery in the peripheral region and 
core region, respectively, 𝑅𝑐

∗ = 𝛾𝑅0
∗ and 𝑅𝑝

∗ = 𝑅0
∗ − 𝑅𝑐

∗ where 𝑅0
∗, 𝑅𝑝

∗ , 𝑅𝑐
∗

 are radii of non-tapered part, 

peripheral region and core region of the artery. 𝛾 is the ratio of radius of the core region to that of 
the artery, which can vary from 0.95 to 0.98, 𝑚 =  𝑡𝑎𝑛 𝜑, ℎ𝑝∗ and ℎ𝑐∗are heights of stenosis in 
peripheral and core region respectively given by ℎ𝑝⬚

∗ = 4 𝜏𝑚
∗  𝑠𝑒𝑐 𝜑 = 4𝑝𝑅𝑝

∗ sec 𝜑 and ℎ𝑐⬚
∗ =

4 𝜏𝑚
∗  𝑠𝑒𝑐 𝜑 = 4𝑝𝑅𝑐

∗ sec 𝜑 where 𝑝 is a real number between 0 and 1, 𝑑∗ is starting position of 
stenosis, and 𝑙∗is length of stenosis. 

It is assumed that blood flow is laminar, unsteady, incompressible, pulsatile, and fully developed. 
The transverse magnetic field is applied externally, with no induced and negligible electric fields. 

The fundamental equation that describes the behavior of the defined system is given by [24] 
 

−
𝜕𝑃∗

𝜕𝑧∗ +
1

𝑟∗

𝜕(𝑟∗𝜏∗)

𝜕𝑟∗ + 𝑘𝑀
𝜕𝐻∗

𝜕𝑧∗ = 𝜌
𝑑𝑢∗

𝑑𝑇∗           (3) 

 
Here, 𝑢∗ is the axial velocity component, 𝑟∗ is the radial velocity component, 𝜏∗ is shear stress, 

𝐻∗ is magnetic field intensity, 𝑀 is magnetization, 𝑘 is magnetic permeability, 𝜌 is the density of 
blood, 𝑇∗ is time, and 𝑝∗ is pressure component. 

The two-fluid flow model gives more realistic results, the Jeffrey fluid model, a non-Newtonian 
model, is used in the core region, and the Bingham plastic fluid model is used in the peripheral area. 
A slight opening stress is given as some initial push is required for the blood to start moving. The 
corresponding constitutive equations establishing the relationship between key variables in the 
system are provided by 
 
Jeffrey fluid model [11]:  
 
In the core region, 𝜏𝑐

∗ = −𝑃𝐼 + 𝑆 
 
where 𝜏𝑐

∗ is the Cauchy’s stress, P is pressure, 𝐼 is the identity tensor, and 𝑆 is extra stress. 
 
As PI is zero in our problem 
 

𝜏𝑐
∗ = 𝑆 =

 𝜇∗

1+𝜆1
(𝜏∗ + 𝜆2

𝜕𝜏∗

𝜕𝑇∗
)            (4) 

 
where 𝜇∗ is viscosity, 𝜆2 is retardation time, 𝜆1 is the ratio of relaxation time to retardation time, and 
𝜏∗ is shear stress. 
 
Bingham plastic model [25] 
 
In the peripheral region, 
 

𝜏∗ = 𝜏0
∗ +  𝜇∗ (−

𝜕𝑢∗

𝜕𝑟∗)
⬚

            (5) 

 
Here 𝜏0

∗ is initial stress,  𝜇∗is viscosity of blood. 
The viscosity of blood is not constant in the inner region, whereas it is constant in the outer 

region. It depends on hematocrit, position in the artery, and the stage of disease [26]. Einstein's 
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formula, which defines the viscosity profile applicable for the dilute suspension of spherical shape 
erythrocytes, is 
 

𝜇∗ =  𝜇0
∗  [ 1 + 𝛽 × 𝐻𝑒 ( 1 −  (

𝑟∗

𝑅0
∗)

𝑞

)]          (6) 

 
Here, 𝑞 ≥  2 is the parameter that governs the shape of the viscosity profile for blood. 𝐻𝑒 is the 

hematocrit, which is different for different people, usually ranges from 25% to 50 %, 𝜇0
∗= viscosity 

of plasma, 𝛽 is a constant equal to 2.5 for blood. 
The boundary conditions considered for the study as 

 

𝑢∗  = 0 𝑎𝑡 𝑟∗  =  𝑅𝑝
∗ (𝑧∗) and 

𝜕𝑢∗

𝜕𝑟∗
=  0 𝑎𝑡 𝑟∗ = 0         (7) 

 
𝑢𝑐

∗ = 𝑢𝑝
∗  𝑎𝑡 𝑟∗ = 𝑅𝑐

∗(𝑧∗) 𝑎𝑛𝑑 𝜏𝑐𝑜𝑟𝑒
∗ =  𝜏𝑝𝑒𝑟𝑖

∗  𝑎𝑡 𝑟∗ = 𝑅𝑐
∗        (8) 

 
The initial conditions are 𝑢𝑐

∗ = 𝑢𝑝
∗ = 0 𝑎𝑡 𝑇∗ = 0         (9) 

 
The equation for pulsatile flow is captured as [27], 
 

−
𝜕𝑝∗

𝜕𝑧∗ = 𝐴0
∗ + 𝐴1

∗ cos 𝑤∗𝑇∗                      (10) 

 
Here, 𝑤∗  =  2𝜋𝑓𝑝

∗, 𝑓𝑝
∗ is pulsatile frequency, 𝑎𝑛𝑑 𝐴0

∗  and 𝐴1
∗  are constant and pulsatile pressure 

gradient amplitudes, respectively. 
 
