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The fact that multiple thrombosis opposes blood flow and flow is rare in blood vessels is 
refined to a normal condition with catheter application. The inner surface of the circular 
blood arteries may not be smooth in the majority of diseased instances. Additionally, the 
small blood vessel peristalsis mechanism is formed. In this paper, we discuss a 
mathematical model for the flow of biological fluid (blood) in a circular tube with multi-
thrombosis considered under peristaltic wave propagation. The blood flow in this tube is 
restricted due to the many thromboses present, and the flow is redesigned with the aid 
of a catheter. We model this non-Newtonian blood flow issue for Jeffrey fluid. In most 
pathological cases, the inner surface of the circular blood vessels may not be smooth. 
Further, the mechanism of the peristalsis is established for small blood vessels. Because 
of this biological phenomenon, the peristaltic movement of Jeffrey fluid in a porous 
annulus with slip is examined. Equations that govern energy and momentum are solved 
exactly, and graphical interpretation is made using mathematical software. Streamline 
graphs show the many thromboses that increase in height. The wall shear stress graphs 
show a sinusoidally advancing wave with peaks and dips of different amplitudes. This 
tube's unique crest and trough amplitude are caused by the presence of multiple 
thromboses. We obtained the impact of the pressure gradient on the permeability 
parameter (β). The pressure gradient falls as the permeability parameter rises. 
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1. Introduction 
 

Peristalsis is the term for the phenomena that describes how biological fluid moves inside a tube 
with walls that move in a sinusoidal pattern. Transportation generated by peristaltic motion is 
characterized by the slow growth and expansion of the constricted space along the tube wall. 
Peristalsis is crucial for the movement of nutrients from the oropharynx into the bladder, urine from 
the kidneys, blood from the heart, and many fluids such as bile in the bladder. Peristaltic mechanisms 
in physiological systems have become popular due to the understanding of numerous biological 
flows. Vaidya et al., [1] analyzed Jeffrey nanofluidic mass or heat transfer in vertical channels during 
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MHD peristalsis. Mopuri et al., [2] studied a viscous, incompressible, electrically conducting, non-
Newtonian Jeffery fluid in an unstable, MHD natural convective boundary layer flow across a semi-
infinite vertically inclined permeable moving plate immersed in a porous material. Nadeem et al., [3] 
studied heated Jeffrey fluid with peristaltic flow within a channel, including an elliptical cross section. 
Gudekote and Choudhari [4] have been investigated the effect of inclination and slide on the Casson 
fluid's peristaltic movement in an elastic tube with porous walls. Hamrelaine et al., [5] was 
mathematically explained that the magnetohydrodynamic flow between two solid porous plates 
meeting at an angle or through non-parallel porous walls can be thought of as a combination of one 
injection/suction and the classical Jeffrey Hamel flow. Manjunatha et al., [6] investigated a Jeffrey 
fluid flowing peristaltically through a non-uniform channel with varying viscosity and thermal 
conductivity while experiencing heat and mass transfer effects. Madhukesh et al., [7] examined the 
non-Newtonian (micropolar-Casson) steady-state incompressible flow of fluids trapped between two 
parallel porous disks. Rajashekar et al., [8] investigated on the impact of variations in mass and 
temperature on the peristaltic flow of Rabinowitsch fluid via irregular channels. Madhukesh et al., 
[9] investigated the effects of a Casson-Maxwell non-Newtonian nanofluid, magnetized and 
incompressible, between two stationary porous disks. 

