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The onset of non-linear convection in a horizontal porous layer saturated by a shear-
thinning liquid is studied. The Carreau-Yasuda model is utilized for modeling the behavior 
of the working medium. Constant fluxes of heat and mass are imposed on the horizontal 
walls of the cavity, while the vertical sides are assumed adiabatic and impermeable. The 
parallel flow approximation and the finite difference approach are used to conduct the 
investigation analytically and numerically, respectively. By considering an infinitesimal 
perturbation, the linear stability analysis of the diffusive and convective states is 
conducted based on the finite element method. The theory of linear stability is employed 
to determine the critical Rayleigh number for the onset of motion from the rest state as 
well as the onset of Hopf bifurcation, transition from the stationary to oscillatory 
convection. Overall, the Carreau-Yasuda rheological parameters have a significant impact 
on the thresholds of convection. The most interesting findings of this study is highlighting 
the existence of a bi-stability phenomenon, i.e., the existence of two steady-state 
solutions, which was not observed before in non-Newtonian fluids convection. 
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1. Introduction 
 

Many natural and technological fields use convection with double diffusive in porous media filled 
with viscous fluids, such as the food industry, filtration processes, polymer engineering, petroleum 
drilling, biomedical, cosmetic, molding processes, geothermal exploitation, and so on [1-8]. Some 
works were realized on the convection in differentially heated and salted enclosures filled with 
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Newtonian fluids. Goyeau et al., [9] inspected the convection in a rectangular porous enclosure, and 
they proposed correlations for the thermal and mass exchange in the cooperating case. Gobin and 
Bennacer [10] inspected the two-dimensional double diffusive convection in a cavity, and they 
focused on the boundary layer regime. Other authors treated the influence of the buoyancy ratio, 
which varied from 0 to 2, on the thermal exchange in a cavity [11-14]. Kalla et al., [15] treated the 
problem of convection with double diffusive in a shallow cavity under thermal and mass fluxes. 
Bahloul et al., [16,17] examined the convection with double diffusive at mixed boundary 
conditions. The result provided by Mamou [18] on the convection in a shallow porous layer revealed 
that the thresholds for the convection over stability and Hopf bifurcation were significantly affected 
by the acceleration coefficient. Rebhi et al., [19,20] investigated the convection generated in porous 
cavities containing a binary fluid and discovered that the drag parameters had a significant impact on 
the stability and onset of subcritical and Hopf bifurcation. In a porous layer, the double diffusive and 
oscillatory natural convection were studied by Attia et al., [21] while considering the Soret and Dufour 
effects. 

There are only a few works on thermo-solutal convection in porous cavities containing non-
Newtonian fluids. Bian et al., [22] inspected the impact of shear-thinning behavior on the convection 
in an inclined porous rectangular cavity. Pericleous [23] examined how shear-thinning and shear-
thickening behaviors affected convection in a chamber with vertical walls that were isothermally 
heated. For complex fluids, Chen and Chen [24] considered the free convection in porous cavity. 
Mehta and Rao [25,26] characterized the buoyancy-induced flows of complex fluids over a non-
isothermal obstacle inserted in a porous cavity. Other authors treated the case of power-law fluids 
in cavies at different boundary conditions [27-30]. Benouared et al., [31] explored the convection 
within a Rayleigh-Bénard cavity heated from the bottom. The effect of rheological factors on 
convection in a shallow porous layer was examined by Khechiba et al., [32]. Rebhi et al., [33] analysed 
numerically and analytically the rest state stability of Dupuit-Darcy natural convection of binary fluid 
saturated vertical porous layer. Their main finding was that Hopf bifurcation and subcritical 
convection affected significantly by the from drag effect, which acts as a stabilizing effect. Alloui and 
Vasseur [34] and Krishna and Reddy [35] considered the case of Carreau-Yasuda modeled fluids. 
Rebhi et al., [36] to determine how Rayleigh-Bénard thermosolutal convection instabilities in shallow 
and finite aspect ratio enclosures were impacted by the rheological behaviour of non-Newtonian 
fluids. They showed that the bistability convective regime exists for every aspect ratio of the 
enclosure, irrespective of the type of thermal and solutal boundary conditions. Lounis et al., [37] 
investigated the impact of Dufour and Soret effects on a double-diffusive convection in an inclined 
square enclosure using the Carreau-Yasuda model for modeling the rheological behavior of the non-
Newtonian fluid. Their main finding was that for different power-law index values, the Lewis number 
increases the heat and mass exchange. 

In our knowledge, the impact of the fluid rheological behavior and the buoyancy forces on the 
thresholds of bifurcations has not been studied previously. Therefore, the purpose of this work is to 
examine the impact of shear-thinning behavior of complex fluids on the convection with double 
diffusive in a horizontal porous enclosure. The structure of the essay is as follows. The problem 
formulation is described in section 2. The numerical approach used to solve the complete nonlinear 
governing equations is detailed in section 3. In section 4, the crucial Marangoni and Rayleigh numbers 
for the onset of motion from rest are predicted using the parallel flow theory. The commencement 
of motion from rest as well as the onset of Hopf oscillatory convection are predicted using a linear 
stability analysis in section 5. Section 6 discusses the results as a function of the governing parameters 
after the results are presented in terms of stream function, temperature profiles, and heat transfer. 
Some final thoughts are contained in the last section. 
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2. Case Study 
 

The situation under study is a non-Newtonian fluid-saturated horizontal porous layer with 
dimensions of length 𝐿′ and height 𝐻′, Figure 1. While the left and right-side walls are insulated, the 
horizontal surfaces have constant concentration and temperature values. The physical parameters 
are taken to be constant while the fluid's viscous dissipation is ignored. 