3. Solution Procedure 
 

A dimensionless system is a mathematical technique that reduces the number of variables and 
parameters, which helps understand the underlying physics or relationships among variables. Below 
is the system used in this problem. 
 
𝑟∗ = 𝑟𝑅0           𝑧

∗ = 𝑧𝑅0          𝑅
∗ = 𝑅𝑅0       𝑇 = 𝑇∗𝑤∗        𝑑∗ = 𝑑𝑅0          𝑙

∗ = 𝑙𝑅0         𝑃
∗ = 𝑃𝜌𝑢0

2    

𝑢∗ = 𝑢𝑢0      𝜏∗ = 𝜏𝜌𝑢0
2         𝜏𝑐

∗ = 𝜏𝑐
⬚𝜌𝑢0

2         𝐻∗ = 𝐻𝐻0    ℎ∗ = ℎ𝑅0       𝜇
∗ = 𝜇𝜌𝑢0𝑅0      𝑅𝑝

∗ = 𝑅𝑝 𝑅0               

 𝜇0
∗ = 𝜇0𝜌𝑢0𝑅0         𝐴

∗ =
𝜌𝑢0

2

𝑅0
𝐴          𝑤∗ = 𝑤𝑡0                   (11) 

 
Applying (11) in (1) to (10), we get 
 
The geometry of the stenosed artery in the outer and inner region (respectively) becomes. 
 

𝑅𝑝(𝑧) = {(𝑅0 + 𝑚𝑑) + [𝑚 − (
ℎ𝑝

𝑙
)] (𝑧 − 𝑑) + (

ℎ𝑝

𝑙2
) (𝑧 − 𝑑)2}  in 𝑑 ≤ 𝑧 ≤ 𝑑 + 𝑙 

𝑅𝑝(𝑧) = 𝑅0 + 𝑚𝑧         otherwise                     (12) 

 

𝑅𝑐(𝑧) = {(𝑅𝑐 + 𝑚𝑑) + [𝑚 − (
ℎ𝑐

𝑙
)] (𝑧 − 𝑑) + (

ℎ𝑐

𝑙2
) (𝑧 − 𝑑)2}  in 𝑑 ≤ 𝑧 ≤ 𝑑 + 𝑙 

𝑅𝑐(𝑧) = 𝑅𝑐 + 𝑚𝑧          otherwise                     (13) 
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Here, ℎ𝑝 = 4𝑝 𝑅𝑝 sec 𝜑,  ℎ𝑐 = 4𝑝 Rcsec  𝜑 , 𝑅𝑐 = 𝛾𝑅0 and 𝑅𝑝 = 𝑅0 − 𝑅𝑐, 𝑝 is a real number that 

helps to determine the severity of stenosis, which lies in (0, 1). 
The governing equation becomes 

 

−
𝜕𝑃

𝜕𝑧
+

1

𝑟
 
𝜕(𝑟𝜏)

𝜕𝑟
+

𝐾𝑀𝐻0

𝜌𝑢0
2

𝑑𝐻

𝑑𝑍
=

𝑤𝑅0

𝑢0

𝑑𝑢

𝑑𝑇
                     (14) 

 
The constitutive equations in the inner and outer regions are, respectively, 
 
Jeffrey fluid model 
 
Extra stress 𝑆 is defined as 
 

𝜏𝑐
⬚ = 𝑆 =

µ𝜌𝑢0𝑅0    

1+𝜆1
(𝜏 + 𝜆2𝑤𝑡0

𝜕𝜏

𝜕𝑇
)                     (15) 

 
where µ is viscosity, 𝜆2 is retardation time, 𝜆1 is the ratio of relaxation time to retardation time, and 
𝜏 is shear stress. 

Bingham plastic model: 𝜏 = 𝜏0 + 𝜇⬚ (−
𝜕𝑢

𝜕𝑟
)

⬚

                   (16) 

 

Then Eq. (6) becomes 𝜇 =  𝜇0[ 1 + 𝛽 × 𝐻𝑒 ( 1 −  (
𝑟

R0
)

𝑞

)]                  (17) 

 

In the Bingham plastic model (in the peripheral region), 
𝑟

R0
 tends to 1; hence, (

𝑟

R0
)

𝑞

tends to 1. 

