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Viscosity, also known as thickness, is the measure of a fluid's resistance to the stress it 
experiences, caused by cohesive forces between fluid particles. Surface tension is the 
force or downward pull caused by unbalanced attractive forces at the liquid interface, 
leading to the contraction of the liquid surface. Numerous studies have been conducted, 
particularly on determining the relationship between these two phenomena. However, 
very few studies are associated with fractional differential equations. This paper 
presents research results based on empirical data obtained from laboratory testing on 
viscosity and surface tension and explores their interrelationship. Through scatter plot 
data and regression of logarithmic functions, the obtained function is claimed as a 
solution to a first-order linear differential equation, with the graph of its solution 
matching the actual data. Subsequently, this differential equation will be generalized 
into a fractional differential equation with guaranteed existence and uniqueness of 
solutions. The method used to find solutions is the Adomian-Laplace Decomposition, and 
the result is that the graph of the solution function coincides with the graph of the exact 
solution. This indicates that the relationship between viscosity and surface tension can 
be described using a solution derived from a fractional differential equation model. 
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1. Introduction 
 

Mathematics, particularly in the field of calculus, has experienced rapid development, notably 
following the introduction of fractional derivatives. This advancement represents an extension of 
ordinary derivatives, traditionally defined for natural numbers, to include rational orders. Beyond the 
foundational concepts of fractional integrals and derivatives, substantial progress has been observed 
in the formulation and application of fractional derivative equations over the past two decades. For 
example, Mu’lla [1] offers a thorough exploration of about Fractional Calculus, Fractional Differential 
Equations and Applications. Previously, fractional differential equations themselves had been 
extensively discussed by Podlubny [2] in “Fractional Differential Equations” (1999). The next 
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development has included studies on systems of fractional differential equations as exemplified by 
Asgari [3] who presented numerical solutions. In terms of concept or definition of fractional 
derivatives, beyond the well-known Riemann-Liouville, Grundwald-Letnikov, and Caputo approaches, 
Khalil et al., [4] introduced a novel perspective with the conformable fractional derivative. 

To ensure the existence and uniqueness of solutions to fractional differential equations, 
significant research has yielded several theorems, as documented in previous studies [5-7]. These 
results encompass both linear and nonlinear forms of fractional differential equations. Once 
existence and uniqueness are established, the next step is finding the solution of the fractional 
differential equations. Numerous methods have been developed for this purpose. Assessing the 
accuracy of numerical methods can be achieved by comparing their results with exact solutions, 
although exact solutions are often challenging to obtain for certain types of fractional differential 
equations. 

In general, to solve nonlinear fractional differential equations, Arafa et al., [8] have employed the 
Mittag-Lefler function method, while Elzaki and Chamekh [9] utilized the New Decomposition 
Method. On the other hand, Johansyah et al., [10,11] have addressed fractional differential equations 
using the Combined Adomian Decomposition Method with Kamal Integral Transformation. To tackle 
the Economic Growth Acceleration Model with Memory Effects, the Combined theorem of Adomian 
Decomposition Methods and Kashuri–Fundo Transformation Methods has been applied. Other 
methods include the Adomian Decomposition Method by Sumiati et al., [12], Homotopy Asymptotic 
method by Hamarsheh et al., [13], Laplace Transformation, and so on. A special form of nonlinear 
fractional differential equations is the Riccati form, whose solutions can be sought using various 
methods such as the Homotopy Asymptotic Method, Variational Homotopy Perturbation Method, 
and the Variational Iteration Method [14-18]. The relationship between Bivariate q-Generalized 
Extreme Value Distribution (BqGEV) and surface tension or viscosity may be observed in models of 
fluid behavior under extreme conditions or changes in fluidic properties that affect the distribution 
of observed random variables [19]. 

