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Co-generation of heat and electricity from solar cells is an energy efficient option because 
the photovoltaic (PV) efficiency is less than twenty percent, the rest goes to heat. In this 
paper, the heat emitted from the PV panel is used to produce hot air which is useful heat 
and to reduce the PV cell temperature thereby increasing the system performance. 
Independent parameters include air mass flow rate (𝑚̇𝑎𝑖𝑟), air channel height (H), PV 
panel aspect ratio (Ra), and environmental parameters (temperature, wind velocity, solar 
intensity) to investigate their influence on power and heat generation, and performances. 
The mathematical description of the system is formed using a lumped parameter model. 
The analytical results show that the overall performance is maximized at certain design 
parameters. This phenomenon is due to the trade-off between power generation, heat 
output, and fan power with a design specification. Optimizing the overall efficiency using 
a genetic algorithm (GA), which is a metaheuristic based on the principles of natural 
selection and categorized as part of the broader group of evolutionary algorithms, yields 
the maximum value of 98.76% at the optimal parameters 𝑚̇𝑎𝑖𝑟= 0.3032 kg/s, H = 27.37 
mm, and Ra = 1.809. 
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1. Introduction 
 

Photovoltaics (PV) is an advanced technological device that uses solar energy to convert into 
electricity. It is a simple and compact generator, much more flexible than the vapor power cycle. 
Today PV is installed everywhere to take advantage of the huge solar energy resources and reduce 
dependence on fossil fuels. It can be installed on rooftops, lakes, deserts, on the roofs of mobile 
devices (cars, ships, airplanes) or outer space. The forecast installed capacity by 2040 will be more 
than 600 GW, double that of the 2020s [1]. Although solar power technology continues to develop, 
the efficiency of solar cells is still below 20%. In other words, most of the solar radiation is absorbed 
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by the panel and converted into heat energy [2]. Power generation efficiency will decrease if the 
panels are not cooled properly [3]. Therefore, the integration of solar cells that produce electricity 
and heat simultaneously (PV/T) is a reasonable combination to increase system performance [4,5]. 
The temperature of the PV system dropped by 6.6°C, leading to a 4.0% increase in power generation 
efficiency [6]. This heat can be used in hot air drying, hot water production, distillation, or the 
evaporator of a heat pump. 

Research on PV/T system for drying, Tiwari and Tiwari [7] employed a PV-integrated greenhouse 
dryer in unload conditions. The largest thermal energy obtained is 3.26 kWh for a PV area of 1.2 m2. 
Gupta et al., [8] employed hot air from PV to dry star fruit in natural and forced convection modes. 
Their systems achieved the highest PV efficiency and overall efficiency of 13.58% and 69.27%, 
respectively. Research on the environmental impact of a PV/T system, Tripathi et al., [9] analyzed the 
carbon credit of the PV/T concentrating collector. They concluded that 25% PV coverage provides 
maximum carbon reduction. Research on heating a liquid, Khani et al., [10] used genetic algorithm 
(GA) to optimize the thermal and electrical performance of the PV/T collector. Waste heat from PV 
is used to produce hot water. The mathematical model includes two-dimensional unsteady energy 
equations. Optimal results indicate a 25% increase in efficiency compared to a stand-alone PV. Rejeb 
et al., [11] utilized heat from PV cells to heat a nanofluid. They concluded that solar irradiance and 
flow rate dramatically affect the performance system. Guo et al., [12] produced hot water from PV 
thermal dissipation. This hot water heats the air to regenerate the desiccant wheel. Heat from PV 
can meet full demand for temperate climates and high solar radiation. Rosli et al., [13] connected 
PV/T collector with a phase change material (PCM) in a research of numerical simulation. They proved 
that the overall efficiency was up to 90.82%. Recently, Choi and Choi [14] comprehensively evaluated 
a PV/T system to supply thermal energy to a heat pump that produces hot water. Performance of the 
proposed system is improved up to 13.28% compared to traditional heat pumps. Research on design 
parameters and cooling PV, Hoang et al., [15] compared four PV/T configurations via evaluation of 
first and second laws. They confirmed that the highest thermal efficiency was 54.185% and the 
greatest electrical efficiency was 13.67%. These peak efficiencies are due to the configuration with 
air gap which acts as a heat trap reducing heat loss. More recently, Soliman [16] offered five PV 
cooling models with air or water. Energy and exergy analysis were performed by solving the system 
of linear equations in MATLAB. The results have been reported that the heat transfer fluid of water 
is more efficient at 90% efficiency compared to 34% if cooled by air. 