The following equations express the conservation of energy, momentum, and solute balances 
 

𝛻2𝜓′ = −
𝑔𝐾𝛽𝑇

𝜈

𝜕

𝜕𝑥′
(𝑇′ +

𝛽𝑆

𝛽𝑇
𝑆′)           (1) 

 

(𝜌𝐶)𝑝
𝜕𝑇′

𝜕𝑡′
+ (𝜌𝐶)𝑓𝑉′. 𝛻𝑇′ = 𝑘𝛻2𝑇′           (2) 

 

𝜙
𝜕𝑆′

𝜕𝑡′
+ 𝑉′. 𝛻𝑆′ = 𝐷𝛻2𝑆′            (3) 

 
where 𝑉′ is the Darcy velocity, 𝑔 is the gravitational acceleration, 𝜈 is the kinematic viscosity, 𝐾 is the 
porous matrix permeability, 𝛽𝑇 and 𝛽𝑠 are the thermal and concentration expansion coefficients, 
(𝜌𝐶)𝑝 and (𝜌𝐶)𝑓 are the saturated porous medium's and the fluid's respective heat capacities, 𝑘 and 

𝐷 are the species thermal conductivity and mass diffusivity, 𝜙 is the porous medium's porosity and, 
the stream function 𝜓′ is defined such that 𝑢′ = 𝜕𝜓′/𝜕𝑦′ and 𝑣′ = −𝜕𝜓′/𝜕𝑥′. 
 

 
Fig. 1. Situation of the flow and system of coordinates 

 
In order to represent non-Newtonian fluids, the Carreau-Yasuda model is given by [38] 
 
𝜇−𝜇∞

𝜇0−𝜇∞
= [1 + (𝜆′𝛾̇′)𝑎](𝑛−1)/𝑎            (4) 

 
where µ0 and µ∞ represent the viscosities at low and high shear rates, respectively, 𝑛 < 1 represents 
the shear-thinning index, 𝜆′ represents the fluid's time characteristic, 𝛾̇′ represents the shear rate's 
magnitude, and 𝑎 is a dimensionless parameter that describes the transition between the zero-shear-
rate region and the power-law region. These non-dimensional variables are utilized 
 

(𝑥, 𝑦) =
(𝑥′, 𝑦′)

𝐻′
, 𝑡 =

𝑡′𝛼

𝜎𝐻′2, (𝑢, 𝑣) =
(𝑢′,𝑣′)𝐻′

𝛼
  ,  𝜎 =

(𝜌𝐶)𝑝

(𝜌𝐶)𝑓
,  𝛼 =

𝐿𝑒

𝑃𝑟
,  𝜓 =

𝜓′

𝛼
,  𝜀 =

𝜙

𝜎
,  𝑇 =

(𝑇′−𝑇0
′)

𝛥𝑇∗ ,    𝑆 =

(𝑆′−𝑆0
′)

𝛥𝑆∗ ,   𝑞′ = −𝑘∇𝑇′, 𝑗′ = −𝜌𝐷∇𝑆′,  𝛥𝑇∗ =
𝑞′𝐻′

𝑘
 , 𝛥𝑆∗ =

𝑗′𝐻′

𝜌0𝐷
 , 𝜇𝐶𝑌 =

𝜇

𝜇0
,   𝜆𝐶𝑌 =

𝜆′𝛼

𝜀𝐻′2    (5) 
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where 𝜌0 is the fluid mixture density at temperature 𝑇′ = 𝑇′0 and species fraction 𝑆′ = 𝑆′0. The 
subscript 0 refers to condition at the origin of the coordinate system. 

The following are the dimensionless governing Eq. (1) to Eq. (3) 
 
𝜕

𝜕𝑥
(𝜇𝐶𝑌

𝜕𝜓

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜇𝐶𝑌

𝜕𝜓

𝜕𝑦
) = −𝑅𝑇

𝜕

𝜕𝑥
(𝑇 + 𝜙𝑆)         (6) 

 
𝜕𝑇

𝜕𝑡
+

𝜕𝜓

𝜕𝑦

𝜕𝑇

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕𝑇

𝜕𝑦
= 𝛻2𝑇            (7) 

 

𝜀
𝜕𝑆

𝜕𝑡
+

𝜕𝜓

𝜕𝑦

𝜕𝑆

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕𝑆

𝜕𝑦
= 𝐿𝑒−1𝛻2𝑆           (8) 

 
The behavior of the working medium is defined using the Carreau-Yasuda model, where viscosity, 

𝜇𝐶𝑌, is supplied by 
 

𝜇𝐶𝑌(𝛾̇) = 𝑠 + (1 − 𝑠)[1 + (𝜆𝐶𝑌|𝛾̇|)𝑎](𝑛−1)/𝑎         (9) 
 
where 𝜇𝐶𝑌 is the dimensionless shear-dependent apparent viscosity, 𝑠 = 𝜇∞/𝜇0 is the ratio of 
infinite-to zero-shear-rate viscosities. 