The applications of fractional differential equations have significantly expanded across various 
fields, including economics, as seen in the Black-Scholes equation, mathematical biology, physics, 
and others [20]. Particularly in the field of physics, extensive research has been conducted on the 
relationship between viscosity and surface tension. This knowledge helps in predicting fluid flow 
behavior under various conditions, including turbulent and laminar flow, and in accurate 
mathematical modeling. Additionally, for scientific research, the relationship between viscosity and 
surface tension aids in understanding flow phenomena from micro to macro scales, and in building 
better mathematical models for numerical simulations. Pelofsky [21], in his paper "Surface Tension-
Viscosity Relation for Liquids", declared that this relationship can be expressed as 
 

𝛾 = 𝐴 exp (−
𝐵

𝜂
)             (1) 

 
where A and B are constants, γ is the surface tension, and η is viscosity. Earlier research has explored 
the use of vegetable-based lubricant oils for knee cartilage replacement, along with low surface 
tension liquids like distilled water and 3% butanol [22,23]. In addition, Ghatee et al., [24] and Ahmari 
and Amiri [25] discuss the correlation between viscosity and surface tension, while Zheng et al., [26] 
introduced a novel relationship between viscosity and surface tension as 
 

ln = 𝐴 +
𝐵

𝛾𝑛+𝐶
             (2) 
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However, previous studies have not utilized fractional derivatives. Fractional models that 
describe the relationship between viscosity and surface tension began emerging after 2012, as 
evidenced by Rusyaman et al., [27,28], Servadei and Valdinoci [29], and Pandey and Holm [30], along 
with other publications [31–33]. Viscosity pertains to the thickness of liquid substances, while 
elasticity is commonly used for solids. Viscoelasticity, a combination of both, represents an 
advancement concept from viscosity alone. Only a limited amount of research has explored this 
specific area [34–36]. This paper contributes to existing literature by introducing a differential 
equation model that clarifies the relationship between surface tension in lubricating oil and its 
viscosity. 
 
2. Materials and Methods 
2.1 Fractional Derivative 
 

In this section, we present several basic theories that support the main problem, including 
fractional derivatives, fractional differential equations, and their unique theorem. 

Here are two of several versions of the definition of fractional derivatives.  
 
Definition 1. 𝛼-order fractional derivative of 𝑓(𝑡) according to Riemann-Liouville is given by 
 

𝐷𝑓(𝑡) =
1

Γ(𝑛−)

𝑑𝑛

𝑑𝑡𝑛 ∫
𝑓(𝑠)

(𝑡−𝑠)−𝑛++1 𝑑𝑠
𝑡

0
, > 0 , 𝑡 > 0.        (4) 

 
Definition 2. 𝛼-order fractional derivative of 𝑓(𝑡) according to Caputo is given by 
 

𝐷𝑓(𝑡) =
1

Γ(𝑛−)
∫

𝑓(𝑛)(𝑠)

(𝑡−𝑠)−𝑛++1 𝑑𝑠
𝑡

0
.           (5) 

 
From the two versions of the definition above, it can be concluded that the fractional derivative 

of 𝑓(𝑡) =  𝑡𝑝 with order 𝛼 and 𝑝 ≠ 0 is 
 

𝐷𝛼𝑥𝑝 =
(𝑝+1)

(𝑝−+1)
 𝑥𝑝−𝛼 .            (6) 

 
The difference between the two definitions is that when 𝑝 = 0 or 𝑓(𝑡) = 1 (a constant function). 

From Eq. (5), 𝐷𝛼𝑓(𝑡) = 0 according to Caputo, but not zero according to Riemann-Liouville in Eq. (6), 
that is: 
 

𝐷𝛼𝑓(𝑡) = 𝐷𝛼1 =
1

(1−)
 𝑥−𝛼.  

 
2.2 Fractional Differential Equation 
 

Fractional differential equations are a generalization of ordinary differential equations into 
equations of non-integer order. The general form of a fractional differential equation is 
 

𝐷𝛼𝑦(𝑡) = 𝑢(𝑡 , 𝑦(𝑡)).             (7) 

 
Theorem 1 [6]. If 𝑓(𝑡) ∈ 𝐿1(0, 𝑇), and 𝑄(𝑡) continuous function in the closed and bounded interval 
[0, 𝑇], then the fractional differential equation 
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𝐷𝛼𝑦 + 𝑄 𝑦 = 𝑃(𝑡) , with 𝑢(0) = 𝑦0           (8) 
 
has a unique solution 𝑦(𝑡) ∈ 𝐿1(0, 𝑇). 
 