The above literature review reveals that investigating the influence of multi-parameters including 
design parameters and weather parameters on electrical-thermohydraulic performance of an air-
cooled PV/T collector is rare to find. The investigation is important because PV cell temperature has 
opposite effects on electrical power, useful heat, and fan power. Therefore, optimal parameters can 
be found to maximize system performance. In this study the effects of three design parameters and 
three weather parameters are evaluated and the optimal parameters are sought. A mathematical 
model for the PV/T collector is established to investigate the parameters and present the results of 
the optimization. 
 
2. Mathematical Formulation 
 

Simultaneous generations of power and thermal energy are presented in Figure 1. Photovoltaic 
(PV) panel is placed above to capture solar energy. Below the panel is an air flow to receive heat from 
the PV panel due to thermal generation during the process of converting solar energy into electricity. 
The lowest is the back surface with insulation to reduce heat loss. The energy balance equations for 
the five components (glass, PV cell, tedlar, airflow, and back surface) are written below [17,18]. 
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Fig. 1. Schematic diagram of the photovoltaic-thermal air heater 

 
The glass absorbs solar energy in balance with heat transferred by convection to the wind above, 

thermal radiation to the sky, and heat conduction from the glass to the PV cell 
 

( ) ( ) ( )273g wind g a r,g,s g s g,c g cI h T T h T T U T T  =  − +  − + +  −        (1) 

 
The heat passing through the glass is absorbed by the PV cell and converted into heat energy in 

balance with heat conduction from the cell to the glass and to the tedlar 
 

( ) ( ) ( )1g c el g,c c g c,ted c tedI U T T U T T     − =  − +  −          (2) 

 
The heat absorbed by the tedlar is balanced by heat conduction between the cell and the tedlar, 

and convection heat transfer with the air flow 
 

( ) ( ) ( )1g ted c,ted ted c ted,air ted airI U T T U T T    −  =  − +  −          (3) 

 
The useful thermal energy received by the air flow through the PV panel is balanced with the heat 

transferred by convection to the tedlar and back surface 
 

( ) ( ),air p air o a air ted air b airQ m c T T L W h T T T T=   − =    − + −         (4) 

 
The back surface receives radiant thermal energy from the tedlar in balance with convective heat 

transfer with the air current and heat loss through the insulation layer 
 

( ) ( ) ( )r,ted,b ted b air b air b b ah T T h T T h T T − =  − +  −           (5) 

 
In the above equations, the average air temperature (Tair) is the average of the air temperatures 

entering and leaving the PV panel 
 

( )0 5air a oT . T T=  +               (6) 
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The sky temperature (Ts in Kelvin) is calculated from the ambient temperature (Ta) as follows [19] 
 

( )
1 5

0 0552 273
.

s aT . T=  +              (7) 

 
The convective heat transfer coefficient of the wind is calculated from the McAdam’s equation [20] 
 

5 7 3 8wind windh . . V= +               (8) 

 
Radiant heat transfer coefficients 
 

( )( ) ( )
2

2273 273r,g,s g g s g sh T T T T=   + +  + +           (9) 

 

( ) ( )( )2 2 273 273
273 273

1 1 1

ted b
r,ted,b ted b

ted b

T T
h T T

/ /

+ + +
=  + + + 

 +  −
                  (10) 

 
Combined heat transfer coefficients 
 

1

2

g c
g,c

g c

U
k k

−

  
= +   

                       (11) 

 
1

2 2

ted c
c,ted

ted c

U
k k

−

  
= + 

  
                       (12) 

 
1

1
2

ted
ted,air air

ted

U / h
k

−

 
= + 

 
                      (13) 

 
Heat transfer coefficient due to conduction through the insulation at the back surface 
 

b i ih k /=                          (14) 

 
The convective heat transfer coefficient of the air with the tedlar and with the back surface (hair) 

is calculated from the Dittus-Boelter equation as follows [20] 
 