As written, the dimensionless rate-of-strain   is 

 

𝛾̇ = [4 (
𝜕2𝜓

𝜕𝑥𝜕𝑦
)

2

+ (
𝜕2𝜓

𝜕𝑦2 −
𝜕2𝜓

𝜕𝑥2 )
2

]
1/2

                     (10) 

 
The system's walls are subjected to the equivalent dimensionless boundary conditions, which are 
 

𝑥 = ±
𝐴

2
,   𝜓 = 0,     

𝜕𝑇

𝜕𝑥
=

𝜕𝑆

𝜕𝑥
= 0                     (11) 

 

𝑦 = ±
1

2
,   𝜓 = 0,     

𝜕𝑇

𝜕𝑦
=

𝜕𝑆

𝜕𝑦
= −1                     (12) 

 
In the above equations one notice the presence of nine dimensionless parameters, namely the 

Darcy-Rayleigh number, 𝑅𝑇, the buoyancy ratio, 𝜑, the Lewis number, 𝐿𝑒, the normalized porosity, 
𝜀, and the aspect ratio of the enclosure, 𝐴, expressed as 
 

𝑅𝑇 =
𝜌0𝛽𝑇𝛥𝑇′𝐾𝐻′

𝜇0𝛼
 ,  𝜑 =

𝛽𝑆𝛥𝑆∗

𝛽𝑇𝛥𝑇∗ ,   𝐿𝑒 =
𝛼

𝐷
 ,  𝐴 =

𝐿′

𝐻′
                   (13) 

 
and the Carreau-Yassuda parameters, namely, 𝑛, 𝜆𝐶𝑌, 𝑎 and 𝑠. 

The computation of heat and mass transfer rates in terms of the local and average Nusselt 
(𝑁𝑢,𝑁𝑢𝑚) and Sherwood numbers (𝑆ℎ,𝑆ℎ𝑚) is of relevance from an engineering perspective. The 
Nusselt and Sherwood numbers are calculated using the following method in the current notation 
 
𝑁𝑢−1 = 𝛥𝑇 = 𝑇(0,−1/2) − 𝑇(0,1/2)    and    𝑆ℎ−1 = 𝛥𝑆 = 𝑆(0,−1/2) − 𝑆(0,1/2)                (14) 

 

𝑁𝑢𝑚 = 𝐴−1 ∫ 𝑁𝑢𝑑𝑥
𝐴 2⁄

−𝐴/2
                     and   𝑆ℎ𝑚 = 𝐴−1 ∫ 𝑆ℎ𝑑𝑥

𝐴 2⁄

−𝐴/2
                 (15) 
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3. Numerical Solution  
 

In order to perform numerical simulations, the differential nonlinear equations governing the 
problem must be converted to algebraic equations. As a result, a second-order central finite 
difference technique is used to discretize the equations. Line-by-line iteration is used to solve the 
algebraic equations. For simulations of double diffusive systems, a FORTRAN code was created. Eq. 
(7) and Eq. (8)'s energy and species were resolved using the alternating-direction implicit approach 
(ADI). The relaxation factor was varied between 0 and 1. Depending on the settings of the governing 
parameters, the time step values were between 10−2 and 10−4. The convergence criterion for the 

governing equation is |∑ 𝜓𝑖,𝑗
𝑘+1 − ∑ 𝜓𝑖,𝑗

𝑘
𝑚

𝑖;𝑗

𝑚

𝑖;𝑗

| / |∑ 𝜓𝑖,𝑗
𝑘+1

𝑚

𝑖;𝑗
| ≤ 10−8, where, 𝜓𝑖,𝑗

𝑘 , is the stream function 

value at the node (i, j) at the iteration, 𝑘𝑡ℎ. The parallel flow approximation is compared with the 
numerical solution grid sensitivity in Table 1 for 𝐴 = 10, 𝑅𝑇 = 50, 𝐿𝑒 = 5, 𝜑 = −0.1, 𝑛 = 0.4, 𝜆𝐶𝑌 =
0.1, 𝑎 = 2 and 𝑠 = 10−2. The mesh size of 100×200 is selected as optimal. 
 

Table 1 
Comparison of the numerical and analytical solutions and grid sensitivity research for 𝐴 = 10, 
𝑅𝑇 = 50, 𝐿𝑒 = 5, 𝜑 = −0.1, 𝑛 = 0.4, 𝜆𝐶𝑌 = 0.1, 𝑎 = 2 and 𝑠 = 10−2 
Numerical Parallel flow 

approximation 𝑁𝑥 × 𝑁𝑦 60×120 80×160 100×200 120×240 

𝜓0 1.379 1.389 1.396 1.399 1.395 
𝑁𝑢 1.714 1.728 1.736 1.739 1.737 
𝑆ℎ 4.824 4.919 4.973 5.005 5.061 
𝜇𝐶𝑌 0.789 0.787 0.786 0.786 0.786 

 
4. Nonlinear Analytical Solution 
 

An approximate analytical solution, based on the parallel flow approximation was given by 
numerous authors for the convection in a cavity with a large aspect ratio [30,39,40]. Only the primary 
steps are provided in this document. This method assumes that the convective flow is parallel to the 
horizontal walls in the cavity's core zone for the current problem. As a result, the horizontal velocity 
now only depends on 𝑦 with the vertical velocity being ignored. The estimated stream function, 
temperature, and concentration are as follows: 𝜓(𝑥, 𝑦) ≈ 𝜓(𝑦), 𝑇(𝑥, 𝑦) ≈ 𝐶𝑇𝑥 + 𝜃𝑇(𝑦) and 
𝑆(𝑥, 𝑦) ≈ 𝐶𝑆𝑥 + 𝜃𝑆(𝑦), where 𝐶𝑇 and 𝐶𝑆 are, respectively, unknown constant temperature and 
concentration gradients in the x − direction, 𝜃𝑇  and 𝜃𝑠 are the temperature and concentration 
profiles. Utilizing these approximations in Eq. (6) to Eq. (8), we get 
 
𝑑

𝑑𝑦
(𝜇𝐶𝑌

𝑑𝜓

𝑑𝑦
) = −𝑅𝑇(𝐶𝑇 + 𝜑𝐶𝑆)                     (16) 