Note: 
 

𝐿1(0, 𝑇) =  {𝑓 ∶  ∫ |𝑓(𝑡)|
𝑇

0
𝑑𝑡 < +∞ }          (9) 

 
is set of integrable functions on [0, 𝑇]. 
 
3. Viscosity and Surface Tension on Differential Equation 
 

Laboratory tests were performed to measure the viscosity and surface tension of multiple types 
of lubricating oils found in Indonesia, using the methodology described by Rusyaman et al., [27]. A 
total of 25 different samples from various brands were chosen based on their availability in the 
Indonesian market. Viscosity was determined using an Ostwald viscometer at the Pharmacy 
Laboratory, Bandung Institute of Technology, while surface tension was assessed using surface 
tensiometers at the Physics Laboratory, Padjadjaran University. 

Assumptions made in the context of this study, including: i) fluid properties are homogenous 
throughout experiment; ii.) fluid is under steady-state and behaves ideally without significant 
external influences, e.g., temperature fluctuations or contaminations. Data collected under 
controlled laboratory conditions to minimize external variables. Potential limitation of the method 
used including generalizability of the method to all types of fluids or in different temperature 
conditions. 

The results are presented in Figure 1 and Figure 2, where viscosity is measured in Pascal seconds 
(Pa.s = N.s/m²) and surface tension in Newtons per meter (N/m). 
 

 

 

 
Fig. 1. Viscosity (𝜂)  Fig. 2. Surface tension (𝛾) 

 
By visually examining the patterns in the two sets of data above, it is evident that the correlation 

between the viscosity and surface tension of lubricating oil is quite strong, at 0.82. In general, as the 
viscosity value increases, so does the surface tension value. This relationship is visually depicted in 
the scatter plot shown in Figure 3 below, where the horizontal axis represents viscosity and the 
vertical axis represents surface tension. 
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Fig. 3. Scatter plot of lubricating oil data 

 
Based on Figure 3, in this research will consider 𝛾 as a function of 𝜂 with its logarithmic regression 

result being 
 
𝛾 = 0.5393 ln 𝜂 + 15.932 .                      (10) 
 
Eq. (10) can be transformed into exponential form as follows 
 
𝜂 = exp(1.8543 𝛾 − 29.5420) .  
 

To generalize, the symbol 𝜂 will henceforth be replaced by 𝑦 to denote viscosity, while the symbol 
𝛾 will be replaced by 𝑡 for surface tension. Therefore, Eq. (10) transforms to 
 
𝑦 = exp(1.8543 𝑡 − 29.5420) .                     (11) 
 

Based on the regression relationship in (11) and the scatter plot in Figure 3, let's first examine the 
exact solution of the first-order ordinary differential equation through the following statement. 
 
Theorem 2. 
Function (11) is a solution of an ordinary derivative equation 
 
𝑦′(𝑡) + 𝑄 𝑦(𝑡) = 𝑃(𝑡)                      (12) 
 
with (𝑡) = 𝑘 . 𝑒𝑎𝑡+𝑏 , 𝑄 = 2 and initial condition 𝑦(18) = 46. 
 
Proof: 
The solution obtained is as follows 
 

𝑦(𝑡) = 𝑒− ∫ 𝑄 𝑑𝑡 [∫ 𝑒∫ 𝑄 𝑑𝑡 . 𝑘 𝑒𝑎𝑡+𝑏 𝑑𝑡 + 𝑐]  

=  𝑒−2𝑡 [∫ 𝑘 𝑒2𝑡 𝑒𝑎𝑡+𝑏  𝑑𝑡 + 𝑐]  

= 𝑒−2𝑡  [
𝑘

2+𝑎
 𝑒(2+𝑎)𝑡+𝑏 + 𝑐],  

 
where for 𝑘 = 3.854, 𝑎 = 1.854 and 𝑏 = −29.542 the resulting solution function is 
 
