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This study investigates the heat transfer and friction factor characteristics in a heat 
exchanger utilizing copper wavy (corrugated) twisted tape inserts. By inducing 
turbulent flow within the inner tube of the heat exchanger, these inserts generated 
increased turbulence, thereby enhancing heat transfer and causing a rise in pressure 
drop. The copper twisted tapes, with various twist ratios (TR=10.7, 8.5, 7.1), 
measured 1 meter in length and 14 mm in width. The heat exchanger's outer tube 
was made of mild steel, with an outer diameter of 0.0198 m and an inner diameter of 
0.0142 m, while the inner tube was constructed of copper, with an outer diameter of 
0.038 m and an inner diameter of 0.032 m. The overall length of the pipe-in-pipe 
heat exchanger was 1.4 m. Bulk mean temperatures were recorded at different 
positions for various water flow rates, and new correlations for the Nusselt number 
and friction factor were derived from the results for the twisted tape inserts. The 
Reynolds number ranged from 5000 to 17000. Comparative analyses revealed that 
the wavy twisted tape with a twist ratio of 7.1 provided the highest heat transfer 
rate, showing a 172% increase in the Nusselt number and a 32.11% increase in the 
friction factor relative to a smooth tube. 

Keywords: 

Heat transfer; heat exchanger; wavy 
twisted tape; turbulent; pressure drop; 
friction factor 

 
 
 
 

 
* Corresponding author. 
E-mail address: a.kurhade@gmail.com 
 
https://doi.org/10.37934/arfmts.122.2.146155 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 122, Issue 2 (2024) 146-155 

147 
 

1. Introduction 
 

Enhancing heat transfer within a duct can be achieved through passive methods like using 
different rib patterns, surfaces with indentations, and pin-like protrusions. These techniques find 
applications in combustion chamber linings, cooling internal turbine blades, solar air heaters, 
electronic cooling systems, medical equipment, and industrial heat exchangers. Currently, dimpled 
surfaces are favored for their ability to significantly increase heat transfer rates with minimal 
impact on pressure. Researchers have also explored combining these techniques to further improve 
heat transfer efficiency. Existing literature extensively covers how various parameters of dimples 
affect heat transfer. The Russian Aerodynamic Society employs dimpled surfaces not only to reduce 
drag but also to enhance heat transfer. They utilize configurations such as regular arrays of dimples, 
staggered arrays in annular passages, flow through converging and diverging ducts featuring a 
single hemispherical dimple, and flow through narrow ducts with spherical dimples positioned 
variably on opposing walls. Some studies report achieving up to 150% higher heat transfer 
compared to flat plates, with a relatively minor increase in pressure. Recent research indicates heat 
transfer improvements 2.5 times greater than that of smooth plates across various Reynolds 
numbers, with a pressure penalty roughly half that of ribbed turbulators. Experiments by Afanasyev 
et al., [1] analyzed friction and heat transfer on surfaces with spherical cavities exposed to 
turbulent flow, using an aerodynamic test bed to study boundary layer conditions. Bunker and 
Donnellan [2] demonstrated that heat transfer in circular passages with dimpled surfaces can be 
enhanced by factors exceeding 2 when the dimple depth exceeds 0.3 and the density of the array is 
0.5 or higher, resulting in friction factor multipliers between 4 and 6. This research provides initial 
insights into the effects of different concave arrays on heat transfer and friction in turbulent flows. 
Chyu et al., [3] showed that both concave configurations enhance heat transfer approximately 2.5 
times more than smooth surfaces for Reynolds numbers between 10,000 and 50,000, comparable 
to continuous ribbed turbulators. Moreover, these concave arrays lead to significantly lower 
pressure losses, nearly half of those caused by protruding elements. Isaev et al., [4] demonstrated 
that altering the separation flow structure from symmetric to a single vortex significantly boosts 
heat transfer, increasing approximately 60% in the region of the spherical dimple and about 45% in 
its wake. Ligrani et al., [5] presented flow structure characteristics for a channel with a dimpled 
surface on one wall, both with and without protrusions (matching the shapes of the dimples) on the 
opposite wall. Moon et al., [6] showed that heat transfer enhancement and pressure penalties 
remain consistent across a wide range of Reynolds numbers and duct heights. Mahmood et al., [7] 
examined mechanisms for enhancing heat transfer on plain duct surfaces with dimples on one wall, 
where the duct height was 50% of the dimple print diameter. Syred et al., [8] studied turbulent heat 
transfer and hydrodynamics in concavely and convexly curved dimples with Reynolds numbers 
ranging from 1.3 x 105 to 3.1 x 105. Kurhade et al., [9-12] discussed material selections and 
computational fluid dynamics (CFD) approaches for thermal cooling, while Patil et al., [13] and 
Waware et al., [14] provided critical reviews on heat transfer enhancement in heat exchangers. 
Rahul Khot et al., [15-19] investigated laser welding parameters on the strength of TRIP steel. The 
present study focuses on enhancing heat transfer using wavy corrugated twisted tape inserts. Luo 
et al., [20] utilized three methods—air bubble injection, perforated wavy strip turbulator (PWST), 
and Nano fluids—to enhance thermal performance in a double pipe heat exchanger. Results 
indicated heat transfer increases of 56% with Nano fluids, 53% with PWST, and 14.1% with bubble 
injection. Combining all three methods boosted heat transfer and exergy losses by 2.15 and 1.82 
times, respectively, compared to a plain pipe. Kumar et al., [21] presented experimental analyses 
on a heat exchanger tube using a newly designed perforated conical ring combined with twisted 
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tape inserts. Aldawi [22] explored the use of twisted tapes in spiral tubes to address significant 
research gaps, employing a validated mathematical model to understand geometric parameters' 
effects on heat transfer and exergy efficiency in such configurations. Ahmad et al., [23] found that 
corrugated geometries exhibit a performance evaluation criterion (PEC) greater than unity, 
surpassing smooth pipes. 

