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The increase in crab meat exports increased the amount of crab shells discharged into the 
environment. Improper crab shell waste management can cause environmental concerns, 
public health issues, and increased oxygen requirements. This research aims to utilize crab 
shells from crab meat processing businesses in Indonesia into chitosan using 
demineralization, deproteination and deacetylation processes, with depolymerization as 
an additional process. Crab shell powder will be deproteinized with 3% NaOH and 
demineralized using an HCL solution. Furthermore, the deacetylation process was carried 
out for 8 hours at 140oC with 50% NaOH to produce chitosan. The resulting chitosan was 
then depolymerized using H2O2 at a concentration of 13%. The chitosan properties 
obtained by the deacetylation and depolymerization procedures were evaluated using X-
ray diffraction (XRD), Fourier Transform Infrared (FTIR), and scanning electron microscope 
(SEM) tests. The results show that the depolymerization process exerts a beneficial effect 
on the chitosan product. The depolymerization treatment process involves the 
fragmentation of extended chitosan chains, which leads to the formation of smaller 
fragments and subsequently causes a decrease in the crystallinity, and particle size of the 
chitosan obtained. In additions, the results of this study indicate that the 
depolymerization process causes an increase in the degree of deacetylation of chitosan. 
The chitosan produced from the deacetylation and depolymerization processes produced 
chitosan with a degree of deacetylation of 81% and 91%, respectively. Increased the 
degree of deacetylation (DD, %) leads to reduced molecular weight, improved 
antimicrobial properties, higher water solubility, improved mechanical properties, and 
indicates better chitosan purity. 
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1. Introduction 
 

The crab industry frequently prioritizes the extraction of crab meat while disregarding the shells 
as a byproduct. Approximately 57% of the waste by-products in crab meat processing are comprised 
of shells [1-4]. In the year 2023, the export quantity of crab meat reached a total of 1,019 metric tons, 
being distributed to many nations [5]. The data indicates that a total of 1351 metric tons of crab shells 
are generated as waste. Improper management of crab shell waste can give rise to environmental 
concerns and compromise public health standards, manifesting in issues such as malodorous or 
disagreeable smells, water contamination, and heightened levels of biological and chemical oxygen 
requirements [1-4]. The utilization of crab shell waste can yield items of significant economic worth, 
including productions of chitosan, animal feed, cracker, natural food flavor, and the development of 
adsorbents for heavy metals [6-8]. 

The processing of crab shell waste has the potential to produce chitosan, a multifunctional 
biopolymer that finds applications in the pharmaceutical and cosmetic industries [1,7]. Chitosan is 
typically derived from the chitin component found in crab shells through a series of procedures 
including deproteination, demineralization, and deacetylation. The unique macromolecular structure 
of chitosan has garnered significant attention from both researchers and the industrial sector. 
Furthermore, chitosan exhibits remarkable attributes such as superior biocompatibility, 
biodegradability, antibacterial capabilities, and various other intrinsic functional characteristics. The 
aforementioned benefits contribute to the extensive utilization of chitosan as a promising natural 
antibacterial agent in various sectors, including pharmaceuticals, cosmetics, agriculture, and food 
production. Furthermore, chitosan finds utility in several domains of tissue engineering and 
regenerative medicine, including wound healing, bone regeneration, cartilage regeneration, tooth 
regeneration, cardiac regeneration, nerve regeneration, and drug delivery systems [9-13]. 

During the chitosan synthesis procedure, deacetylation is employed as the stage whereby acetyl 
groups are eliminated through the utilization of a basic solution, such as sodium hydroxide (NaOH) 
solution. The aforementioned procedure produces chitosan, which is characterized by an elongated 
polymer chain [14]. Several studies have included a depolymerization method for chitosan derived 
from crab and shrimp shells. Depolymerization is a chemical procedure employed to decrease the 
length of the chitosan polymer chain. Depolymerization can be achieved by a variety of 
methodologies, including thermal treatment and enzymatic processes. The objective of this 
procedure is to cleave or fragment the chitosan molecule into shorter segments. The process of 
depolymerization has been found to have several beneficial effects on chitosan products. These 
include the improvement of solubility, enhancement of bioactivity, enhancement of functionality, 
and an increase in the adsorption capacity. The enhanced characteristics of chitosan render it a more 
viable option for biomedical applications and as an adsorbent for the elimination of contaminants 
from wastewater [15-18]. 

This study aims to convert crab shells obtained from the crab meat processing business in Pati, 
Central Java, Indonesia, into chitosan. This conversion will be achieved by the sequential procedures 
of demineralization, deproteination, and deacetylation. Afterwards, the chitosan obtained 
undergoes depolymerization as an additional procedural phase. The objective of this study is to 
employ waste crab shells for the production of chitosan, a material with potential applications in the 
medical field. Moreover, this investigation aimed to assess the influence of the depolymerization 
procedure on modifications in the properties of chitosan derived from crab shells. In addition to 
environmental factors, the utilization of shell wastes can be used to reduce production costs in the 
future because they are cheap, plentiful, and easily available [19-21]. Furthermore, this study has the 
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potential to make a valuable contribution towards the advancement of sustainable waste 
management and recycling practices within the crab meat processing business. 
 