𝑦(𝑡) = exp(1.8543 𝑡 − 29.5420),  
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that identical to Figure 4 or Figure 5 with the following graph 
 

 

 

 
Fig. 4. 𝑡(𝑦) = 0.5393 ln 𝑦 + 15.932  Fig. 5. 𝑦(𝑡) = exp(1.8543 𝑡 − 29.5420)  

 
Subsequently, the ordinary differential equation in (12) was transformed into a fractional-order 

differential equation. The reason for fractionalizing the derivative order is that fractional differential 
equations can provide a more accurate model for processes involving fractional characteristics, 
where properties such as viscosity or other phenomena can be better described using fractional 
derivatives rather than ordinary derivatives. Another reason is that fractional differential equations 
allow for the recognition of long-term memory effects and nonlocal properties in physical processes. 
This is useful in modeling phenomena involving responses to stimuli that occur not only at the current 
time but also at earlier times. By replacing the original derivative order of 1 with a fractional number 
α, thus the general form of the fractional differential equation (12) becomes: 
 
𝐷𝛼𝑦(𝑡) + 𝑄 𝑦(𝑡) = 𝑃(𝑡) ;  0 < 𝛼 ≤ 1.                    (13) 
 
where 𝑦 is viscosity, 𝑡 is surface tension, 𝑃(𝑡) is an exponential function, α is the fractional order, 
and Q is the chosen real constant which is 2. 
 
4. Solution of Fractional Differential Equation by Adomian-Laplace Decomposition 
 

The Adomian-Laplace Decomposition Method is an analytic technique used to solve ordinary 
differential equations or fractional differential equations. The essence of this method lies in 
decomposing the unknown solution function y(t) to ∑ yn(t)∞

n=1  which consists of terms 
(decomposition) based on the mathematical properties of the given equation. Subsequently, 
differential equations for each yn(t) are sequentially solved from y0(t) hingga yn(t) . The overall 
solution for y(t) is obtained by summing all the derived terms. By combining the Adomian 
decomposition technique with Laplace transformation to separate the time variable, solutions can 
be obtained in a more systematic manner. This method is often utilized in applied mathematics and 
physics. 

Next, the fractional differential equation in Eq. (13) will be solved using the Adomian-Laplace 
Decomposition Method. 

Given a special form of fractional differential equation in Eq. (13) 
 
𝐷𝛼𝑦(𝑡) + 2𝑦(𝑡) = 𝑘. 𝑒𝑎𝑡+𝑏 ;  𝑦(18) = 𝑦0.                    (14) 
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With a guarantee of the existence and uniqueness of the solution, here is a technique for finding 
fractional differential equation solutions using the Adomian-Laplace Decomposition Method. 
 
Let 𝑥 = 𝑡 − 18, then 𝑡 = 𝑥 + 18 and Eq. (13) becomes: 
 

𝐷𝛼𝑦(𝑥 + 18) + 2 𝑦(𝑥 + 18) = 𝑘. 𝑒  𝑎(𝑥+18)+𝑏 .                   (15) 
 
By applying the Laplace transform to both sides, the following is obtained: 
 

ℒ[𝐷𝛼𝑦(𝑥 + 18)] + 2ℒ[𝑦(𝑥 + 18)] = 𝑘. 𝑒𝑏ℒ[𝑒𝑎(𝑥+18)]  

𝑠𝛼ℒ[𝑦(𝑥 + 18)] = 𝑠𝛼−1𝑦(18) +
𝑘.𝑒𝑏+18𝑎

𝑠−𝑎
− 2ℒ[𝑦(𝑥 + 18)]  

ℒ[𝑦(𝑥 + 18)] =
𝑦(18)

𝑠
+

𝑘.𝑒𝑏+18𝑎

𝑠𝛼(𝑠−𝑎)
− 2

ℒ[𝑦(𝑥+18)]

𝑠𝛼   

𝑦(𝑥 + 18) = 𝑦(18)ℒ−1 [
1

𝑠
] + 𝑘. 𝑒𝑏+18𝑎ℒ−1 [

1

𝑠𝛼(𝑠−𝑎) 
] − 2ℒ−1 [

ℒ[𝑦(𝑥+18)]

𝑠𝛼 ].  