Jeffrey fluid is a non-Newtonian fluid model that has attracted the attention of many researchers 
due to its ability to represent fluid in the body. It turns out that one of the fundamental models that 
most effectively refines the best description of the characteristics of a viscoelastic fluid is Jeffrey's 
fluid flow model. Bajwa et al., [10] In an infinite horizontal porous plate, we investigated how porosity 
and MHD affect the fluid's velocity. Channakote et al., [11] studied the theoretical propagation of 
Jeffrey fluid's peristaltic waves in a non-uniform tube under the influence of convective boundary 
conditions and viscous dissipation. Krishna et al., [12] covered Hall current and electric current result 
when a magnetic field perpendicular to the channel affects access to Jeffrey's MHD flow through 
porous media in vertical stages. Ramesh et al., [13] investigated EMHD liquid flow on a surface with 
microstructural slippage. Energy and mass profiles have taken into account the impacts of a uniform 
heat source/sink (HS/S) with homogeneous and heterogeneous chemical processes. Rani et al., [14] 
examined MHD natural convective boundary layer flow across a semi-infinite vertically inclined 
permeable moving plate immersed in a viscous, non-Newtonian Jeffrey fluid porous medium that is 
incompressible, conducting, and porous. Nallapu and Radhakrishnamacharya [15] A two-fluid model 
of the flow of Jeffrey liquid in a narrow tube in the presence of a magnetic field was examined. Kumar 
et al., [16] Peristaltic applications of Jeffrey fluids in asymmetric channels with long-wavelength 
permeable walls and low Reynolds conditions are discussed. 

Kodi and Mopuri [17] studied the effects of Soret-aligned magnetic fields and chemical reactions 
during the flow of unstable MHD oscillating Carson fluid through inclined vertical porous plates. 
Vijayaragavan et al., [18] examined the existence of the reaction and the Dufour effect on heat and 
mass conversion in MHD Casson fluid flow through an inclined porous plate. Ahmed et al., [19] 
examined the existence of the reaction and the Dufour effect on heat and mass conversion in MHD 
Casson fluid flow through an inclined porous plate. Manchi and Ponalagusamy [20] theoretically 
investigated inclined porous narrowed arterial stenosis under the simultaneous influence of 
electroosmotic on pulsatile Sutter nanofluid flow. Sandhya et al., [21] heat, radiation, chemical 
reactions, and MHD flow around a porous plate for mass and heat transfer are analyzed. Manjunatha 
et al., [22] examined the effects of water flow on heat transfer and viscosity change while the Casson 
fluid passed through an inclined, porous, axisymmetric tube. Krishna et al., [23] investigated the 
effects of cilia, a porous media, a magnetic field, and channel tilt on the micropolar fluid under various 
boundary conditions. Sharma and Yadav [24] examined a two-layered mathematical model of non-
Newtonian blood flow via porous constricted blood arteries. The core zone of blood flow contains 
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the non-Newtonian Casson fluid, or suspension of erythrocytes, whereas the periphery region 
contains the Newtonian fluid, or plasma flow. 

The development of a thrombus inside the artery restricts the flow of blood to the body's major 
organs. It forms as a result of fats, cholesterol, and other substances building up. Using a catheter 
helps the blood flow through these damaged arteries. When placed into such damaged arteries, this 
hollow, thin, fine tube eventually improves flow. Saleem et al., [25] mathematical description of 
thrombus in cannulated blood vessels using microphysical analysis of peristaltic flow in carbon 
nanotubes, SWCNTs, and MWCNTs. Abuiyada et al., [26] examined how the MHD peristaltic flow of 
Jeffrey nanofluids in an inclined symmetric channel through a porous medium is affected by the 
chemical reaction and activation energy. Saleem et al., [27] blood clots in the area, blood flow 
through catheterized vessels, and small walls are checked. Akthar et al., [28] investigated 
mathematically using a catheter to pass blood through multiple thromboses inside a tube. Misra et 
al., [29] explained why blood flow in intraductal stenotic arteries behaves in a non-Newtonian 
manner. Shahzadi and Nadeem [30] the peristaltic flow of nanofluid in the ring region of an inclined 
ring was investigated in relation to the effects of a gradient magnetic field and copper nanoparticles. 
Reddy et al., [31] a mathematical analysis has been conducted on blood flow through constricted 
blood arteries when a catheter is in place. Sharma et al., [32] examined the two-layered, narrow tube 
Jeffrey-fluid model with mild stenosis. The blood flow in small arteries is represented as a two-fluid 
system using erythrocyte suspension. 