 
𝑑2𝑇

𝑑𝑦2
= 𝐶𝑇

𝑑𝜓

𝑑𝑦
                        (17) 

 
𝑑2𝑆

𝑑𝑦2 = 𝐿𝑒−1𝐶𝑆
𝑑𝜓

𝑑𝑦
                       (18) 

 
and the apparent viscosity (𝜇𝐶𝑌), Eq. (9) is now given by 
 

𝜇𝐶𝑌(𝛾̇) = 𝑠 + (1 − 𝑠)[1 + (𝜆𝐶𝑌|𝛾̇|)𝑎](𝑛−1)/𝑎                   (19) 
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where the shear rate (𝛾̇), Eq. (10), is reduced to 
 

𝛾̇ = |
𝜕2𝜓

𝜕𝑦2|                        (20) 

 
Any transversal section's heat and species transport rates are provided by 
 

𝐶𝑇 = 2 ∫ 𝑢(𝑦)𝜃𝑇(𝑦)
1 2⁄

0
𝑑𝑦    and     𝐶𝑆 = 2𝐿𝑒 ∫ 𝑢(𝑦)𝜃𝑆(𝑦)

1 2⁄

0
𝑑𝑦                 (21) 

 
The impact of the porous layer aspect ratio on the apparent viscosity, 𝜇𝐶𝑌, profile at 𝑥 = 0 for 

𝐿𝑒 = 5, 𝜑 = −0.1, 𝑛 = 0.8, 𝜆𝐶𝑌 = 0.2, 𝑎 = 2 and 𝑠 = 10−2 is demonstrated in Figure 2. From the 
figure, with increasing the aspect ratio from 1 to 10, it appears clearly that the apparent viscosity 
toward a constant value along the vertical walls (𝑦 = ±0.5). 
 

 
Fig. 2. Aspect ratio effect on the predicted 
apparent viscosity, 𝜇𝐶𝑌, profile obtained for 𝑅𝑇 =
50, 𝐿𝑒 = 5, 𝜑 = −0.1 and 𝜀 = 1 

 
In this situation, Eq. (16) to Eq. (18) may be solved analytically when the viscosity apparent (𝜇𝐶𝑌) 

is assumed constant. Hence, the momentum equation, Eq. (16), was reduced 
 
𝑑2𝜓

𝑑𝑦2 = −ℜ                        (22) 

 
where: ℜ = 𝑅𝑇(𝐶𝑇 + 𝜑𝐶𝑆)/𝜇𝐶𝑌. The solution of Eq. (22) is obtained as follow 
 

𝜓(𝑦) = ℜ (
1

8
−

𝑦2

2
)                       (23) 

 
From Eq. (23), the velocity field, 𝑢 = 𝜕𝜓/𝜕𝑦, derived from the stream function is given by the 

following expression 
 
𝑢(𝑦) = −ℜ𝑦                        (24) 
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From Eq. (19), the apparent viscosity, 𝜇𝐶𝑌, can be written as follows 
 

𝜇𝐶𝑌 = 𝑠 + (1 − 𝑠)[1 + (𝜆𝐶𝑌|ℜ|)𝑎]𝑛−1/𝑎                    (25) 
 
The temperature and concentration profiles are obtained by the following solutions 
 

𝑇(𝑥, 𝑦) = 𝐶𝑇𝑥 − 𝐶𝑇ℜ (
𝑦

8
−

𝑦3

6
) − 𝑦                     (26) 

 

𝑆(𝑥, 𝑦) = 𝐶𝑆𝑥 − 𝐿𝑒𝐶𝑆ℜ (
𝑦

8
−

𝑦3

6
) − 𝑦                    (27) 

 
The constant gradients of 𝐶𝑇 and 𝐶𝑆, corresponding to the gradients of temperature and 

concentration along the x-direction, are stated as 
 

𝐶𝑇 =
10ℜ

120+ℜ2      and     𝐶𝑆 =
10𝐿𝑒ℜ

120+𝐿𝑒2ℜ2                    (28) 

 
The expressions for the 𝑁𝑢 and 𝑆ℎ numbers are shortened to 
 

𝑁𝑢 =
12ℜ2+1440

2ℜ2+1440
         and        𝑆ℎ =

12ℜ2𝐿𝑒2+1440

2ℜ2𝐿𝑒2+1440
                   (29) 

 
Substituting the above expressions of 𝐶𝑇 and 𝐶𝑆, Eq. (28), in the expression of ℜ = 𝑅𝑇(𝐶𝑇 +

𝜑𝐶𝑆)/𝜇𝐶𝑌 , we obtain the following expression 
 
10𝑅𝑇ℜ

𝜇𝐶𝑌
[

1

120+ℜ2 + 𝜑
𝐿𝑒

120+𝐿𝑒2ℜ2] − ℜ = 0                    (30) 

 
The threshold for the onset of motion, expressed in terms of the supercritical Rayleigh number, 

𝑅𝑇𝐶
𝑠𝑢𝑝, is obtained with the limit ℜ → 0, and the subcritical Rayleigh number, 𝑅𝑇𝐶

𝑠𝑢𝑏, and the two 

turning points (𝑅𝑇𝐶
𝑡𝑢𝑟1 and 𝑅𝑇𝐶

𝑡𝑢𝑟2) are obtained by deriving Eq. (30) with respect to 𝑅𝑇 with the limit 
condition 𝑑ℜ/𝑑𝑅𝑇 = ∞ at the saddle-node point. The critical Rayleigh numbers are expressed as 
follows 
 