 

So, 𝜇 =  𝜇0 implies 𝜏 = 𝜏0 + 𝜇0
⬚ (−

𝜕𝑢

𝜕𝑟
)

⬚

                    (18) 

 
The boundary conditions are 
 

𝑢 = 0 at 𝑟 = 𝑅𝑝(𝑧) and 
𝜕𝑢

𝜕𝑟
= 0 at 𝑟 =  0                    (19) 

 
𝑢𝑐 = 𝑢𝑝 𝑎𝑡 𝑟 = 𝑅𝑐(𝑧) 𝑎𝑛𝑑 𝜏𝑐𝑜𝑟𝑒 = 𝜏𝑝𝑒𝑟𝑖 𝑎𝑡 𝑟 = 𝑅𝑐(𝑧)                  (20) 

 
The initial conditions are 𝑢𝑐 = 𝑢𝑝 = 0 at 𝑇 = 0                   (21) 

 

The equation for pulsatile flow is −
𝜕𝑝⬚

𝜕𝑧⬚ = 𝐴0 + 𝐴1 cos 𝑇                  (22) 

 

Radial transformation given by, 𝑥 =
𝑟

𝑅0
 , 𝑡 =

𝑇

𝑡0
                   (23) 

 

The governing equation becomes, −
𝜕𝑃

𝜕𝑍
+

1

𝑥𝑅0

𝜕(𝑥𝜏)

𝜕𝑥
+

𝐾𝑀𝐻0

𝜌𝑢0
2

𝑑𝐻

𝑑𝑍
= 

𝑤𝑅0

𝑢0

𝜕𝑢

𝜕𝑡
                (24) 
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The constitutive equations become 
 
Jeffrey fluid 
 

𝜏𝑐
⬚ = 𝑆 =

µ𝜌𝑢0𝑅0

1+𝜆1
(𝜏 + 𝜆2𝑡0

𝜕𝜏

𝜕𝑡
)                                  (25) 

 
Bingham plastic model 
 

𝜏 = 𝜏0 +
𝜇0

𝑅0
(−

𝜕𝑢

𝜕𝑥
)

⬚

                                    (26) 

 
The Einstein’s equation becomes 
 
𝜇 =  𝜇0[ 1 + 𝛽 × 𝐻𝑒 ( 1 − (𝑥)𝑞)]                                  (27) 
 
Boundary conditions becomes 
 

𝑢 = 0 at 𝑥 =  
𝑅𝑝(𝑧)

𝑅0
 and 

𝜕𝑢

𝜕𝑥
= 0 at 𝑥 = 0                    (28) 

 

𝑢𝑐 = 𝑢𝑝 at 𝑥 =  
𝑅𝑐(𝑧)

𝑅0
 and 𝜏𝑐𝑜𝑟𝑒 = 𝜏𝑝𝑒𝑟𝑖 at 𝑥 =  

𝑅𝑐(𝑧)

𝑅0
                  (29) 

 
Initial conditions becomes 
 
𝑢𝑐 = 𝑢𝑝 = 0 at 𝑡 = 0                                    (30) 

 
The pulsatile flow equation becomes 
 

−
𝜕𝑝⬚

𝜕𝑧⬚ = 𝐴0 + 𝐴1 cos 𝑡𝑡0                                   (31) 

 
Using (25) and (27) in (24), we get 
 
𝜏0𝜌𝑢0𝜇0

𝑥(1+𝜆1)
[(1 + 𝛽. 𝐻𝑒) − (𝑞 + 1)𝑥𝑞] −  

𝜏0𝜌𝑢0𝜇0
2

𝑥(1+𝜆1)𝑅0
[(1 + 𝛽. 𝐻𝑒) − (𝑞 + 1)𝑥𝑞] (−

𝜕2𝑢

𝜕𝑥2) 

−
𝜌𝑢0𝜇0𝑅0

(1+𝜆1)
[(1 + 𝛽. 𝐻𝑒) − (𝑞 + 1)𝑥𝑞] (

𝜕𝑢

𝜕𝑥
)+ 

𝜆2𝑡0𝜇0

𝑥𝑅0
2 (−

𝜕2𝑢

𝜕𝑥2) (
𝜕𝑢

𝜕𝑡
) 

−
𝜕𝑃

𝜕𝑍
+

𝑘𝑀𝐻0

𝜌𝑢0
2

𝑑𝐻

𝑑𝑧
=

𝑤𝑅0

𝑢0

𝜕𝑢

𝜕𝑡
                      (32) 

 
Using (26) and (31) in (24) 
 

1

𝑥𝑅0
[𝜏0 +  (

𝜇0

𝑅0
)

⬚

(−
𝜕2𝑢

𝜕𝑥2)] +
𝑘𝑀𝐻0

𝜌𝑢0
2

𝑑𝐻

𝑑𝑧
−

𝜕𝑃

𝜕𝑍
=

𝑤𝑅0

𝑢0

𝜕𝑢

𝜕𝑡
                   (33) 

 
Eq. (32) gives axial velocity in the core region, and (33) shows the same in the peripheral area. 