All the physiological tubes are not horizontal; in abnormal cases, the tube walls may not be 
smooth. Hence, the inclination of the tube, together with wall slip, is important in the flow 
investigation. We have applied transformation to make the unsteady problem a steady one. In the 
present work, we want to examine the effects of catheterization on the blood flow of biological fluids 
in a circular tube with multi-thrombosis considered under peristaltic wave propagation. In most 
pathological cases, the inner surface of the circular blood vessel may not be smooth; the slip 
parameter is considered and mathematically investigated. One of the notable pumping 

characteristics is ∆p or 
𝑑𝑝

𝑑𝑥
. I therefore had conversations about temperature, velocity, and pressure 

gradient. The problem's exact solutions are computed. Using Mathematica software, streamlines are 
plotted, and the results are presented graphically. 
 
2. Mathematical Model 
 

A mathematical investigation is conducted on the peristaltic blood flow within a geometry that 
exhibits multi-thrombosis. The blood flow via the tube is decreased by the numerous clots present, 
and a catheter (Figure 1) is used to restore the blood flow. 
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Fig. 1. Geometry of the problem 

 
The dimensional mathematical equations for the tube's inner surface ∈̅ (𝑧), which has numerous 

clots, and outer surface 𝜂(𝑧) , which has a moving sinusoidal wave, are given [28] 
 

𝜂(𝑧) = 𝑅0 + 𝑏 𝑆𝑖𝑛 (
2𝜋

𝜆
(𝑍 − 𝑐𝑡))           (1) 

 

∈̅ (𝑧) = {
𝑅0[𝑎 + 𝑓1(𝑧̅)], 𝑑𝑙 ≤ 𝑧 ≤ 𝑑𝑙 + 𝜆1

𝑅0𝑎                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,          (2) 

 
Here, 𝑓1(𝑧̅) describes the geometry of the poly-thrombosis. The governing equations of the flow 

become are 
 
𝜕𝑈

𝜕𝑅
+

𝑈

𝑅
+

𝜕𝑊

𝜕𝑍
= 0,             (3) 

 

𝜌 (
𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑅
+ 𝑊

𝜕𝑈

𝜕𝑍
) = −

𝜕𝑃

𝜕𝑅
+

1

𝑅

𝜕

𝜕𝑅
(𝑅𝑆𝑅𝑅) +

𝜕

𝜕𝑍
(𝑆𝑅𝑍) + 𝜌𝑓𝑅̅        (4) 

 

body force 𝐹̅ = (𝑓𝑅̅ , 0, 𝑓𝑍̅) 

 

𝜌 (
𝜕𝑊

𝜕𝑡
+ 𝑈

𝜕𝑊

𝜕𝑅
+ 𝑊

𝜕𝑊

𝜕𝑍
) = −

𝜕𝑃

𝜕𝑍
+

1

𝑅

𝜕

𝜕𝑅
(𝑅𝑆𝑅𝑍) +

𝜕

𝜕𝑍
(𝑆𝑍𝑍) + 𝜌𝑓𝑍̅        (5) 

 

𝜌𝐶𝑃 (
𝜕𝑇

𝜕𝑡
+ 𝑈

𝜕𝑇

𝜕𝑅
+ 𝑊

𝜕𝑇

𝜕𝑍
) = 𝑆𝑅𝑅

𝜕𝑈

𝜕𝑅
+ 𝑆𝑅𝑍

𝜕𝑊

𝜕𝑅
+ 𝑆𝑍𝑅

𝜕𝑈

𝜕𝑍
+ 𝑆𝑍𝑍

𝜕𝑊

𝜕𝑍
+ 𝑘 (

𝜕2𝑇

𝜕𝑅
2 +

1

𝑅

𝜕𝑇

𝜕𝑅
+

𝜕2𝑇

𝜕𝑍
2)    (6) 

 
Jeffrey fluid tensor of additional stress determined 
 

𝑆 =
𝜇

1+𝜆1
(𝛾

.
+ 𝜆2𝛾

..
)             (7) 