𝑅𝑇𝐶
𝑠𝑢𝑝 =

𝜇𝐶𝑌𝑅𝑠𝑢𝑝

1+𝜑𝐿𝑒
                       (31) 

 

𝑅𝑇𝐶
𝑠𝑢𝑏(𝑅𝑇𝐶

𝑡𝑢𝑟1,2) =
𝜇𝐶𝑌

2 𝒜2ℓ2

10ƛ
                      (32) 

 
where 
 
ƛ = −𝜆𝐶𝑌(𝑛 − 1)(1 − 𝑠)(𝜆𝐶𝑌[1 + (𝜆𝐶𝑌|ℜ|)𝑎]𝜒(ℓ𝒜 + 𝜑𝐿𝑒𝒜2)ℓℜ +

𝜇𝐶𝑌[ℓ2(120 − ℜ2) + 𝜑𝒜2𝐿𝑒(120 − ℜ2𝐿𝑒2)]

𝒜 = 120 + 𝜇𝐶𝑌
2 , ℓ = 120 + 𝐿𝑒2𝜇𝐶𝑌

2 , 𝜒 =
𝑛−1

𝑎
− 1

                (33) 

 
For an infinite horizontal layer, the constant 𝑅𝑠𝑢𝑝, in Eq. (31), is computed accurately and is given 

by 𝑅𝑠𝑢𝑝 = 12. This result is independent of the type of thermal and solutal boundary conditions 
applied to the system's horizontal walls. 
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5. Linear Stability Analysis: Formulation and Procedure 
 

The linear stability study yielded the critical Rayleigh numbers for the initiation of convection of 
a non-Newtonian fluid, which are influenced by the wave vector's shape. This section studies the 
stability of both the convective and the motionless phases. The overall convective solution consists 
of a basic solution (𝜓, 𝑇, 𝑆)𝑏, that represents the pure diffusive state solution or the steady-state 
convective solution, and a perturbation solution (𝜓, 𝑇, 𝑆)𝑝. The basic flow solution could be the rest 

state solution 𝜓𝑏 = 0 and 𝑇𝑏 = −𝑦 and 𝑆𝑏 = −𝑦 or the steady-state convective solution derived in 
the previous section, 𝜓𝑏(𝑥, 𝑦) ≈ 𝜓(𝑦), 𝑇𝑏(𝑥, 𝑦) ≈ 𝐶𝑇𝑥 + 𝜃𝑇(𝑦) and 𝑆𝑏(𝑥, 𝑦) ≈ 𝐶𝑆𝑥 + 𝜃𝑆(𝑦). 

The global flow unsteady solution can be assumed to be superposition of a steady state basic flow 
solution, 𝜓𝑏(𝑥, 𝑦), 𝑇𝑏(𝑥, 𝑦), 𝑆𝑏(𝑥, 𝑦), and an unsteady infinitesimal perturbation 𝜓𝑝(𝑥, 𝑦, 𝑡), 

𝑇𝑝(𝑥, 𝑦, 𝑡) and 𝑆𝑝(𝑥, 𝑦, 𝑡), as illustrated by 

 
𝜓(𝑥, 𝑦, 𝑡) = 𝜓𝑏(𝑥, 𝑦) + 𝜓𝑝(𝑥, 𝑦, 𝑡)

𝑇(𝑥, 𝑦, 𝑡) = 𝑇𝑏(𝑥, 𝑦) + 𝑇𝑝(𝑥, 𝑦, 𝑡)

𝑆(𝑥, 𝑦, 𝑡) = 𝑆𝑏(𝑥, 𝑦) + 𝑆𝑝(𝑥, 𝑦, 𝑡)

                     (34) 

 
This assumption enabled the following definition of the perturbations for an infinite porous layer 
 

𝜓𝑝(𝑥, 𝑦, 𝑡) = 𝜓0𝑒𝑝𝑡+𝑖ℓ𝑥𝐹(𝑦)

𝑇𝑝(𝑥, 𝑦, 𝑡) = 𝜃0𝑒𝑝𝑡+𝑖ℓ𝑥𝐺(𝑦)

𝑆𝑝(𝑥, 𝑦, 𝑡) = 𝜙0𝑒𝑝𝑡+𝑖ℓ𝑥𝐻(𝑦)

                      (35) 

 
where ℓ = 𝑛𝜋/𝐴 is the wave number and ℓ is the number of cells, 𝐹(𝑦), 𝐺(𝑦) and 𝐻(𝑦) are functions 
describing the perturbation profiles, and 𝑝 = 𝑝𝑟 + 𝑖𝑝𝑖, is a complex number indicating the growth 
rate of the perturbation, 𝑝𝑟, and the critical frequency, 𝑝𝑖, and 𝜓0, 𝜃0 and 𝜙0 are unknown 
infinitesimal amplitudes. 

The linearized stability equations are created by substituting (33) into (6) to (8) and ignoring the 
second-order nonlinear terms. 
 
𝜇𝐶𝑌(𝐷2𝑓 − ℓ2𝑓) − 𝐷(𝜕𝜇𝐶𝑌/𝜕𝛾̇)𝑏𝐷𝜓𝑏(𝐷2𝑓 + ℓ2𝑓) = 𝑖ℓ𝑅𝑇(𝑔 + 𝜑ℎ)                (36) 
 
𝑝𝑔 + 𝑖ℓ𝐷𝜓𝑏𝑔 − 𝑖ℓ𝑇𝑏𝑓 + 𝐶𝑇𝐷𝑓 = 𝐷2𝑔 − ℓ2𝑔                   (37) 
 
𝜀𝑝ℎ + 𝑖ℓ𝐷𝜓𝑏ℎ − 𝑖ℓ𝑆𝑏𝑓 + 𝐶𝑆𝐷𝑓 = 𝐿𝑒−1(𝐷2ℎ − ℓ2ℎ)                  (38) 
 
where 𝐷 = 𝑑/𝑑𝑦, 𝑓 = 𝜓0𝐹, 𝑔 = 𝜃0𝐺 and ℎ = 𝜙0𝐻. 
 