 
Assume that 𝑦(𝑥 + 18) = ∑ 𝑦𝑛(𝑥 + 18)∞

𝑛=0 , then 
 

∑ 𝑦𝑛(𝑥 + 18)∞
𝑛=0 = 𝑦(18) ℒ−1 [

1

𝑠
] + 𝑘 . 𝑒𝑏+18𝑎 ℒ−1 [

1

𝑠𝛼 (𝑠−𝑎)
] − 2 ℒ−1 [

ℒ[∑ 𝑦𝑛(𝑥+18)∞
𝑛=0 ]

𝑠𝛼 ].  

 
Thus, the recursive relation for the solution is obtained as follows: 
 

𝑦0(𝑥 + 18) = 𝑦(18)ℒ−1  [
1

𝑠
] + 𝑘 . 𝑒𝑏+18𝑎 𝐿−1  [

1

𝑠𝛼 (𝑠−𝑎)
]  

= 𝑦(18) +
𝑘

𝑎𝛼 𝑒𝑎𝑥+𝑏+18𝑎 {1 −
Γ(𝛼,𝑎.𝑥)

Γ(𝛼)
}  

𝑦𝑛(𝑥 + 18) = −2ℒ−1 [
ℒ[𝑦𝑛−1(𝑥+18)]

𝑠𝛼 ].  

 
The solution function can be written as 
 
𝑦(𝑥 + 18) = 𝑦0(𝑥 + 18) + 𝑦1(𝑥 + 18) + 𝑦2(𝑥 + 18) + ⋯  
 
The following are the calculations for 𝑦1(𝑥 + 18) and 𝑦2(𝑥 + 18): 
 

ℒ[𝑦0(𝑥 + 18)] = 𝑦(18) ℒ [ℒ−1 [
1

𝑠
]] + 𝑘 . 𝑒𝑏+18𝑎 ℒ [ℒ−1 [

1

𝑠𝛼 (𝑠−𝑎)
]]  

=
𝑦(18)

𝑠
+ 𝑘 . 𝑒𝑏+18𝑎  

1

𝑠𝛼 (𝑠−𝑎)
.  

 

𝑦1(𝑥 + 18) = −2 ℒ−1 [
ℒ[𝑦0(𝑥+18)]

𝑠𝛼 ]  

= −2 ℒ−1 [
𝑦(18)

𝑠𝛼+1 + 𝑘 . 𝑒𝑏+18𝑎  
1

𝑠2𝛼 (𝑠−𝑎)
]   

= −2 {𝑦(18) ℒ−1 [
1

𝑠𝛼+1] + 𝑘 . 𝑒𝑏+18𝑎 ℒ−1 [
1

𝑠2𝛼 (𝑠−𝑎)
]}  

= −
2 𝑦(18)

Γ(𝛼+1)
 𝑥𝛼 −

2 𝑘

𝑎2𝛼  𝑒𝑎𝑥+𝑏+18𝑎  {1 −
Γ(2𝛼,𝑎 .𝑥)

Γ(2𝛼)
}  
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ℒ[𝑦1(𝑥 + 18)] = −2 ℒ [ℒ−1 [
𝑦(18)

𝑠𝛼+1 + 𝑘 . 𝑒𝑏+18𝑎  
1

𝑠2𝛼 (𝑠−𝑎)
]]  

= −
2 𝑦(18)

𝑠𝛼+1 − 2 𝑘 . 𝑒𝑏+18𝑎  
1

𝑠2𝛼 (𝑠−𝑎)
  

𝑦2(𝑥 + 18) = −2 ℒ−1 [
ℒ[𝑦1(𝑥+18)]

𝑠𝛼 ]  

= −2 ℒ−1 [−
2 𝑦(18)