 
The relationship between fixed coordination and joint movement is as follows 
 

𝑟 = 𝑅, 𝑧 = 𝑍 − 𝑐𝑡, 𝑢 = 𝑈, 𝑤 = 𝑊 − 𝑐, 𝑝(𝑧, 𝑟) = 𝑃(𝑍, 𝑅, 𝑡)        (8) 
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The dimensionless variables used are as follows 
 

𝑟 =
𝑟

𝑅0
, 𝑧 =

𝑧

𝜆
, 𝑢 =

𝜆𝑢

𝑅0𝑐
, 𝑤 =

𝑤

𝑐
, 𝑡 =

𝑐𝑡

𝜆
, 𝑝 =

𝑅0
2𝑝

𝑐𝜆𝜇𝑓
, 𝜃 =

𝑇−𝑇0

𝑇1−𝑇0
, 𝛿 =

𝑅0

𝜆
       (9) 

 
where 
 

𝑆𝑅𝑅 =
2𝛿

1+𝜆1
[1 +

𝜆2𝑐𝛿

𝑅0
(𝑢

𝜕

𝜕𝑟
+ 𝑤

𝜕

𝜕𝑧
)]

𝜕𝑢

𝜕𝑟
 , 

 

𝑆𝑅𝑍 =
1

1+𝜆1
[1 +

𝜆2𝑐𝛿

𝑅0
(𝑢

𝜕

𝜕𝑟
+ 𝑤

𝜕

𝜕𝑧
)] [

𝜕𝑤

𝜕𝑟
+ 𝛿2 𝜕𝑢

𝜕𝑧
] , 

 

𝑆𝑍𝑍 =
2𝛿

1+𝜆1
[1 +

𝜆2𝑐𝛿

𝑅0
(𝑢

𝜕

𝜕𝑟
+ 𝑤

𝜕

𝜕𝑧
)]

𝜕𝑤

𝜕𝑧
 . 

 
Using the long wavelength approximation and low Reynolds number assumption from Eq. (4) to 

Eq. (6) become 
 
𝑑𝑝

𝑑𝑧
=

1

1+𝜆1
 [

𝜕2𝑤

𝜕𝑟2 +
1

𝑟

𝜕𝑤

𝜕𝑟
] + 𝐺 𝑆𝑖𝑛 𝛼                     (10) 

 
𝜕2𝜃

𝜕𝑟2 +
1

𝑟

𝜕𝜃

𝜕𝑟
+

𝐵𝑟

1+𝜆1
 [

𝜕𝑤

𝜕𝑟
]

2

= 0                      (11) 

 
Boundary conditions 
 

𝑤 + 𝛽
𝜕𝑤

𝜕𝑟
= −1  𝑎𝑡 𝑟 =  𝜂(𝑧)  

 
𝑤 = −1   𝑎𝑡 𝑟 = 𝜖(𝑧)  
 
𝜕𝜃

𝜕𝑟
= 0     𝑎𝑡 𝑟 = 𝜖(𝑧) and 𝜃 = 0   𝑎𝑡 𝑟 =  𝜂(𝑧).                   (12) 

 

Where 𝛽 =
√𝐷𝑎

𝑘
. 

The outside surface 𝜂(𝑧) as well as the inside surface ∈ (𝑧) provided are their mathematical 
expressions without dimensions. The term that is selected for 𝑓1(𝑧) is 
 
𝜂(𝑧) = 1 + 𝜙 𝑆𝑖𝑛(2𝜋𝑧),                      (13) 
 

∈̅ (𝑧) = {𝑎 + 𝜎1𝑒−𝜋2(𝑧−𝑧𝑑1−0.5)
2

, ℎ𝑙 ≤ 𝑧 ≤ ℎ𝑙 + 1
𝑎                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,                   (14) 

 
3. Exact Solution 
 
From Eq. (10) we have 
 

𝑟2 𝜕2𝑤

𝜕𝑟2 + 𝑟
𝜕𝑤

𝜕𝑟
=  𝑟2 (

𝑑𝑝

𝑑𝑧
− 𝐺 𝑆𝑖𝑛𝛼) (1 + 𝜆1)                    (15) 
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Substituting 𝑟 = 𝑒𝑧, 𝐴 = (
𝑑𝑝