There are quite a few numerical approaches for solving a system of non-linear partial differential 
equations. One of the most widely used methods is the Finite difference method. This method 
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discretizes the Eq. (32) and Eq. (33). 𝑢(𝑥, 𝑧, 𝑡) is discretized into 𝑢(𝑥𝑖 , 𝑧𝑗 , 𝑡𝑘) and denoted by 𝑢𝑖,𝑗
𝑘 . The 

increment in the radial direction is denoted as 𝛥𝑥, the increment in the axial direction as 𝛥𝑧, and the 
increment in the time component as 𝛥𝑡. The central difference scheme is used for spatial derivatives, 
and the forward difference scheme is used for time derivatives. 
 

𝜕𝑢𝑚

𝜕𝑥
=

(𝑢𝑚)𝑖,𝑗+1
𝑘 −(𝑢𝑚)𝑖,𝑗−1

𝑘

2 Δ𝑥
                      (34) 

 

𝜕2𝑢𝑚

𝜕𝑥2 =
(𝑢𝑚)𝑖,𝑗+1

𝑘 +(𝑢𝑚)𝑖,𝑗−1
𝑘 −2(𝑢𝑚)𝑖,𝑗

𝑘

(Δ𝑥)2                      (35) 

𝜕𝑢𝑚

𝜕𝑡
=

(𝑢𝑚)𝑖,𝑗
𝑘+1−(𝑢𝑚)𝑖,𝑗−1

𝑘

Δ𝑡
                      (36) 

 
Here, 𝑚 =  𝐶 if 0 < 𝑥 < α and 𝑚 = 𝑁 if 𝛼 < 𝑥 < 1, we define 𝑥𝑗 = ( 𝑗 –  1 ) 𝛥𝑥 for 𝑗 =

1, 2, , … . , 𝐶, 𝐶 + 1 such that 𝑥𝐶+1 = 𝛼 and 𝑥𝑗 = 𝛼 + [𝑗 – ( 𝐶 + 1 ) ] 𝛥𝑥 for 𝑗 = 𝐶 + 1, 𝐶 + 2, … , 𝑁 +

1 such that 𝑥𝑁+1 = 1, 𝑧𝑖 = ( 𝑖 –  1) 𝛥𝑧 for 𝑖 =  1, 2, … and 𝑡𝑘  = ( 𝑘 –  1 ) 𝛥𝑡, 𝑘 =  1, 2, …   
 
Using (34), (35), and (36) in (32), we get 
 

(𝑢𝑐)𝑖,𝑗
𝑘+1 =  (𝑢𝑐)𝑖,𝑗

𝑘 + Δ𝑡 [−
𝑢0

𝑤𝑅0
(

𝜕𝑝

𝜕𝑧
)

𝑖

𝑘

+   
𝑢0

𝑤𝑅0

𝑘𝑀𝐻0

𝜌𝑢0
2

𝑑𝐻

𝑑𝑧
]     

                          +Δ𝑡 [
𝑢0

𝑤𝑅0

𝜏0𝜌𝑢0𝜇0

𝑥𝑖(1 + 𝜆1)
[(1 + 𝛽. 𝐻𝑒) − (𝑞 + 1)(𝑥𝑖)

𝑞]] 

             +Δ𝑡 [
𝑢0

𝑤𝑅0

𝜏0𝜌𝑢0𝜇0
2

𝑥𝑖(1 + 𝜆1)𝑅0

[(1 + 𝛽. 𝐻𝑒)

− (𝑞 + 1)(𝑥𝑖)𝑞]] [
(𝑢𝑐)𝑖,𝑗+1

𝑘 + (𝑢𝑐)𝑖,𝑗−1
𝑘 − 2(𝑢𝑐)𝑖,𝑗

𝑘

(Δ𝑥)2
] 

             + Δ𝑡 [
𝑢0

𝑤𝑅0

𝜌𝑢0𝜇0𝑅0

 (1 + 𝜆1)
[(1 + 𝛽. 𝐻𝑒) − (𝑞 + 1)(𝑥𝑖)

𝑞]] [
(𝑢𝑐)𝑖,𝑗+1

𝑘 − (𝑢𝑐)𝑖,𝑗−1
𝑘

2 Δ𝑥
] 

           − Δ𝑡 [
𝑢0

𝑤𝑅0

𝜆2𝑡0𝜇0

𝑥𝑖𝑅0
2 ] [

(𝑢𝑐)𝑖,𝑗+1
𝑘 +(𝑢𝑐)𝑖,𝑗−1

𝑘 −2(𝑢𝑐)𝑖,𝑗
𝑘

(Δ𝑥)2
] [

(𝑢𝑐)𝑖,𝑗
𝑘+1−(𝑢𝑐)𝑖,𝑗−1

𝑘

Δ𝑡
]                (37) 

                                                                                                                                                                                                                                                                                                                                                                                                     
Using (34), (35), and (36) in (33), we get, 
 

(𝑢𝑝)
𝑖,𝑗

𝑘+1
= (𝑢𝑝)