𝑠2𝛼+1
− 2 𝑘 . 𝑒𝑏+18𝑎  

1

𝑠3𝛼 (𝑠−𝑎)
]  

= −2 {−2 𝑦(18) ℒ−1 [
1

𝑠2𝛼+1
] − 2 𝑘 . 𝑒𝑏+18𝑎 ℒ−1 [

1

𝑠3𝛼 (𝑠−𝑎)
]}  

=
4 𝑦(18)

Γ(2𝛼+1)
 𝑥2𝛼 +

4 𝑘

𝑎3𝛼  𝑒𝑎𝑥+𝑏+18𝑎  {1 −
Γ(3𝛼,𝑎 .𝑥)

Γ(3𝛼)
}.  

 
Based on the above calculations, the solution function up to 𝑛 = 6 is obtained as follows: 
 

𝑦(𝑥 + 18) = 𝑦(18) +
𝑘

𝑎𝛼  𝑒𝑎𝑥+𝑏+18𝑎  {1 −
Γ(𝛼,𝑎 .𝑥)

Γ(𝛼)
} −

2 𝑦(18)

Γ(𝛼+1)
 𝑥𝛼 −

2 𝑘

𝑎2𝛼  𝑒𝑎𝑥+𝑏+18𝑎  {1 −
Γ(2𝛼,𝑎 .𝑥)

Γ(2𝛼)
} +

4 𝑦(18)

Γ(2𝛼+1)
 𝑥2𝛼  +

4 𝑘

𝑎3𝛼  𝑒𝑎𝑥+𝑏+18𝑎  {1 −
Γ(3𝛼,𝑎 .𝑥)

Γ(3𝛼)
} −

8 𝑦(18)

Γ(3𝛼+1)
 𝑥3𝛼  −

8 𝑘

𝑎4𝛼  𝑒𝑎𝑥+𝑏+18𝑎  {1 −
Γ(4𝛼,𝑎 .𝑥)

Γ(4𝛼)
} +

16 𝑦(18)

Γ(4𝛼+1)
 𝑥4𝛼 +

16 𝑘

𝑎5𝛼  𝑒𝑎𝑥+𝑏+18𝑎  {1 −
Γ(5𝛼,𝑎 .𝑥)

Γ(5𝛼)
} −

32 𝑦(18)

Γ(5𝛼+1)
 𝑥5𝛼 −

32 𝑘

𝑎6𝛼  𝑒𝑎𝑥+𝑏+18𝑎  {1 −
Γ(6𝛼,𝑎 .𝑥)

Γ(6𝛼)
} +

64 𝑦(18)

Γ(6𝛼+1)
 𝑥6𝛼 +

64 𝑘

𝑎7𝛼  𝑒𝑎𝑥+𝑏+18𝑎  {1 −
Γ(7𝛼,𝑎 .𝑥)

Γ(7𝛼)
}.  

 
By substituting 𝑥 = 𝑡 − 18, the solution function in terms of 𝑡 is obtained as follows: 
 

𝑦(𝑡) = 𝑦(18) +
𝑘

𝑎𝛼  𝑒𝑎𝑡+𝑏  {1 −
Γ(𝛼,𝑎 .𝑡−18 𝑎)

Γ(𝛼)
} −

2 𝑦(18)

Γ(𝛼+1)
 (𝑡 − 18)𝛼 −

2 𝑘

𝑎2𝛼  𝑒𝑎𝑡+𝑏  {1 −
Γ(2𝛼,𝑎 .𝑡−18 𝑎)

Γ(2𝛼)
} +

4 𝑦(18)

Γ(2𝛼+1)
 (𝑡 − 18)2𝛼 +

4 𝑘

𝑎3𝛼  𝑒𝑎𝑡+𝑏  {1 −
Γ(3𝛼,𝑎 .𝑡−18 𝑎)

Γ(3𝛼)
} −

8 𝑦(18)

Γ(3𝛼+1)
 (𝑡 − 18)3𝛼 −

8 𝑘

𝑎4𝛼  𝑒𝑎𝑡+𝑏  {1 −

Γ(4𝛼,𝑎 .𝑡−18 𝑎)