𝑑𝑧
− 𝐺 𝑆𝑖𝑛𝛼) (1 + 𝜆1)  Eq. (15) is reduced to 

 
𝜕2𝑤

𝜕𝑧2
= 𝐴𝑒2𝑧                        (16) 

 
On solving Eq. (16) with the Eq. (12), we have the velocity profile 
 

𝑤(𝑟, 𝑧) = 𝑐1 + 𝑐2 log 𝑟 +
1

4
 𝐴 𝑟2                     (17) 

 
where 
 

𝑐1 = −1 −
𝐴

4
𝜖2 − [

log (𝜖)

[
𝛽

𝜂
+log(𝜂)−log (𝜖)]

] [
−𝐴

4
(𝜂2 − 𝜖2) −

𝛽

2
𝐴𝜂]  

 

𝑐2 = [
1

[
𝛽

𝜂
+log(𝜂)−log (𝜖)]

] [
−𝐴

4
(𝜂2 − 𝜖2) −

𝛽

2
𝐴𝜂]  

 

and 𝐴 = (
𝑑𝑝

𝑑𝑧
− 𝐺 𝑆𝑖𝑛𝛼) (1 + 𝜆1) 

 
Volumetric flow rate between these two walls 
 

𝑄 = 2𝜋 ∫ 𝑟 𝑤 𝑑𝑟
𝜂

𝜖
  

    = 2𝜋 {
𝑐1

2
(𝜂2 − 𝜖2) + 𝑐2 [log 𝜂 

𝜂2

2
− log 𝜖 

𝜖2

2
] −

𝑐2

4
(𝜂2 − 𝜖2) +

𝐴

16
(𝜂4 − 𝜖4)}                (18) 

 
Using the volumetric flow rate we obtain the pressure gradient 
 

𝑑𝑝

𝑑𝑥
=

[(
𝑄

2𝜋
)+𝑃1𝑃2−2(

𝐷

𝐸
)]

(1+𝜆1)[𝑃3−𝑃1(
𝜖2

4
−𝑃4(

log 𝜖

𝐸
)−(

𝛽𝜂

2
))−(

𝐷

𝐸
)(𝑃4−(

𝛽𝜂

2
))]

                   (19) 

 

𝐷 = [
𝑙𝑜𝑔 𝜂

2
𝜂2 −

𝑙𝑜𝑔∈

2
∈2−

1

4
(𝜂2 −∈2)]  

 

𝐸 = [
𝛽

𝜂
+ 𝑙𝑜𝑔 𝜂 − 𝑙𝑜𝑔 ∈]; 𝑃1 =

1

2
(𝜂2 −∈2); 𝑃2 = 1 + 2 (

𝑙𝑜𝑔∈

𝐸
);  

 

𝑃3 =
1

16
(𝜂4 −∈4);  𝑃4 =

1

4
(𝜂2 −∈2) 

 
𝜏𝑤 is computed as follows  
 

𝜏𝑤 = −
𝜕𝑤

𝜕𝑟
|

𝑟=𝜂
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From Eq. (11) we have 
 

𝑟2 𝜕2𝜃

𝜕𝑟2 + 𝑟
𝜕𝜃

𝜕𝑟
= −

𝐵𝑟

(1+𝜆1)
𝑐2

2 −
𝐵𝑟

(1+𝜆1)

𝐴2

4
𝑟4 −

𝐵𝑟

(1+𝜆1)
𝑐2𝐴𝑟2                  (20) 

 
on solving Eq. (20) with the Eq. (12), we have the temperature is 
 

𝜃 = 𝑐3 + 𝑐4 log 𝑟 −
𝐵𝑟

(1+𝜆1)
[

𝑐2
2

2
(log 𝑟)2 +

𝐴

64
(log 𝑟)4 +

𝑐2𝐴

4
(log 𝑟)2]                (21) 