2. Materials and Methodology 
 

In this study, crab shells obtained from the crab meat processing industry were subjected to 
drying under the sun (as depicted in Figure 1(a)), followed by crushing and then sieving through a 
100-mesh sieve to get crab shell powder (as illustrated in Figure 1(b)). The deproteination procedure 
involved the dissolution of 100 grams of crab shell powder in a 3% NaOH solution using a volume-to-
weight ratio of 1:10 (v/w). In this experimental procedure, agitation was performed utilizing a 
magnetic stirrer at a temperature of 90°C for 1 hour to extract the protein present in the crab shells. 
Afterwards, a washing process was conducted to achieve a neutral pH, followed by filtration of the 
solution. The resulting residue was thereafter subjected to drying in an oven. 
 

  
(a) (b) 

Fig. 1. (a) Crab shells, and (b) Crab shell powder 

 
The deproteinization product is then subjected to a demineralization process. This process is used 

to remove minerals or inorganic compounds present in crab shell powder. In this study, the 
demineralization process was conducted utilizing a hydrochloric acid (HCl) solution with a weight-to-
volume ratio of 1:7. In this experimental procedure, agitation was conducted using a magnetic stirrer 
at a temperature of 90°C for 1 hour. Subsequently, a washing process was conducted until achieving 
a neutral pH, followed by filtration of the resulting mixture. Subsequently, the obtained residue was 
subjected to drying in an oven. 20 grams of demineralized product were subjected to dissolution in 
a 50% sodium hydroxide solution with a weight-to-volume ratio of 1:20 (w/v) for 8 hours at a 
temperature of 140°C. The process under consideration is commonly referred to as deacetylation. 

It involves the cleavage of the chemical linkage connecting the acetyl group and the nitrogen 
atom, resulting in the formation of an amine group (-NH2). This transformation ultimately yields the 
end product known as chitosan. The chitosan obtained was subsequently subjected to 
depolymerization using a 25-ml solution of 13% hydrogen peroxide (H2O2). The chitosan material is 
immersed in a hydrogen peroxide (H2O2) solution for 10 minutes, followed by a baking process in an 
oven at a temperature of 40°C for 4 hours. Subsequently, the solution underwent a cooling process 
followed by filtration using the Whatman 42 filter paper. The solid obtained from the filtration 
procedure was subjected to a washing step using distilled water, followed by drying at a temperature 
of 60°C for 3 hours. 
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The X-ray diffraction (XRD) technique was employed to identify the crystalline composition and 
crystallinity index found in chitosan. The experimental procedure involves the utilization of a 
Shimadzu XRD-7000 diffractometer, operating at a voltage of 40 kV and a current of 30 mA [20,22]. 
The diffractometer employs Cu Kα radiation with a wavelength of 0.15406 nm. The diffraction pattern 
is acquired within the angular range of 10° to 90° (2θ), with an increment of 0.02° and a scanning rate 
of 1° per minute. In addition, the surface morphology of chitosan was analyzed by the utilization of a 
scanning electron microscope (SEM) (JSM-6510, JEOL, Japan) operating at an accelerating voltage of 
15 kV [20,22]. The obtained scanning electron microscopy (SEM) images will be utilized to calculate 
the particle size of chitosan with the assistance of ImageJ and Origin software. The Fourier Transform 
Infrared (FTIR) technique is employed for the evaluation of inorganic, organic, and polymeric 
substances. Variations in the characteristic absorption band patterns are indications of modifications 
in the material's composition. The identification of chitosan specimens in this investigation was 
performed using a Perkin Elmer Spotlight 400 Frontier FT-IR Spectrophotometer equipped with a 
recording area ranging from 4,000 to 400 cm-1. The degree of deacetylation of chitosan (DD, %) will 
be calculated using the FTIR test data using a calculating approach offered in previous studies [4]. 

A deacetylation degree ranging from 55% to 70% is considered to be indicative of a low 
deacetylated degree of chitosan, resulting in its near-full insolubility in water. The deacetylation 
degree of chitosan typically ranges from 70% to 85%, representing the intermediate level of 
deacetylation. At this degree, chitosan exhibits partial solubility in water. In conclusion, a 
deacetylation degree of 85-95% is considered to be very high for chitosan, as it exhibits favorable 
solubility in water. On the other hand, achieving a deacetylation degree of 95-100% is referred to as 
an ultrahigh deacetylation degree of chitosan, which poses considerable challenges. Concurrently, 
the enhancement of chitosan's water solubility can be achieved through the degradation-induced 
reduction of its molecular weight [23]. 
 