Γ(4𝛼)
} +

16 𝑦(18)

Γ(4𝛼+1)
 (𝑡 − 18)4𝛼 +

16 𝑘

𝑎5𝛼  𝑒𝑎𝑡+𝑏  {1 −
Γ(5𝛼,𝑎 .𝑡−18 𝑎)

Γ(5𝛼)
} −

32 𝑦(18)

Γ(5𝛼+1)
 (𝑡 − 18)5𝛼 −

32 𝑘

𝑎6𝛼  𝑒𝑎𝑡+𝑏  {1 −
Γ(6𝛼,𝑎 .𝑡−18 𝑎)

Γ(6𝛼)
} +

64 𝑦(18)

Γ(6𝛼+1)
 (𝑡 − 18)6𝛼 +

64 𝑘

𝑎7𝛼  𝑒𝑎𝑡+𝑏  {1 −
Γ(7𝛼,𝑎 .𝑡−18 𝑎)

Γ(7𝛼)
}.              (16) 

 
The following are four example cases for the solution function in Eq. (16) above. 
 
Case 1: 𝛼 = 0.2, 𝑘 = 3.854, 𝑎 = 1.854, 𝑏 = −29.542, 𝑦(18) = 46 
 
𝑦(𝑡) = 25,009.96 + 67.609 𝑒1.854 𝑡−29.542 − 0.743 𝑒1.854 𝑡−29.542 Γ(0.2 , 1.854 𝑡 − 33.372) +
2.715 𝑒1.854 𝑡−29.542 Γ(0.4 , 1.854 𝑡 − 33.372) − 7.153 𝑒1.854 𝑡−29.542 Γ(0.6 , 1.854 𝑡 − 33.372) +
16.162 𝑒1.854 𝑡−29.542 Γ(0.8 , 1.854 𝑡 − 33.372) + 64.027 𝑒1.854 𝑡−29.542 Γ(1.2 , 1.854 𝑡 −
33.372) − 117.128 𝑒1.854 𝑡−29.542 Γ(1.4 , 1.854 𝑡 − 33.372) − 100.199 (𝑡 − 18)0.2 +
207.379 (𝑡 − 18)0.4 − 411.856 (𝑡 − 18)0.6 + 790.222 (𝑡 − 18)0.8 − 1,472 𝑡 + 2,671.985 (𝑡 −
18)1.2.  
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Case 2: 𝛼 = 0.8, 𝑘 = 3.854, 𝑎 = 1.854, 𝑏 = −29.542, 𝑦(18) = 46 
 
𝑦(𝑡) = −5.072681332 ⋅ 106 + 5.333 𝑒1.854 𝑡−29.542 − 2.02 𝑒1.854 𝑡−29.542 Γ(0.8 , 1.854 𝑡 −
33.372) + 3.213 𝑒1.854 𝑡−29.542 Γ(1.6 , 1.854 𝑡 − 33.372) − 2.821 𝑒1.854 𝑡−29.542 Γ(2.4 , 1.854 𝑡 −
33.372) + 1.766 𝑒1.854 𝑡−29.542 Γ(3.2 , 1.854 𝑡 − 33.372) + 0.357 𝑒1.854 𝑡−29.542 Γ(4.8 , 1.854 𝑡 −
33.372) − 0.126 𝑒1.854 𝑡−29.542 Γ(5.6 , 1.854 𝑡 − 33.372) − 98.778 (𝑡 − 18)0.8 + 128.705 (𝑡 −
18)1.6 − 123.44 (𝑡 − 18)2.4 + 94.886 (𝑡 − 18)3.2 + 1.196549789 ⋅ 106 𝑡 − 1.05829591 ⋅
105 𝑡2 + 4,160.129 𝑡3 − 61.333 𝑡4 + 34.384 (𝑡 − 18)4.8.  
 