 

where 𝑐3 = 𝑐4(− log 𝜂) + [
𝐵𝑟

(1+𝜆1)
] {

𝑐2
2

2
(log 𝜖)2 +

𝐴2

16
(log 𝜖)4 +

𝑐2𝐴

4
(log 𝜂)2} 

 

𝑐4 =
𝐵𝑟

(1+𝜆1)
{𝑐2

2 log 𝜖 +
𝐴2

16
(log 𝜖)3 +

𝑐2𝐴

2
log 𝜖}  

 
4. Results and Discussion 
 

The current study focuses on how catheterization affects biological fluid blood flow in a circular 
tube with many thromboses when peristaltic wave propagation is taken into consideration. With 
regard to the impacts of slip and tilt in the tube, the current model is an extension of the research 

done by Akhtar et al., [28]. One of the notable pumping characteristics is ∆p or 
𝑑𝑝

𝑑𝑥
. Therefore, I had 

discussions on pressure gradient, velocity and temperature. Velocity models are drawn and shown 
in Figure 2, Figure 3, Figure 4 and Figure 5. Figure 2 shows the effect of amplitude (𝜙) on velocity 
profile. Although the velocity distribution is more positive in the region close to the region between 
two walls, the velocity distribution shows a lower behavior towards depth as the value 𝜙 increases. 
The development of peristaltic transport occurs due to the increase in the amplitude of the peristaltic 
wall. The velocity profile increases near the central region. 
 

 
Fig. 2. Velocity profile using ∅ for 𝜆1 = 0.5, 𝛼 =
𝜋

3
,  𝑑𝑎 = 0.01, 𝐺 = 0.5, 𝑍 = 0.3, 𝑍𝑑 = 0.5, ℎ1 =

0.5, 𝑎 = 0.1, 𝑄 = 0.1, 𝜎1 = 0.01 

 
Figure 3 shows that as the value of Q increases, there will be an increase in the velocity profile 

near the central region. In Figure 4, it turns out the velocity rise with a poly – thrombus wall, but 
decreases with increasing σ1 value of peristaltic walls. 
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Fig. 3. Velocity profile using Q for 𝜆1 = 0.5, 𝛼 =

𝜋

3
, 𝑑𝑎 =

0.01, 𝐺 = 0.5, 𝑍 = 0.3, 𝑍𝑑 = 0.5, ℎ1 = 0.5, 𝑎 =
0.1, 𝜙 = 0.1, 𝜎1 = 0.01 

 

 
Fig. 4. Velocity profile for 𝜆1 = 0.5, 𝛼 =

𝜋

3
,  𝑑𝑎 =

0.01, 𝐺 = 0.5, 𝑍 = 0.3, 𝑍𝑑 = 0.5, ℎ1 = 0.5, 𝑎 =
0.1, 𝑄 = 0.1, 𝜙 = 0.1 

 
Figure 5 interprets the impact of permeability parameter (β) on velocity profile. The velocity 

distribution obtains the majority of higher values closer to the central region. There is a decrement 
in the permeability parameter. 
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Fig. 5. Velocity profile using permeability parameter for 

𝜆1 = 0.5, 𝛼 =
𝜋

3
, 𝐺 = 0.5, 𝑍 = 0.3, 𝑍𝑑 = 0.5,  ℎ1 =

0.5, 𝑎 = 0.1, 𝑄 = 0.1, 𝜙 = 0.1, 𝜎1 = 0.01 

 
Figure 6 and Figure 7 have a discussion about shear stress 𝜏𝑤 plotted against axial coordinates. 

From Figure 6, it was found that as the Q value increases, the shear stress value decreases. In this 
figure, it can be seen that the sine wave shows peaks and valleys at different amplitudes. The 
presence of many thrombi in this tube is the reason why the peak and trough amplitudes are clearly 
different. In Figure 7 it shows that as the value of σ1 increases, the value of the increase is exactly 
where multi – thrombosis occurs. 
 