The discretized stability equations are constructed into the global eigenvalue system and then 
into the global matrix system as follows 
 

[

[𝐴𝜓]  −𝑅𝑇[𝐵𝜓]   −𝑅𝑇𝜑[𝐵𝜓]

[𝐵𝜃]           [𝐴𝜃]                 0    

[𝐵𝜙]              0      𝐿𝑒−1[𝐴𝜙]

 ] {
𝑓
𝑔
ℎ

} = −𝑝 [

0        0         0
0       [𝒞𝜃]     0

    0 0         [𝒞𝜙]
]                (39) 
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The following steps are taken to obtain the appropriate elementary matrices 
 

[𝐴𝜓]
𝑒

= ∫ 𝜇𝐶𝑌 (
𝑑𝑙𝑗

𝑑𝜁

𝑑𝑙𝑖

𝑑𝜁

2

𝛥𝑦
+ ℓ2𝑙𝑗𝑙𝑖

𝛥𝑦

2
) 𝑑𝜁 +

1

−1

∫ (
𝜕𝜇𝐶𝑌

𝜕𝛾̇
)

𝑏
(

𝑑2𝑙𝑗

𝑑𝜁2

𝑑𝑙𝑖

𝑑𝜁

8

𝛥𝑦3 + ℓ2𝑙𝑗
𝑑𝑙𝑖

𝑑𝜁

2

𝛥𝑦
)

𝜕𝜓𝑏

𝜕𝜁
𝑑𝜁

1

−1

[𝐴𝜃]𝑒 = ∫ (
𝑑𝑙𝑗

𝑑𝜁

𝑑𝑙𝑖

𝑑𝜁

2

𝛥𝑦
+ ℓ2 𝛥𝑦

2
𝑙𝑗𝑙𝑖 + 𝑖ℓ

𝜕𝜓𝑏

𝜕𝜁
𝑙𝑗𝑙𝑖) 𝑑𝜁

1

−1

[𝐴𝜙]
𝑒

= ∫ (
𝑑𝑙𝑗

𝑑𝜁

𝑑𝑙𝑖

𝑑𝜁

2

𝛥𝑦
+ ℓ2 𝛥𝑦

2
𝑙𝑗𝑙𝑖 + 𝑖ℓ𝐿𝑒

𝜕𝜓𝑏

𝜕𝜁
𝑙𝑗𝑙𝑖) 𝑑𝜁

1

−1

[𝐵𝜓]
𝑒

= ∫ 𝑖ℓ
𝛥𝑦

2
𝑙𝑗𝑙𝑖𝑑𝜁, [𝐵𝜃]𝑒 = ∫ (𝐶𝑇

𝑑𝑙𝑗

𝑑𝜁
− 𝑖ℓ

𝜕𝑇𝑏

𝜕𝜁
𝑙𝑗) 𝑙𝑖𝑑𝜁

1

−1

1

−1

[𝐵𝜃]𝑒 = ∫ (𝐶𝑇
𝑑𝑙𝑗

𝑑𝜁
− 𝑖ℓ

𝜕𝑇𝑏

𝜕𝜁
𝑙𝑗) 𝑙𝑖𝑑𝜁, [𝐵𝜙]

𝑒
= ∫ (𝐶𝑆

𝑑𝑙𝑗

𝑑𝜁
− 𝑖ℓ

𝜕𝑆𝑏

𝜕𝜁
𝑙𝑗) 𝑙𝑖𝑑𝜁

1

−1

1

−1

[𝒞𝜃]𝑒 = [𝒞𝜙]
𝑒

= ∫ 𝑙𝑗𝑙𝑖
𝛥𝑦

2
𝑑𝜁

1

−1

               (40) 

 
5.1 Marginal Stability 
 

In general, the threshold of stationary convection is obtained when marginal stability occurs (𝑝 =
0). After introducing the boundary conditions in the general linear system, Eq. (39), the eigenvalue 
problem can be reduced to: 
 

[𝐸 − 𝜆𝐼]{𝐹} = 0    with:    𝐸 = [𝐴]−1[𝐵𝜓][𝐾]−1[𝐵]                   (41) 

 
where [𝐼] is the identity matrix and {𝐹} is the eigenvector. 

The above equation has a nontrivial solution {𝐹} ≠ 0, only when the determinant [𝐸 − 𝜆𝐼] = 0, 
which yields 𝑚 eigenvalues 𝜆𝑖 reorganized as 𝜆1 ≤ 𝜆2 ≤. . . ≤ 𝜆𝑚, where 𝜆𝑚 is the maximum 
eigenvalue and 𝜆1 is the lowest eigenvalue. Thus, according to Eq. (39), the marginal state 
corresponding to 𝑝 = 0, from which the critical Rayleigh number for the onset of stationary 

convection (𝑅𝑇𝐶
𝑠𝑢𝑝) is obtained as 

 

𝑅𝑇𝐶
𝑠𝑢𝑝 =

𝜇𝐶𝑌𝑅𝑠𝑢𝑝

(1+𝜑𝐿𝑒)
                       (42) 