Case 3: 𝛼 = 0.925, 𝑘 = 3.854, 𝑎 = 1.854, 𝑏 = −29.542, 𝑦(18) = 46 
 
𝑦(𝑡) = 46 + 3.426 𝑒1.854 𝑡−29.542 − 2.075 𝑒1.854 𝑡−29.542 Γ(0.925 , 1.854 𝑡 − 33.372) +
2.603 𝑒1.854 𝑡−29.542 Γ(1.85 , 1.854 𝑡 − 33.372) − 1.693 𝑒1.854 𝑡−29.542 Γ(2.775 , 1.854 𝑡 −
33.372) + 0.754 𝑒1.854 𝑡−29.542 Γ(3.7 , 1.854 𝑡 − 33.372) −
0.256 𝑒1.854 𝑡−29.542 Γ(4.625 , 1.854 𝑡 − 33.372) + 0.0706 𝑒1.854 𝑡−29.542 Γ(5.55 , 1.854 𝑡 −
33.372) − 0.0164 𝑒1.854 𝑡−29.542 Γ(6.475 , 1.854𝑡 − 33.372) − 94.789 (𝑡 − 18)0.925 +
105.18 (𝑡 − 18)1.85 − 80.77 (𝑡 − 18)2.775 + 47.695 (𝑡 − 18)3.7 − 22.957 (𝑡 − 18)4.625 +
9.348 (𝑡 − 18)5.55.  
 
Case 4: 𝛼 = 1, 𝑘 = 3.854, 𝑎 = 1.854, 𝑏 = −29.542, 𝑦(18) = 46 
 
𝑦(𝑡) = −1.272424594 ⋅ 108 + 2.7 𝑒1.854 𝑡−29.542 + 4.353632318 ⋅ 107 𝑡 − 6.21135946 ⋅
106 𝑡2 + 4.73005392 ⋅ 105 𝑡3 − 20,278.46946 𝑡4 + 464.080967 𝑡5 − 4.429535502 𝑡6.  
 

Figure 6 is a combined graph of the exact solution function in Eq. (13) and the solution functions 
for the four cases above obtained using the Adomian-Laplace Decomposition Method. 
 

 
Fig. 6. Combined graph of exact solution and 
Adomian-Laplace Decomposition solutions 

 
If the sequence of orders (𝛼𝑛) converges to a number 𝛼, then the sequence of solution 

functions will converge to the solution function of the fractional differential equation of order 𝛼. In 
this case, for fractional order 𝛼 which goes to 1, the graph of the solution function also goes to the 
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graph of the solution function for order 𝛼 = 1 which coincides with the graph of the exact solution 
(depicted in yellow and black graph). The pattern of convergence of the sequence of solution 
functions to its exact solution demonstrates the correctness of this approach. This shows that 
empirically the solution of the fractional differential Eq. (11) truly reflects the relationship between 
surface tension and viscosity. 

Our findings have important implications. Understanding the relationship between surface 
tension and viscosity through a fractional differential equation may guide the development of more 
effective and efficient materials and processes for manufacturing. The use of the Adomian-Laplace 
Decomposition method to solve fractional differential equations contributes to the methodology in 
applied mathematics and engineering. 
 
5. Conclusions 
 

The viscosity and surface tension of lubricating oil demonstrated a clear relationship that can be 
mathematically described by either a logarithmic or exponential function. This function represents 
the solution to a first-order linear differential equation, suggesting that this equation effectively 
models the connection between viscosity and surface tension. When this differential equation is 
extended to a fractional form, it yields a highly accurate result where the solution function closely 
matches the exact solution's graph. This underscores the applicability of a fractional differential 
equation model in describing the viscosity-surface tension relationship. Furthermore, employing the 
fractional model reveals insights into the memory effect associated with it. Overall, knowledge of the 
relationship between viscosity and surface tension allows the development of more advanced 
technologies and a deeper understanding of fluid behavior in various contexts. 

As a suggestion for further research, the order of the fractional differential equation can be 
increased to non-linear, especially the Riccati form. In addition, further studies may be needed to 
extend the model to different types of fluids, investigating additional properties beyond viscosity and 
surface tension, or applying similar methods to other scientific disciplines where fractional 
differential equations could be relevant. 
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