0 8 0 40 021 . .Nu . Re Pr=                          (15) 

air air hh k Nu / D=                          (16) 

 
where 
 

- hydraulic diameter: 
( )

4
2

h

H
D W

W H
=  

 +
                   (17) 

 

- Reynolds number: 
h air airRe V D /=                        (18) 
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To calculate the pressure loss through the smooth channel, the Blasius friction coefficient 
equation is used as follows 
 

0 250 3164 .f . Re−=                          (19) 

 
From there, the air pressure loss through the PV panel is calculated as follows [21] 
 

2

2
air

h

V
P f L

D
 =   


                       (20) 

 
Fan power 
 

fan air

air fan

P
W m


= 

 
                        (21) 

 
where 
 

Air mass flow rate: 
air airm V W H=                        (22) 

 

Fan efficiency: 0 5fan . =  

 
Net power generation 
 

el el fanW I L W W=    −                       (23) 

 

where el  is the efficiency of the PV which depends on the cell temperature and standard electrical 

efficiency ( stc ) 

 

( )( )1 25el stc cT =   +   −                       (24) 

 
Thermal efficiency 
 

th

Q

I L W
 =

 
                        (25) 

 
Electrical efficiency 
 

el
el,net

W

I L W
 =

 
                       (26) 

 
Overall efficiency 
 

0 38overall th el,net / . = +                       (27) 
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Table 1 and Table 2 present the input parameters and the range of independent parameters to 

investigate Q , 
elW , th , 

el,net , and overall  corresponding to 1 m2 PV panel area. The six independent 

factors included weather conditions (solar radiation, wind, ambient temperature), geometries of 
PV/T (aspect ratio, air channel height), and operating condition (air flow rate). They are the essential 
factors affecting the performance of a photovoltaic-thermal air heater. A simulation program is 

written in EES software (F-chart software). Thermophysical parameters of the air (density air, specific 

heat cp,air, viscosity air, conductivity kair, Prandtl number Pr) were taken at the ambient temperature 
Ta. The software EES is versatile software for solving equations that has the capability to numerically 
solve numerous interconnected non-linear algebraic equations. By counting the number of variables 
and number of equations, EES may give a solution if the numbers are identical. 
 

Table 1 
Parameters of the modelling [14,17,22] 
Parameter Value 

Absorptivity of glass 
Emissivity of glass 
Thickness of glass 
Conductivity of glass 
Thickness of PV cell 

 0 06g .    = −
 

 0 93g .    = −
 

 0 003 mg .    =
 

 1 W/m Kgk   = 
 

 0 0003 mc .    =
 

Conductivity of PV cell 
Thickness of tedlar  
Conductivity of tedlar 
Transmissivity of glass 
Absorptivity of PV cell 

 0 036 W/m Kck .   = 
 

 0 0005 mted .    =
 

 0 033 W/m Ktedk .   = 
 

 0 9g .    = −
 

 0 85c .    = −
 

Coverage factor of PV cell 
Standard electrical efficiency 
Temperature coefficient 
Thickness of PV cell 
PV area 

 0 9288.    = −
 

 0 1737stc .    = −
 
10 0041 1/C.   −  = −    

 0 8ted .    = −
 

21L W m =  
Thickness of insulation 
Conductivity of insulation 
Emissivity of tedlar 
Emissivity of back surface 

 0 05 mi .    =
 

 0 025 W/m Kik .   = 
 

0 9ted . =
 

 0 94b .    = −
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Table 2 
Range of the independent parameters 
No. Parameter Range Base case 

1 
2 
3 

Solar radiation 
Wind velocity 
Ambient temperature 

2100 1000 W/mI  = −  
0 5 m/swindV   = −

 
25 40aT  C= − 

 

1000 W/m2 
2 m/s 

30 C 

4 
5 
6 

Aspect ratio 
Air channel height 
Air mass flow rate 

1 4aR   = −
 

0 01 0.04 mH .  = −

0 01 0.35 kg/sairm .  = −
 

1 
0.02 m 
0.075 kg/s 

 
First, the numerical results are compared with published data to ensure reliability. Figure 2 shows 

a comparison of the air temperature leaving the PV panel (To) and the cell temperature (Tc) with air 
mass flow rate. The input parameters in the two approaches are the same. In the previous 
publication, the back surface of the PV-thermal air heater is equipped with triangular blocks to 
enhance heat transfer [14]. Therefore, the Nusselt number equation is also shown in the figure. The 
results in Figure 2 demonstrate that there is an absolute coincidence of cell temperature. For 
temperature To, the results in this study are slightly higher than published data. This deviation is 
because the previous study considered the variation of air temperature along the direction of motion 
(one-dimensional). Meanwhile, this study used a lumped parameter model (zero-dimensional). 
 