Researchers are actively developing new techniques to enhance heat transfer in mechanical 
systems using magnetic fields, such as in internal combustion engines and vapor compression 
refrigerating systems. While extensive studies have explored heat transfer enhancements in double 
pipe heat exchangers using various techniques, the specific effects of wavy corrugated twisted tape 
inserts on heat transfer efficiency remain under-investigated. Existing literature often focuses on 
smooth twisted tapes or other turbulence-inducing inserts, leaving a significant gap in 
understanding how the unique geometry of wavy corrugated twisted tapes impacts heat transfer 
and pressure drop characteristics in turbulent flow conditions. This study aims to address this gap 
by systematically examining the performance of these inserts, providing new correlations and 
comparative analyses to fill the current void in research. The aim of this study is to investigate the 
heat transfer effects and friction factor characteristics of wavy corrugated twisted tape inserts in 
double pipe heat exchangers, to develop new correlations for Nusselt number and friction factor, 
and to provide a comparative analysis with smooth tube configurations under turbulent flow 
conditions. 
 
2. Experimental Investigations 

2.1 Experimental Set Up 
 

Figure 1 depicted the experimental setup and various measurement instruments. It included a 
tube-in-tube heat exchanger with an inner tube made of copper and an outer tube made of mild 
steel. This material selection balances thermal efficiency, durability, cost-effectiveness, and 
compatibility, making it suitable for diverse industrial and commercial applications. Thermocouples 
were used to monitor incoming and outgoing temperatures of both hot and cold water, with four 
thermocouples positioned: two at each inlet and outlet. Rotameters quantified flow rates at the 
inlets of cold and hot water. Two centrifugal pumps circulated the water, supported by two storage 
tanks. An electric heater, rated at 1500 watts, heated the hot water tank. An inverted U-tube 
manometer measured pressure differentials across the hot fluid test section, while flow velocity 
through the tube was gauged using a current meter. Control valves and bypass valves were 
installed at the rotameter inlets. To measure air mass flow rate, an orifice meter was used in 
conjunction with a flow control valve. Inlet air temperature was monitored with two 
thermocouples, and three thermocouples were employed to measure exiting air temperatures. 
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Fig. 1. Experimental set up 

 
2.2 Procedure 
 

In the experiment, cold water initially filled the water tank and was heated to 80°C using a 
water heater. Subsequently, the hot water was directed through the rotameter by opening the flow 
control valve, aided by the hot water pump, and then through the inner pipe of the heat exchanger. 
Simultaneously, cold water from the cold water tank entered the heat exchanger through another 
rotameter, controlled by a flow control valve and the cold water pump. The flow rate of cold water 
was set at 100 liters per hour (LPH) and maintained constant throughout the experiment. Similarly, 
the flow rate of hot water was adjusted to 300 LPH and kept constant. Once a steady state was 
achieved, temperatures at the inlet and outlet of both cold and hot waters were recorded, and the 
pressure drop across the test tube was measured for the plain tube without any inserts. Following 
this, the experiment was repeated using wavy twisted tapes with twist ratios (TR) of 10.7, 8.5, and 
7.1, while varying the flow rates of hot water from 400 to 950 LPH. Figure 2 to Figure 5 illustrate the 
wavy tape inserts with twist ratios of 10.7, 8.5, and 7.1 respectively. The specifications of insert are 
mentioned in Table 1. 
 

 
Fig. 2. Twisted tape insert 

 

 
Fig. 3. Insert with TR – 10.7 
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Fig. 4. Insert with TR – 8.5 

 

 
Fig. 5. Insert with TR – 7.1 

 
Table 1 
Inserts specifications 
Sr. No. Parameter Material/Value 

1 Material Cu 
2 Width of Insert (W) 13.5 mm 
3 Twist Ratio (TR) 10.7, 8.5, 7.1 
4 Insert Length  990 mm 
5 Insert thickness 2.2 mm 
6 Wave Width (WW) 10 mm 
7 Wave Depth 10 mm 

 
The twist ratio (TR) is calculated using the following formula 
 

Twist Ratio (TR) =  
Pitch (Length of one complete twist)

Wifth of the tape
        (1) 

 
The selection of twist ratios for wavy twisted tape inserts in heat exchangers involves a trade-

off between maximizing heat transfer enhancement through increased turbulence and managing 
associated friction losses. These ratios are typically chosen based on a combination of theoretical 
analysis, experimental results, and practical considerations to optimize overall heat exchanger 
performance. 
 