 
Fig. 6. Shear stress 𝜏𝑤 for 𝜆1 = 0.5, 𝛼 =

𝜋

3
, 𝑑𝑎 =

0.01, 𝐺 = 0.9, 𝑍 = 0.3, 𝑍𝑑 = 0.5, ℎ1 = 0.5, 𝑎 = 0.1, 𝜎1 =
0.1, 𝜙 = 0.05 
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Fig. 7. Shear stress 𝜏𝑤 for 𝜆1 = 0.5, 𝛼 =

𝜋

3
, 𝑑𝑎 =

0.01, 𝐺 = 0.9, 𝑍 = 0.3, 𝑍𝑑 = 0.5, ℎ1 = 0.5, 𝑎 = 0.1, 𝑄 =
0.1, 𝜙 = 0.05 

 
The temperature profile graphically discussed for different parameters in Figure 8, Figure 9, 

Figure 10, Figure 11 and Figure 12. From Figure 8, it can be seen that as the Br value increases, the 
temperature distribution also increases, and viscous dissipation rather than molecular material is the 
main reason for electricity generation. Figure 9 reveals that there is a decline in temperature profile 
for increasing values of λ1. In Figure 10, the temperature represents the end of various thrombi, and 
it is more beneficial to increase the value of 𝜙. In Figure 11, it is observed that, due to increment in 
Q, temperature attains an increase. Figure 12 show that the temperature curve decreases as the 
value of σ1 increases. 
 

 
Fig. 8. Variability of temperature profile for 𝜆1 =

0.5, 𝛼 =
𝜋

6
, 𝑑𝑎 = 0.1, 𝑘 = 0.8, 𝐺 = 0.5, 𝑍 = 0.9, 𝑍𝑑 =

0.5, ℎ1 = 0.5, 𝑎 = 0.01, 𝑄 = 0.2, 𝜙 = 0.3, 𝜎1 = 0.01 
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Fig. 9. Variability of temperature profile for 𝐵𝑟 =

0.002, 𝛼 =
𝜋

6
, 𝑑𝑎 = 0.1, 𝑘 = 0.8, 𝐺 = 0.5, 𝑍 = 0.9, 𝑍𝑑 =

0.5, ℎ1 = 0.5, 𝑎 = 0.01, 𝑄 = 0.2, 𝜙 = 0.3, 𝜎1 = 0.01 
 

 
Fig. 10. Variability of temperature profile for 𝜆1 =

0.5, 𝛼 =
𝜋

6
, 𝑑𝑎 = 0.1, 𝑘 = 0.8, 𝐺 = 0.5, 𝑍 = 0.9, 𝑍𝑑 =

0.5, ℎ1 = 0.5, 𝑎 = 0.01, 𝑄 = 0.2, 𝐵𝑟 = 0.002, 𝜎1 = 0.01 

 

 
Fig. 11. Variability of temperature profile for 𝜆1 =

0.5, 𝛼 =
𝜋

6
, 𝑑𝑎 = 0.1, 𝑘 = 0.8, 𝐺 = 0.5, 𝑍 = 0.9, 𝑍𝑑 =

0.5, ℎ1 = 0.5, 𝑎 = 0.01, 𝜙 = 0.3, 𝐵𝑟 = 0.002, 𝜎1 = 0.01 
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Fig. 12. Variability of temperature profile for 𝜆1 =

0.5, 𝛼 =
𝜋

6
, 𝑑𝑎 = 0.1, 𝑘 = 0.8, 𝐺 = 0.5, 𝑍 = 0.9, 𝑍𝑑 =

0.5, ℎ1 = 0.5, 𝑎 = 0.01, 𝜙 = 0.3, 𝐵𝑟 = 0.002 

 
Figure 13 explain the effect of the permeability parameter (β) on the pressure gradient. As the 

permeability parameter increases, the pressure gradient decreases. 
 