 
Fig. 2. Verification of the current work with the published data [14] 

 
3. Results and Discussion 
 

Investigation of the influence of six parameters on the performance of the PV/T system is 
presented in this section. When an independent parameter changes, the remaining five parameters 
are kept constant as the base case in Table 2. The effect of air mass flow rate is presented in Figure 
3 and Figure 4. As the flow rate increases, the convective heat transfer coefficient of the air (hair) 
increases thereby increasing the useful heat as shown in Figure 3. The heat transfer rate increases 
from 136 W to 604 W when the flow rate increases from 0.01 kg/s to 0.35 kg/s. For electrical power, 
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increased flow rate reduces the cell temperature (Tc) thus increasing power generation. However, 
fan power increases sharply with the flow rate (approximate third power). Therefore, net power 
generation reaches its maximum at an air flow of about 0.075 kg/s. The power generation capacity is 
much smaller than the thermal capacity due to the PV efficiency being below 20%. Therefore, 
simultaneously thermal and power generation is a desirable solution. The trends of electrical 
efficiency and thermal efficiency are like those of power generation and useful heat as shown in 
Figure 4. At high flow rate, thermal efficiency increases, and electrical efficiency decreases so the 
overall efficiency reaches maximum of 90% at flow rate of 0.275 kg/s. 
 

 
Fig. 3. Power generation and useful heat with air mass flow rates 

 

 
Fig. 4. Efficiencies with air mass flow rates 

 
The effect of radiation intensity is shown in Figure 5 and Figure 6. It is clear that as radiation 

increases, the thermal and electrical powers increase sharply as shown in Figure 5. The slope of the 

power generation is less than that of heat transfer rate, =3.2 + 0.15I vs. =-33.8 + 0.4I. This is 

because increased radiation increases cell temperature thereby reducing PV efficiency (el). The 

elW Q
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trade-off between increasing radiation and decreasing efficiency causes the power generation 
efficiency to peak at I = 200 W/m2. However, the power generation efficiency insignificantly changes 
with radiation. When the radiation changes from 100 to 1000 W/m2, the power generation efficiency 
changes from 15.3% to 16.4%. From the trends of thermal efficiency and power generation efficiency, 
the overall efficiency is almost unchanged when the radiation is greater than 700 W/m2. 
 

 
Fig. 5. Power generation and useful heat under various solar intensities 

 

 
Fig. 6. Efficiencies under various solar intensities 

 
The impact of the aspect ratio of the PV panel is presented in Figure 7 and Figure 8. When Ra is 

greater than unity and increases, i.e. the PV length L is greater than the PV width W, the air speed is 
greater because W decreases. In addition, the air travels on the longer heat exchange surface, so the 
heat exchange is greater. High air velocity reduces cell temperature thereby increasing PV 
performance. However, increasing V and L increases the fan power, so the net power generation 
reaches its maximum at Ra = 1.7. The influence of Ra on heat output is much greater than on electricity 
generation. Therefore, the overall efficiency increases with the thermal efficiency as shown in Figure 
8. The heat transfer rate and the overall efficiency increase from 367 W to 445 W and 77% to 84.5%, 
respectively, when the aspect ratio increases from 1 to 4. 
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Fig. 7. Effect of aspect ratio on power generation and useful heat  

 

 
Fig. 8. Effect of aspect ratio on efficiencies 

 
Variation of the operating parameters with air channel height is presented in Figure 9 and Figure 

10. As height increases, air velocity decreases, thus reducing forced convective heat transfer. 
Therefore, the heat transfer rate decreases sharply with the increase of H. The heat transfer rate 
decreases from 465 W to 275 W when the channel height increases from 0.01 m to 0.05 m. Increasing 
H reduces fan power and increases cell temperature. These two opposing trends cause the power 
generation to reach its maximum at H of about 17.5 mm. The power generation varies little with H, 
so the overall efficiency is dominated by thermal efficiency. So, when H increases, the overall 
efficiency decreases. 
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Fig. 9. Power generation and useful heat for different air channel heights  