3. Results and Discussion 
 

Figure 2 presents a comparison of the X-ray diffraction (XRD) test results obtained from crab shell 
powder, deacetylation products, and depolymerization products. The presence of calcite and 
aragonite crystalline phases has been observed in crab shell powder. Based on the JCPDS card 
number 05-0586, the crystalline calcite phase observed in crab shell powder is often represented by 
the following values: 2θ angles of 29.404, 39.399, and 43.143. The aragonite crystal phase is observed 
for 2θ values of 26.312, 31.176, and 33.180, as shown by the JCPDS Card No. 05-0453. The present 
investigation reveals that the composition of crab shell powder primarily consists of calcite crystals, 
accompanied by a small proportion of aragonite crystals. 

The presence of chitosan after deacetylation and depolymerization was identified based on JCPDS 
number 39-1894. The presence of chitosan in Figure 2 is indicated by the presence of peaks at 2θ: 
15.18, 20.3, 21.2, 23.9, and 29.9. 

In this study, the crystallinity index is calculated as the ratio between the area of the crystal 
contribution and the total area under the XRD peaks using Origin software using the formula from 
previous studies [4]. 
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Fig. 2. XRD diffractogram on crab shell, deacetylated 
chitosan product, and depolymerized chitosan 
product 

 
The crystallinity index comparison obtained in this study is shown in Figure 3. The crystallinity 

index (CI) is a numerical measure used to assess the degree of crystallinity in a material. It is 
determined by calculating the ratio of crystalline peaks to the overall number of peaks, which 
includes both crystalline and amorphous areas. The concept of crystallinity relates to the level of 
organization and dimensions of crystals within a given crystalline material. A higher value of the 
crystallinity index (CI) corresponds to an increased presence of well-defined crystalline peaks within 
a given material [24]. 
 

 
Fig. 3. Effect of depolymerization treatment on crystallinity index 
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The findings of this study demonstrated that the depolymerization treatment led to a reduction 
in the crystallinity index of chitosan. The depolymerization treatment process involves the 
fragmentation of the extended chitosan chains, leading to the formation of smaller fragments and 
subsequently causing a reduction in the overall crystallinity of the material. Furthermore, the 
depolymerization process causes an increase in entropy and disrupts the regular organization of 
chitosan molecules, resulting in a reduction in crystalline structure. 

Furthermore, the depolymerization process of chitosan has the potential to enhance molecular 
mobility. As a result of this phenomenon, the utilization of low molecular weight chitosan (LMWC) 
leads to the generation of a comparatively less ordered or amorphous structure, thus resulting in a 
reduction in the crystallinity index. Another study investigated the impact of the depolymerization 
process on chain orientation, which can disrupt the formation of crystalline areas and consequently 
lead to a reduction in the crystallinity index [25-28]. 

Figure 4 shows the graphical comparison of FTIR test results of chitosan produced from 
deacetylation and depolymerisation processes. The -OH, -CH stretching, -NH2 cutting, -CH3, and -C-
O-C- functional groups in chitosan produced from deacetylation process were shown at wavelengths 
(cm-1) of 3451, 2891, 1642, 1419, and 1151, respectively. Whereas in chitosan produced from the 
depolymerisation process, the functional groups -OH, -CH stretching, -NH2 cutting, -CH3, and -C-O-
C- were shown at wavelengths (cm-1) of 3435.22, 2897, 1631, 1420.03, and 1040.05, respectively. 
The graph generated from the FTIR test results was used to determine the degree of deacetylation 
of chitosan (DD, %) using an equation based on previous research. 
 

 
Fig. 4. FTIR spectra of chitosan produced from deacetylation and 
depolymerization process 

 
The effect of the depolymerization process on the degree of deacetylation of chitosan (DD, %) is 

shown in Figure 5. The results of this study indicate that the depolymerization process causes an 
increase in the degree of deacetylation of chitosan (DD, %). Chitosan produced from the 
deacetylation process has a degree of deacetylation of chitosan (DD, %) of 81%. While the chitosan 
produced from the depolymerization process produced a degree of deacetylation of chitosan (DD, 
%) of 91%. The depolymerization process frequently leads to a reduction in the molecular weight of 
chitosan. The observed effect can be attributed to the ability to catalyze the hydrolysis of the 
glycosidic linkages present in the chitosan polymer chain. The abundance of fragmented chitosan 
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chains results in the generation of depolymerized chitosan, characterized by a progressively reduced 
molecular weight. 

A decrease in the molecular weight of chitosan has the potential to result in an elevation of the 
degree of deacetylation. Furthermore, the depolymerization process typically leads to the liberation 
of an increasing number of acetyl groups and free amide active groups (-NH2), thereby causing an 
elevation in the degree of deacetylation [14,17]. 
 