𝑖,𝑗 

𝑘
+ Δ𝑡 (

𝑢0

𝑤𝑅0

𝑘𝑀𝐻0

𝜌𝑢0
2

𝑑𝐻

𝑑𝑧
) + Δ𝑡 (

𝑢0

𝑤𝑅0
) (

𝜕𝑝

𝜕𝑧
)

𝑖

𝑘

 

                  +Δ𝑡 (
𝑢0

𝑤𝑅0

1

𝑥𝑖𝑅0
[𝜏0− (

𝜇0

𝑅0
) (

(𝑢𝑝)
𝑖+1,𝑗

𝑘
+(𝑢𝑝)𝑖−1,𝑗

𝑘 −2(𝑢𝑝)𝑖,𝑗
𝑘

(Δ𝑥)2 )

⬚

])                              (38) 

 
Similarly, we get the expressions for volumetric flow rate and wall shear stress as, 
 

𝑄𝑖
𝑘 = 2𝜋 [∫ 𝑥𝑗(𝑢𝑐)𝑖,𝑗

𝑘 ⬚𝛼

0
𝑑𝑥𝑗 + ∫ 𝑥𝑗(𝑢𝑝)𝑖,𝑗

𝑘 ⬚
𝑑𝑥𝑗 

1

𝛼
]                   (39) 
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𝜏𝑖
𝑘 = 𝜏0 − 𝜇 (

(𝑢𝑝)
𝑖,𝑗+1

𝑘
−(𝑢𝑝)𝑖,𝑗−1

𝑘

2 Δ𝑥
)                     (40) 

 
4. Result and Discussion 
 

This study aims to notice the impact of tapering angle, non-Newtonian nature, yield stress, 
magnetic field, and pulsatile nature on the most critical blood flow characteristics through the 
tapered stenosed artery. The subsequent values as shown in Table 1 are used for computations. 
 

Table 1 
Values of the parameters 
Parameter Value Parameter Value 

𝑛 0.95 and 1.05 𝑑𝐻

𝑑𝑍
 

0, 10000, 
20000, 30000 

𝜏0 0.02 𝑢0 36 cm/sec 
𝑑 2 cm 𝐴0 100 kg/m-2 s-2 
𝑙 5 cm 𝐴1 0.2 A0 
𝜌 1.06 gm / cm3 𝑓𝑝 1.2 Hz 

𝑅0 0.25 cm 𝛥𝑥 0.0125 
𝑘 1 𝛥𝑧 0.1 
𝑀 2 amp/sec 𝛥𝑡 0.0125 
𝑡0 100 µ 3.5 cP 
𝜇0 1.8 cP 𝛽 2.5 
𝐻𝑒 20 % to 50 % 𝑞 2 
𝜑 ±0.01, ±0.015 𝛾 0.95 to 0.98 
𝑡 0.1, 02,…,0.85 sec 𝐻0 0.2 Tesla 

 
4.1 Axial Velocity 
 

Axial velocity is an essential factor that needs to be regulated to avoid further complications in 
diseased arteries. There is a requirement to balance a lot of parameters to regulate velocity. The 
movement of blood flow in the core region in both diverging and converging arteries is shown in 
Figure 2 for different magnetic field gradients. It is noted that axial velocity reduces as 𝑟 increases for 
smaller gradients. Axial velocity at 𝑟 = 0.2 in the diverging artery and at 𝑟 = 0.12 in the converging 
artery are the same irrespective of the gradient of the magnetic field. Axial velocity stabilizes for 
higher values of gradients (𝐻 = 40000). 
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Fig. 2. Axial velocity in the inner region for different gradients 

 
Figure 3 illustrates the trend of axial velocity in the core region for different 𝑟. Axial velocity 

decreases steadily as z increases from 3 to 5, then increases in the converging artery. In contrast, a 
slight decrease is observed in the beginning and a drastic increase later in the case of the diverging 
artery. 
 

  
Fig. 3. Axial velocity in the core region for different 𝑟 

 
It is established from Figure 4 that the axial velocity is linear and inversely proportional to r. Lower 

axial velocity is observed with increasing gradient in the diverging artery, and a precisely opposite 
trend is observed in the converging artery. 

In all these cases, the velocity is higher for higher values of Jeffrey parameter 𝜆1. Velocity is less 
when 𝜆1 is small (between 0 and 1). As 𝜆1 increases further from 1 to 2, velocity rises significantly. 
The velocity drops down to zero at the throat of the stenosis; the rate of decrease is higher in the 
latter case. 
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Fig. 4. Axial velocity in the outer region for different gradients 

 
Figure 5 displays the behavior of velocity against viscosity at 𝑧 = 2.5 in converging and diverging 

arteries. Radial coordinate and hematocrit are two factors that influence the viscosity. Axial velocity 
is inversely proportional to viscosity. Viscosity is low near the radial line of the artery. Hence, there 
is a negligible difference in velocity, and as we move away from the radial line, the rate of change of 
velocity is higher. 