 
5.2 Transient Stability 
 

The marginal state of overstability corresponds to the condition, 𝑝𝑟 = 0. The following is the 
critical Rayleigh number 𝑅𝑇𝐶

𝑜𝑣𝑒𝑟 that defines the commencement of oscillatory convection 
 

𝑅𝑇𝐶
𝑜𝑣𝑒𝑟 =

𝜇𝐶𝑌(𝜀𝐿𝑒+1)𝑅𝑠𝑢𝑝

𝐿𝑒(𝜀+𝜑)
                      (43) 
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Only when the equation of 𝑅𝑇𝐶
𝑜𝑠𝑐 is determined as follows is it possible for the oscillatory 

convection mode to exist 
 

𝑅𝑇𝐶
𝑜𝑠𝑐 =

𝜇𝐶𝑌(𝜀𝐿𝑒−1)𝑅𝑠𝑢𝑝

𝐿𝑒(√𝜀−√−𝜑)2                        (44) 

 
5.3 The Convective State's Stability 
 

Study is also done on the transitional threshold. Understandably, the transition to oscillatory 
flows occurs frequently when the Rayleigh number is very high or when the flow strength increases 

significantly; the critical value is known as the thresholds of Hopf bifurcation (𝑅𝑇𝐶
𝐻𝑜𝑝𝑓

). In order to find 

this bifurcation point, known as a Hopf bifurcation. 
Table 2 and Figure 3(a) to Figure 3(c) present the data of the linear stability analysis of the 

convective state for an infinite horizontal porous layer. These figures show the effects of the power-

law index (𝑛) and the time constant, 𝜆𝐶𝑌, on the Hopf bifurcation threshold (𝑅𝑇𝐶
𝐻𝑜𝑝𝑓

), the wavelength 
(𝐴𝐶), and the oscillatory frequency (𝑓𝑟 = |𝑝𝑖|/2𝜋), respectively, for 𝐿𝑒 = 5, 𝜑 = −0.1, 𝑎 = 2, 𝑠 =
10−2 and 𝜀 = 1. 
 

Table 2 

Effects of 𝑛, and 𝜆𝐶𝑌, on 𝑅𝑇𝐶
𝐻𝑜𝑝𝑓

, 𝐴𝐶  and 𝑓, in an infinite horizontal layer for 𝐿𝑒 = 5, 𝜑 = −0.1, 𝑎 = 2, 

𝑠 = 10−2 and 𝜀 = 1 
𝜆𝐶𝑌 = 0.6, 𝑎 = 2, 𝑠 = 10−2 𝑛 = 0.4, 𝑎 = 2, 𝑠 = 10−2 
𝑛 𝑅𝑇𝐶

𝐻𝑜𝑝𝑓
 𝐴𝐶  𝑓𝑟 𝜆𝐶𝑌  𝑅𝑇𝐶

𝐻𝑜𝑝𝑓
 𝐴𝐶  𝑓𝑟 

1.0 662.165 1.282 25.378 1.0 88.372 0.909 46.672 
0.8 407.890 1.246 29.226 0.8 99.875 0.895 47.640 
0.6 226.070 1.082 37.117 0.6 116.893 0.880 48. 671 
0.4 116.893 0.880 48.671 0.4 146.554 0.861 49.924 
0.2 59.928 0.770 56.836 0.2 216.765 0.840 51.349 
0.0 33.237 0.802 51.191 0.0 662.165 1.282 25.378 

 
It is evident that as the power-law index, 𝑛, (the time characteristic of the fluid 𝜆𝐶𝑌) decreases 

below 𝑛 = 1 (𝜆𝐶𝑌 = 1), the oscillation frequency (𝑓𝑟), which served as a destabilizing (stabilizing) flow 

parameter, increases and the critical Rayleigh number (𝑅𝑇𝐶
𝐻𝑜𝑝𝑓

), at which a Hopf bifurcation occurs, 
decreases (increases) significantly. As already mentioned, the situation where 𝑛 = 1 or 𝜆𝐶𝑌 = 0, i.e., 

the apparent viscosity, 𝜇𝐶𝑌, corresponds to a Newtonian fluid for which 𝑅𝑇𝐶
𝐻𝑜𝑝𝑓

= 662.165, 𝐴𝐶 =
1.282 and 𝑓𝑟 = 25.378. At the start of the Hopf bifurcation, the stability analysis also produces two 
conjugate solutions. These two options, which are mirror reflections of one another, might result in 
waves that travel horizontally. 
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(a) (b) (c) 

Fig. 3. Effects of 𝑛, and 𝜆𝐶𝑌), on: (a) 𝑅𝑇𝐶
𝐻𝑜𝑝𝑓

, (b) 𝐴𝐶  and (c) 𝑓𝑟, for 𝐿𝑒 = 5, 𝜑 = −0.1, 𝑎 = 2, 𝑠 = 10−2 and 

𝜀 = 1 
 

Figure 4 shows the perturbation profiles 𝑛 = 𝜆𝐶𝑌 = 0.6, 𝐿𝑒 = 5, 𝑎 = 2, 𝑠 = 10−2 and 𝜀 = 1 at 
the beginning of the Hopf bifurcation. The critical values for the set of governing parameters that are 

being studied here are 𝑅𝑇𝐶
𝐻𝑜𝑝𝑓

= 226.07, 𝐴𝐶 = 0.923 and 𝑝𝑖 = ±233.592 (𝑓𝑟 = 37.11). 
 