 
Fig. 5. Effect of depolymerization treatment on degree of 
deacetylation of chitosan (DD, %) 

 
The results of this study indicate that the deacetylated chitosan product falls into the category of 

chitosan with a medium degree of deacetylation. This is because the resulting deacetylation degree 
of 81% is in the range of 70% to 85%. Meanwhile, the depolymerized chitosan product belongs to 
chitosan with a high degree of deacetylation. This is because the degree of deacetylation in the 
depolymerized chitosan is in the range of 85-95% and shows good solubility in water [23]. The degree 
of deacetylation (DD, %) is a crucial parameter that significantly influences the characteristics of 
chitosan. An increase in the degree of deacetylation (DD, %) is associated with a decrease in 
molecular weight, enhanced antimicrobial abilities, higher water solubility, and improved mechanical 
properties. In addition, an increase in the degree of deacetylation (DD, %) indicates a better purity of 
the chitosan produced [29-31]. Chitosan with a high degree of deacetylation can be applied in various 
fields, including biodegradable packaging, the food industry, biomedical applications, environmental 
applications, and industrial applications. In the field of biomedical applications, chitosan with a high 
degree of deacetylation can be used in drug delivery systems, wound dressings, orthopedic implants, 
and tissue engineering [31,32]. 

SEM images of the chitosan produced from the deacetylation and depolymerization process are 
shown in Figure 6. The morphology of chitosan derived from crab shells exhibited a layered structure 
characterized by flakes, which displayed a porous structure and contained fibres. Scanning electron 
microscopy (SEM) images were used to calculate the particle size of chitosan with the help of ImageJ 
and Origin software. The effect of the depolymerization process on the particle size of chitosan is 
shown in Figure 7. 
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(a) (b) 

Fig. 6. SEM images of chitosan produced from deacetylation and depolymerization process 

 

 
Fig. 7. Effect of depolymerization treatment on particle size of chitosan 

 
The findings of this investigation revealed that the depolymerization procedure resulted in a 

reduction in the particle size of the obtained chitosan. This phenomenon occurs due to the 
depolymerization process, which is employed to cleave the extended chitosan chains into shorter 
chains, or oligomers. As a consequence, the chitosan's molecular weight decreases, which may result 
in smaller chitosan particles [31,33,34]. This is due to the fact that smaller molecules can organize 
themselves more closely and tightly, resulting in a reduction in particle size [35]. The characteristics 
of chitosan nanoparticles in medical applications are significantly influenced by the particle size. 
Reducing the particle size can result in the encapsulation of a greater concentration of therapeutic 
substances, leading to enhanced drug stability and improved bioavailability [36]. The surface area-
to-volume ratio of chitosan particles increases as their size decreases. The increase of surface area 
facilitates enhanced interaction with other substances, such as drugs or pollutants, hence resulting 
in enhanced efficacy across diverse applications [37,38]. Shameli et al., [39] and Yusefi et al., [40] 
found that the smaller the size of chitosan particles (nano-sized), the larger the surface area created. 
Furthermore, nanosized chitosan offers benefits in terms of biocompatibility and biodegradability. 
This is a reason for the widespread application of nanosized chitosan in various industries, including 
food packaging, cosmetics, and biomedicine. 
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4. Conclusions 
 

This study aimed to transform crab shells into chitosan, a versatile biopolymer that has promise 
for various applications in the medical domain. Additionally, the study sought to evaluate the impact 
of depolymerization on the characteristics of chitosan obtained from crab shells. The findings from 
this investigation indicate that the application of depolymerization treatment results in a decrease in 
the crystallinity index of chitosan. This may be due to the cleavage of longer chitosan chains during 
the depolymerization process, which consequently results in smaller fragments and ultimately leads 
to an overall decrease in chitosan crystallinity. Furthermore, the depolymerization process results in 
an increase in the degree of deacetylation of chitosan, expressed as a percentage (DD, %). 

The chitosan derived from the deacetylation process showed a deacetylation degree of 81%, 
while the depolymerized chitosan product showed a deacetylation degree of 91%. The chitosan 
derived from the depolymerization process showed a fairly high degree of deacetylation, being in the 
range of 85-95%. An increase in the degree of deacetylation (DD%) results in lower molecular weight, 
greater antibacterial ability, higher water solubility, improved mechanical properties, and better 
chitosan purity. The findings of this investigation revealed that the depolymerization procedure 
resulted in a reduction in the particle size of the obtained chitosan. The particle sizes of chitosan 
produced from the deacetylation and depolymerization processes were 1115 nm and 218 nm, 
respectively. Reducing the particle size can result in the encapsulation of a greater concentration of 
therapeutic substances, leading to enhanced drug stability and improved bioavailability. 
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