2.3 Calculations 
 
The bulk mean temperature Tbh and Tbc are calculated 
 

Tbh =  
Th1+Th2

2
 and Tch =  

Tc1+Tc2

2
           (2) 

 
Hot water and cold water heat transfer rate 
 
Qh = mh. Cph. (Th1 − Th2) and Qc = mc. Cpc. (Tc1 − Tc2)        (3) 

 
Nusselt Number of cold water through annular space 
 
Nuo = 0.02345 (Re0)0.8. Pr

0.3      , Reo =  ⍴ . UoDh/µ        (4) 
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Nusselt Number (Experimental) of hot water flowing through the tube 
 

Nui =
hi.di

K
              (5) 

 
Theoretical Nusselt Number of hot water flowing through the tube 
 
𝑁𝑢𝑖 = 0.023. (𝑅𝑒𝑖)

0.8. (Pr )0.3           (6) 
 
Experimental Friction Factor 
 

𝑓 =  
2𝑔𝑑𝑖ℎ

𝐿𝑈𝑖
2               (7) 

 
Theoretical Friction Factor 
 

𝑓 = 0.0056 . (1 + (50 + (
106

𝑅𝑒𝑖
)) 0.33)          (8) 

 
3. Results and Discussion 
 

After conducting the experimental analysis, Nusselt numbers and friction factors were 
calculated for both plain tubes and tubes equipped with wavy tape inserts. These results were then 
compared with correlations proposed by Dittus and Boelter for Nusselt number, and John 
Nikuradse for friction factor. Figure 6 depicts a plot showing the correlation between Nusselt 
number and Reynolds number for the plain tube. It was observed that there is a direct 
proportionality between Nusselt number and Reynolds number, indicating that Nusselt number 
depends on Reynolds number. Figure 7 displays the graph of friction factor versus Reynolds number 
for the plain tube. Here, it is evident that friction factor exhibits an inverse relationship with 
Reynolds number, implying that friction factor decreases as Reynolds number increases. 
 

 
Fig. 6. Nusselt number Vs Reynolds number 
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Fig. 7. Friction factor Vs Reynolds number 

 
Figure 8 illustrates how the Nusselt number varies with Reynolds number for different twist 

ratios (TR=10.7, 8.5, 7.1). The results indicate that as Reynolds number increases, the Nusselt 
number also increases, signifying a higher heat transfer rate. Particularly noteworthy is that at a 
specific Reynolds number, the twisted tape with the lowest twist ratio (TR=7.1) achieves the highest 
Nusselt number among the tested configurations. Therefore, the highest heat transfer rate was 
observed with the twist ratio of 7.1. 
 

 
Fig. 8. Nusselt number Vs Reynolds number 

 
Figure 9 depicts how the friction factor changes with Reynolds number. It was noted that the 

friction factor increased as the twist ratio decreased. Specifically, the wavy twisted tape inserts with 
a twist ratio of 7.1 exhibited the highest friction factor among the inserts tested. Comparatively, for 
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twist ratios of 7.1, 8.5, and 10.7, the friction factors were 2.00, 1.47, and 0.147 times higher than 
that of the plain tube, respectively. 
 

 
Fig. 9. Friction Factor Vs Reynolds number 

 
4. Conclusion 
 

The utilization of wavy (corrugated) twisted tape inserts demonstrated significant 
enhancements in heat transfer rates, with the twist ratio of 7.1 yielding the highest performance. 
Comparative analysis against a plain tube showed consistent improvements across all wavy twisted 
tape configurations. Increasing the twist ratio correlated with increased heat transfer and slightly 
elevated friction factors. Key conclusions drawn from this experimental investigation include 

i. In the Reynolds number range of 5000 to 17000, the Nusselt number increased by 75.75%, 
157%, and 172% for twist ratios of 10.7, 8.5, and 7.1, respectively. 

ii. The friction factor rose by approximately 9.4%, 22.44%, and 32.11% with twist ratios of 10.7, 
8.5, and 7.1, respectively. 

 
Decreasing the twist ratio from 10.7 to 7.1 generally increases the turbulence and improves 

heat transfer rates in the heat exchanger. This is attributed to the enhanced convective heat 
transfer resulting from increased fluid mixing and disturbance caused by the wavy corrugated 
twisted tape inserts. 

These findings underscore the effectiveness of wavy twisted tape inserts in enhancing heat 
transfer efficiency in double pipe heat exchangers, offering insights into optimizing their 
performance under various flow conditions. 
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