  
Fig. 5. Axial velocity in the inner region at 𝑧 = 2.5 

 
Figure 6 represents a comparative velocity profile at 𝑧 = 4 in the core region. Velocity drops as 

we move from the radial line to the stenosis wall and becomes zero at the end. It is required to 
manage Jeffrey parameters to raise / lower / balance velocity along with other vital parameters 
related to magnetization. 
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Fig. 6. Axial velocity in the core region at 𝑧 = 4 

 
The percentage of hematocrit is varied to observe the velocity behavior. A significant variation in 

velocity is observed in diverging arteries for different hematocrit values, which is not the case in 
converging arteries (Figure 7). A higher hematocrit level helps to increase the velocity near the center 
line of the artery. 
 

  
Fig. 7. Axial velocity in the core region for different hematocrit at 
𝑧 = 4 

 
4.2 Volumetric Flow Rate 
 

Figure 8 elucidates the rate of change in flow rate for the fixed tapering angle in diverging and 
converging arteries. Initially, the flow rate decreases quickly in the converging artery compared to 
the diverging artery. In the next phase, the increase in flow rate is low in the narrowing arteries and 
high in the widening arteries. 
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Fig. 8. Flow rate for different tapering angle 

 
Figure 9 represents the style of flow rate with respect to time factor. The increase in flow rate 

with respect to t is more significant at the ends of stenosis in the diverging artery. In contrast, in the 
converging artery, even though the flow rate increases as 𝑡 increases at the ends, it decreases in the 
middle of stenosis. Significant variation is observed at the throat in the converging artery, and no 
change in the diverging artery as the artery is widened. 
 

  
Fig. 9. Flow rate for different time 

 
A comparative visualization is given in Figure 10. The result in the diverging artery indicates that 

the stenosis, or narrowing, has a relatively small impact on the volumetric flow rate. A significant 
change is observed in the converging artery to contradict this story. This means that tapering angle, 
time, and magnetization parameters strongly influence the volumetric flow rate in narrowing 
arteries. The results suggest optimizing and controlling these factors is essential to ensure a stable 
and desired flow rate in narrowing arteries. 
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Fig. 10. Volumetric flow rate in different cases 

 
Figure 11 demonstrates the flow rate trend for different gradients by varying viscosity. The 

viscosity is assumed to vary w.r.t. position, i.e., radial coordinate. The flow rate decreases in the first 
half and then increases after the stenosis peak. A turn in the profile is observed in the diverging artery 
between 𝑧 =  3 and 𝑧 = 5. There is no notable change as viscosity varies w.r.t. hematocrit, which is 
not displayed in the figure. 
 

  
Fig. 11. Flow rate for different gradients 

 
4.3 Wall Shear Stress 
 

The time (t) parameter is considered while drawing Figure 12. Accordingly, it is observed that 
shear stress decreases as t increases from 0.1 to 0.5. The stress starts increasing from t=0.7 again. In 
addition to this, it is noticed that shear stress is higher in converging arteries than in diverging 
arteries. 
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Fig. 12. Shear stress for different t 

 
The wall shear stress is analyzed for two values of magnetic field gradient, 10000 and 20000, and 

the results can be observed in Figure 13. Magnetization, tapering angle, and time play a crucial role 
in shaping the profile of wall shear stress. There is no significant difference, although there is a 
difference in gradient values. In other words, we can conclude the influence of magnetic field 
gradient is insignificant on shear stress. 
 

  
Fig. 13. Shear stress for 

𝑑𝐻

𝑑𝑍
(𝐻) = 10000 and 

𝑑𝐻

𝑑𝑍
(𝐻) = 20000 

 
5. Conclusion 
 

This study discusses the effect of a magnetic field on the flow characteristics of blood flow 
through tapered stenosed arteries. The flow is deemed to be unsteady and two-dimensional. The 
study focuses on estimating the connection between arterial disease and biomechanics by examining 
the influence of magnetization, tapering angle, relaxation, and retardation time. 

The study results show that the vital characteristics of blood flow through stenosed arteries are 
affected. The results obtained agree with previous findings, indicating the validity of the approach. 
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The study reveals that the externally applied magnetic field strongly influences flow rate and axial 
velocity. Conversely, its significance is much lower in the case of shear stress. In other words, the 
magnetic field significantly impacts blood's movement and flow rate. Still, its effect on the force 
experienced by the artery walls is relatively tiny. 

The results found in this study can predict the behavior of significant characteristics of blood flow 
in different conditions. These parameters support stabilizing the flow and are visualized in the figures. 
These points make the study valuable for medical practitioners as they can use this information to 
develop new treatment approaches for atherosclerosis, a condition characterized by the narrowing 
of arteries due to plaque buildup. By understanding how blood flow is affected in stenosed arteries 
and the influence of factors such as magnetization, tapering angle, and time, medical practitioners 
can develop more effective treatment modalities for associated ailments. 