 

 
Fig. 10. Efficiencies for different air channel heights 

 
The impact of the surrounding environment is shown in Figure 11 to Figure 14. The effect of the 

upper wind speed on the PV panel is shown in Figure 11 and Figure 12. As the wind speed increases 
leading to increase in heat loss and decrease in cell temperature, so the useful heat is reduced, and 
the power generation is increased. The change in useful heat is more significant, so the overall 
efficiency follows the trend of thermal efficiency. That is, increasing wind speed reduces overall 
efficiency. The effect of environmental temperature is presented in Figure 13 and Figure 14. When 
the ambient temperature increases, the radiant heat transfer coefficient and forced convection heat 
transfer coefficient of the air increase, thereby increasing the thermal energy and thermal 
performance. However, increased ambient temperature increases the PV temperature, thereby 
reducing power generation. The increase in heat output and decrease in power generation result in 
an overall efficiency that remains nearly constant with ambient temperature. 
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Fig. 11. Variation of power generation and useful heat as a function of 
wind velocity 

 

 
Fig. 12. Variation of efficiencies as a function of wind velocity 

 

 
Fig. 13. Power generation and useful heat with respect to 
ambient temperature 
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Fig. 14. Efficiencies with respect to ambient temperature 

 
Examination of the six parameters above indicates that entire performance can be maximized at 

the optimal values of air flow, aspect ratio, and air channel height. In this study, genetic algorithm 
(GA) in EES software was used to find the maximum overall performance according to six 
independent parameters with the range given in Table 2. Table 3 presents the setting values of the 
parameters used in the optimization. As shown in Table 4, the overall efficiency of the base case of 
77.01% can be further improved. Optimal results were achieved after generation number of 64. The 
optimal parameters are presented in Table 4 corresponding to an overall efficiency of 98.76%. This 
performance is much greater than the performance of the base case. The optimal design parameters 
obtained include Ra = 1.809, H = 27.27mm, and 𝑚̇𝑎𝑖𝑟 = 0.3032 kg/s corresponding to 1 m2 PV panel 
area. 
 

Table 3 
Parameters of the optimization genetic algorithm 
Parameter Range  Setting value Remark  

Number of individuals 
 

16 to 128 16 
 

The initial choice is made randomly within the 
range defined by the independent variables' 
bounds. 

Number of generations 16 to 2048 580 When the number of generations reaches the 
value, the algorithm comes to a stop. 

Maximum mutation rate 0.0875 to 0.7 0.175 The algorithm will aggressively search for an 
optimum in distant locations when larger values 
are used. When smaller values are used, the 
search will be focused more around the current 
optimum. 

 
Table 4 
Optimization using GA in EES 
No. Parameter Base case Optimum value 

1 Solar radiation 1000 W/m2 1000 W/m2 
2 Wind velocity  2 m/s 0.1339 m/s 
3 Ambient temperature 30 C 32.25 C 
4 Aspect ratio 1 1.809 
5 Air channel height 0.02 m 0.02737 m 
6 Air mass flow rate 0.075 kg/s 0.3032 kg/s 
7 Overall efficiency 0.7701 0.9876 
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4. Conclusions 
 

In this paper, the mathematical formulation for the PV/T system is established and solved 
according to the lumped parameter model including five equations for the five components of the 
system. The system of equations is solved in the EES environment, and the results are compared with 
published data. Thermal and electrical performance was investigated with three design parameters 
and three environmental parameters. Parametric study results show that air flow rate, aspect ratio, 
and channel height have optimal values to achieve the highest overall efficiency. Optimizing the 
efficiency using genetic algorithm exhibits the efficiency of 98.76% with optimal design parameters 
consisting of flow rate of 0.3032 kg/s, channel height of 27.37 mm, and aspect ratio of 1.809. The 
output data showed that the GA model suggested was suitable to predict PV/T variables. Appropriate 
sizes of individual components for a given heat and power capacity or climatic conditions may be 
used based on the current model and corresponding PV/T simulation programs. The entire system 
and its real-time behavior should be taken into account in further research. 
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