 
Fig. 13. Variability of pressure gradient for 𝜆1 = 0.5, 𝛼 =
𝜋

6
, 𝐺 = 0.5, 𝑍𝑑 = 0.5, ℎ1 = 0.5, 𝑎 = 0.01, 𝜙 = 0.03, 𝐵𝑟 =

0.002, 𝜎1 = 0.01 

 
Plots of streamlines are made for various flow rate Q values, as given in Figure 14 and Figure 15 

for fixed height of multi – thrombosis. It is clear from the streamlines that as Q increases, the size of 
the trapping decreases but the number increases. In this case, a sine wave is seen at one end, and 
multiple thrombi are seen at the other end. Draw an assembly line for various thrombi at different 
heights (Figure 16, Figure 17 and Figure 18), and changes in these graphs were noted. Figure 16, 
Figure 17, and Figure 18 show that as the σ1 value increases, the height of multi-
thrombosis also increases. 
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Fig. 14. Streamlines for 𝑄 = 0.4 with λ1 = 0.5; 𝐺 = 0.5; 𝑘 =
0.9; da = 0.005;  𝜙 = 0.01; zd = 0.5; h1 = 0.5; 𝑎 =
0.01; σ1 = 0.01; 𝛼 = 𝜋 6⁄  

 

 
Fig. 15. Streamlines for 𝑄 = 0.5 with λ1 = 0.5; 𝐺 = 0.5; 𝑘 =
0.9; da = 0.005;  𝜙 = 0.01; zd = 0.5; h1 = 0.5; 𝑎 =
0.01; σ1 = 0.01; 𝛼 = 𝜋 6⁄  
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Fig. 16. Streamlines for σ1 = 0.01 with λ1 = 0.5; 𝐺 =
0.5;  𝑘 = 0.5; da = 0.01;  𝜙 = 0.01; zd = 0.5; h1 =
0.5; 𝑎 = 0.1; 𝑄 = 0.3; 𝛼 = 𝜋 6⁄  

 

 
Fig. 17. Streamlines for σ1 = 0.02 with λ1 = 0.5; 𝐺 =
0.5; 𝑘 = 0.5; da = 0.01;  𝜙 = 0.01; zd = 0.5; h1 = 0.5; 𝑎 =
0.1; 𝑄 = 0.1; σ1 = 0.04; 𝛼 = 𝜋 6⁄  
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Fig. 18. Streamlines for σ1 = 0.025 with λ1 = 0.5; 𝐺 =
0.5; 𝑘 = 0.5; da = 0.01;  𝜙 = 0.01; zd = 0.5; h1 = 0.5; 𝑎 =
0.1; 𝑄 = 0.1; σ1 = 0.04; 𝛼 = 𝜋 6⁄  

 
Figure 19 compares the results of the present and Akhtar et al., [28] models for a fixed maximum 

thrombus height (σ1). The results of the present model are plotted by taking Da = 0 and α = 0 to show 
the comparison with their model. It is clear from Figure 19 that the results of the present model 
exactly match their results, which also validate our results. 
 

 
Fig. 19. Results for a fixed maximum thrombus height (σ1) present 
vs Akhtar et al., [28] 
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5. Conclusions 
 

Peristalsis of multi thrombosis with Jeffrey fluid in a tube has been studied mathematically. The 
presence of these vessels reduces blood flow in the vessels, and a catheter is placed to restore blood 
flow. The main results of this mathematical research are described below. 

i. The velocity distribution almost increases in amplitude near the central area of both walls, 
but exhibits a lower characteristic with increasing 𝜙 (ratio of amplitude to mean radius) 
near the peristaltic surface. 

ii. The velocity distribution decreases as the thrombus wall increases, but remains constant 
as the σ1 value increases in the peristaltic wall. 

iii. For reduced permeability parameter values, the size of the velocity profile increases 
almost around the area between the two walls. 

iv. The sinusoidal traveling wave shown in the wall stress map has peaks and troughs of 
different amplitudes. The presence of various thrombi in these vessels is responsible for 
the difference between height and trough amplitudes. 

v. Protrusions with high amplitude show the place where there are many thrombi, while 
protrusions with low amplitude show the place where there is no thrombus.  

vi. The axial pressure gradient (
𝑑𝑝

𝑑𝑥
) with increased amplitude is almost at the center of the 

walls for decreasing values of permeability parameter. 
vii. The sine wave is clearly visible at one end of the streamline diagram, and numerous 

thrombi are visible at the other end. 
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