Furthermore, there are several characteristics of blood flow and numerous parameters affecting 
the flow of blood in stenosed arteries, and the current study examined three crucial characteristics, 
axial velocity, flow rate, and wall shear stress, by varying a few parameters. There is a scope to study 
the remaining characteristics of blood flow by varying other parameters so that the result will be 
more specific and it is possible to get a clear idea of how much magnetic field is required to regulate 
the blood flow in the stenosed artery. 
 
References 
[1] Bali, Rekha, and Usha Awasthi. "Mathematical model of blood flow in small blood vessel in the presence of 

magnetic field." Applied Mathematics 2, no. 02 (2011): 264-269. https://doi.org/10.4236/am.2011.22031 
[2] Sankar, D. S., and Yazariah Yatim. "Comparative analysis of mathematical models for blood flow in tapered 

constricted arteries." In Abstract and Applied Analysis, vol. 2012, no. 1, p. 235960. Hindawi Publishing Corporation, 
2012. https://doi.org/10.1155/2012/235960  

[3] Sankar, D. S., and Usik Lee. "FDM analysis for MHD flow of a non-Newtonian fluid for blood flow in stenosed 
arteries." Journal of Mechanical Science and Technology 25 (2011): 2573-2581. https://doi.org/10.1007/s12206-
011-0728-x  

[4] Tu, Cheng, and Michel Deville. "Pulsatile flow of non-Newtonian fluids through arterial stenoses." Journal of 
Biomechanics 29, no. 7 (1996): 899-908. https://doi.org/10.1016/0021-9290(95)00151-4  

[5] Dwivedi, A. P., T. S. Pal, and L. Rakesh. "Micropolar fluid model for blood flow through a small tapered tube." Indian 
Journal of Technology 20, no. 8 (1982): 295-299.  

[6] Siddiqui, S. U., N. K. Verma, Shailesh Mishra, and R. S. Gupta. "Mathematical modelling of pulsatile flow of Casson's 
fluid in arterial stenosis." Applied Mathematics and Computation 210, no. 1 (2009): 1-10. 
https://doi.org/10.1016/j.amc.2007.05.070  

[7] Chhabra, Rajendra P. "Non-Newtonian fluids: an introduction." Rheology of Complex Fluids (2010): 3-34. 
https://doi.org/10.1007/978-1-4419-6494-6_1  

[8] Munir, Intan Diyana, Nurul Aini Jaafar, and Sharidan Shafie. "Effect of Catheter and Stenosis on Solute Diffusion in 
Non-Newtonian Blood Flow through a Catheterized Stenosed Artery." CFD Letters 14, no. 12 (2022): 11-26. 
https://doi.org/10.37934/cfdl.14.12.1126  

[9] Jaafar, Nurul Aini, Siti NurulAifa Mohd ZainulAbidin, Zuhaila Ismail, and Ahmad Qushairi Mohamad. "Mathematical 
analysis of unsteady solute dispersion with chemical reaction through a stenosed artery." Journal of Advanced 
Research in Fluid Mechanics and Thermal Sciences 86, no. 2 (2021): 56-73. 
https://doi.org/10.37934/arfmts.86.2.5673 

[10] Lahonian, Mansour, Sepideh Khedri, Saman Aminian, Leyla Ranjbari, and Aram Ardalan. "Effect of Particle-Particle 
and RBC-Particle Interactions on Capture Efficiency of Magnetic Nanocarriers Under the Influence of a Nonuniform 
Magnetic Field." Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 48, no. 2 
(2024): 461-474. https://doi.org/10.1007/s40997-023-00669-3  

[11] Nallapu, Santhosh, and G. Radhakrishnamacharya. "Flow of Jeffrey Fluid through Narrow Tubes." arXiv preprint 
arXiv:1403.7695 (2014). https://doi.org/10.1155/2014/713831  

[12] Veena, B. S., and Arundhati S. Warke. "Study of blood flow in one half of cosine shaped stenosis in the presence of 
magnetic field." International Journal of Experimental and Computational Biomechanics 3, no. 2 (2015): 121-136. 
https://doi.org/10.1504/IJECB.2015.070435  

https://doi.org/10.4236/am.2011.22031
https://doi.org/10.1155/2012/235960
https://doi.org/10.1007/s12206-011-0728-x
https://doi.org/10.1007/s12206-011-0728-x
https://doi.org/10.1016/0021-9290(95)00151-4
https://doi.org/10.1016/j.amc.2007.05.070
https://doi.org/10.1007/978-1-4419-6494-6_1
https://doi.org/10.37934/cfdl.14.12.1126
https://doi.org/10.37934/arfmts.86.2.5673
https://doi.org/10.1007/s40997-023-00669-3
https://doi.org/10.1155/2014/713831
https://doi.org/10.1504/IJECB.2015.070435


Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 121, Issue 2 (2024) 48-64 

64 
 

[13] Alizadeh, As' ad, Saman Aminian, Asal Malakshahi, Aram Ardalan, Mansour Lahonian, Mohammad Najafi, and 
Kavan Zarei. "Numerical investigation of the injection angle of carrier nanoparticles under the effect of different 
magnetic fields." Journal of Magnetism and Magnetic Materials 578 (2023): 170836. 
https://doi.org/10.1016/j.jmmm.2023.170836  

[14] Aram, Ardalan, Aminan Saman, and Lahonian Mansour. "The Effect of the Non-Newtonian Behavior of Blood on 
Capture Efficiency of Particles in a Vessel with a Local Symmetrical Stenosis." BioNanoScience (2024): 1-11. 
https://doi.org/10.1007/s12668-024-01304-4  

[15] Tao, R., and Ke Huang. "Reducing blood viscosity with magnetic fields." Physical Review E-Statistical, Nonlinear, and 
Soft Matter Physics 84, no. 1 (2011): 011905. https://doi.org/10.1103/PhysRevE.84.011905  

[16] Karimi, Safoora, Mitra Dadvar, Mahsa Dabagh, Payman Jalali, Hamid Modarress, and Bahram Dabir. "Simulation of 
pulsatile blood flow through stenotic artery considering different blood rheologies: comparison of 3d and 2d-
axisymmetric models." Biomedical Engineering: Applications, Basis and Communications 25, no. 02 (2013): 
1350023. https://doi.org/10.4015/S1016237213500233  

[17] Dabagh, Mahsa, Paritosh Vasava, and Payman Jalali. "Effects of severity and location of stenosis on the 
hemodynamics in human aorta and its branches." Medical & Biological Engineering & Computing 53 (2015): 463-
476. https://doi.org/10.1007/s11517-015-1253-3  

[18] Venkatesan, Jayavelu, D. S. Sankar, K. Hemalatha, and Yazariah Yatim. "Mathematical analysis of Casson fluid model 
for blood rheology in stenosed narrow arteries." Journal of Applied Mathematics 2013, no. 1 (2013): 583809. 
https://doi.org/10.1155/2013/583809  

[19] Cilla, Myriam, Estefania Pena, and Miguel A. Martinez. "Mathematical modelling of atheroma plaque formation 
and development in coronary arteries." Journal of The Royal Society Interface 11, no. 90 (2014): 20130866. 
https://doi.org/10.1098/rsif.2013.0866  

[20] Achaba, Louiza, Mohamed Mahfouda, and Salah Benhadida. "Numerical study of the non-Newtonian blood flow in 
a stenosed artery using two rheological models." Thermal Science 20, no. 2 (2016): 449-460. 
https://doi.org/10.2298/TSCI130227161A  

[21] Sankar, D. S. "Perturbation analysis for pulsatile flow of Carreau fluid through tapered stenotic arteries." 
International Journal of Biomathematics 9, no. 04 (2016): 1650063. https://doi.org/10.1142/S1793524516500637  

[22] Neeraja, G., P. A. Dinesh, K. Vidya, and C. S. K. Raju. "Peripheral layer viscosity on the stenotic blood vessels for 
Herschel-Bulkley fluid model." Informatics in Medicine Unlocked 9 (2017): 161-165. 
https://doi.org/10.1016/j.imu.2017.08.004  

[23] Veena, B. S., and Arundhati Warke. "The flow behaviour of blood in two-phase time-dependent tapered stenosed 
artery in the presence of transverse magnetic field." Journal of Mathematical and Computational Science 11, no. 1 
(2020): 543-562.  

[24] Singh, Ram, G. C. Sharma, and M. Jain. "Mathematical modeling of blood flow in a stenosed artery under MHD 
effect through porous medium." International Journal of Engineering 23, no. 3 (2010): 243-252.  

[25] Chhabra, Raj P., and John Francis Richardson. Non-Newtonian flow and applied rheology: engineering applications. 
Butterworth-Heinemann, 2008.  

[26] Misra, J. C., A. Sinha, and G. C. Shit. "Mathematical modeling of blood flow in a porous vessel having double stenoses 
in the presence of an external magnetic field." International Journal of Biomathematics 4, no. 02 (2011): 207-225. 
https://doi.org/10.1142/S1793524511001428  

[27] Sankar, D. S., and K. Hemalatha. "Pulsatile flow of Herschel-Bulkley fluid through catheterized arteries-A 
mathematical model." Applied Mathematical Modelling 31, no. 8 (2007): 1497-1517. 
https://doi.org/10.1016/j.apm.2006.04.012 

 

https://doi.org/10.1016/j.jmmm.2023.170836
https://doi.org/10.1007/s12668-024-01304-4
https://doi.org/10.1103/PhysRevE.84.011905
https://doi.org/10.4015/S1016237213500233
https://doi.org/10.1007/s11517-015-1253-3
https://doi.org/10.1155/2013/583809
https://doi.org/10.1098/rsif.2013.0866
https://doi.org/10.2298/TSCI130227161A
https://doi.org/10.1142/S1793524516500637
https://doi.org/10.1016/j.imu.2017.08.004
https://doi.org/10.1142/S1793524511001428
https://doi.org/10.1016/j.apm.2006.04.012