   
(a) (b) (c) 

Fig. 4. Perturbation profiles 𝜓𝑝, 𝑇𝑝 and 𝑆𝑝 at the threshold of Hopf bifurcation, 𝑅𝑇𝐶
𝐻𝑜𝑝𝑓

, for 

𝐿𝑒 = 5, 𝜑 = −0.1, 𝑛 = 𝜆𝐶𝑌 = 0.6, 𝑎 = 2, 𝑠 = 10−2 and 𝜀 = 1: 𝑅𝑇𝐶
𝐻𝑜𝑝𝑓

= 226.07, 𝐴𝐶 =
0.923 and 𝑝𝑖 = ±233.592 (𝑓𝑟 = 37.11) 

 
6. Findings and Analysis 
 

The purpose of this study is to inspect the impact of the rheological parameters on the convective 
flow, thermal and mass exchange rates, and on the threshold of supercritical and overstable 
convection, up to Hopf bifurcation. The following ranges are considered: 100 ≤ 𝑅𝑇 ≤ 102, 10−2 ≤
𝐿𝑒 ≤ 103, −0.8 ≤ 𝜑 ≤ 0.6, 0 ≤ 𝜀 ≤ 1, 0.1 ≤ 𝑛 ≤ 1, 0 ≤ 𝜆𝐶𝑌 ≤ 10, 1 10a   and 0 ≤ 𝑠 ≤ 10. 

The numerical and analytical values of 𝜓, 𝑢, 𝑇 and 𝑆 are compared at 𝑥 =  0, Figure 5. The results 
were obtained for 𝑅𝑇 = 50, 𝐿𝑒 = 5, 𝜑 = −0.1, 𝜆𝐶𝑌 = 0.2, 𝑎 = 2, 𝑠 = 10−2, 𝜀 = 1 and various 𝑛. A 
deep insight in these plots reveal a good agreement between both solutions. The flow intensity (𝜓) 
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is clearly decreasing with the rise of, 𝑛, and therefore reduce the flow circulation intensity inside the 
layer, as the fluid becomes more and more shear-thinning (𝑛 < 1), Figure 5(a). The vertical profiles 
of u-velocity are symmetric, as observed in Figure 5(b). The velocity is maximum on the wall (𝑦 =
±0.5), it decreases sharply toward 𝑢 =  0 at the enclosure center (𝑦 = 0) and then it drops back to 
𝑢 = −𝑢𝑚𝑎𝑥  at the wall (𝑦 = 0.5). The impact of n on the temperature and concentration profiles is 
depicted in Figure 5(c) and Figure 5(d). The temperature and concentration near the solid sides are 
intensified with the reduction of 𝑛, resulting in enhanced convective heat (𝑁𝑢) and mass (𝑆ℎ) 
exchange rates. For the apparent viscosity (𝜇𝐶𝑌) at Figure 5(d), it remains constant for the same shear 
rate across the layer along the vertical axis. 
 

   
(a) (b) (c) 

  
(d) (e) 

Fig. 5. Effect of 𝑛, on (a) 𝜓, (b) 𝑢, (c) 𝑇, (d) 𝑆, and (e) 𝜇𝐶𝑌, profiles at the mid-width of the porous layer (𝑥 =
0) 𝑅𝑇 = 50, 𝐿𝑒 = 5, 𝜑 = −0.1, 𝜆𝐶𝑌 = 0.2, 𝑎 = 2, 𝑠 = 10−2, 𝜀 = 1 

 

The impact of Le on 𝑅𝑇𝐶
𝑠𝑢𝑏 is depicted in Figure 6(a) for 𝜆𝐶𝑌 = 0.2, 𝑎 = 2, 𝑠 = 10−2, 𝜑 = −0.1, 

𝜀 = 1, and different 𝑛. For 𝑛 = 1, the same evolution of 𝑅𝑇𝐶
𝑠𝑢𝑏 and 𝑅𝑇𝐶

𝑠𝑢𝑝 vs. 𝐿𝑒 was reported by Rebhi 

et al., [19]. As Le decreases from 103 to 2.16, 𝑅𝑇𝐶
𝑠𝑢𝑏 increases until reaching a peak (𝑅𝑇𝐶

𝑠𝑢𝑏 = 16) at 

𝐿𝑒 = 3.2, then it decreases toward 𝑅𝑇𝐶
𝑠𝑢𝑏 = 𝑅𝑇𝐶

𝑠𝑢𝑝 = 15.32 as𝐿𝑒 → 𝐿𝑒𝐶(2.16). Below this value (𝐿𝑒 ≤
𝐿𝑒𝐶(2.16)), the subcritical convection is not possible since the mass exchange through the porous 

layer is realized by pure diffusion. However, the onset of motion is supercritical (𝑅𝑇𝐶
𝑠𝑢𝑝) in the range 

(𝐿𝑒𝐶(2.16) ≤ 𝐿𝑒 ≤ 10−2). The reduced 𝑛 from (1 ≤ 𝑛 ≤ 0.2) leads to a decrease in the threshold of 

subcritical Rayleigh convection. A significant change in the peaks of 𝑅𝑇𝐶
𝑠𝑢𝑏 are observed for different 

𝑛. At 𝑛 =  1 and 0.2, the peaks happen at 𝐿𝑒 =  3.2 and 1.6, respectively. 

Figure 6(b) illustrates the changes in the critical Lewis number, 𝐿𝑒𝐶 (i.e., when𝑅𝑇𝐶
𝑠𝑢𝑏 = 𝑅𝑇𝐶

𝑠𝑢𝑝), as 
function of 𝑛. As observed, the reduced 𝑛 from 1 to 0.56 yields a sharp decrease in 𝐿𝑒𝐶. Below 𝑛 ≤

0.56, the threshold of supercritical convection (𝑅𝑇𝐶
𝑠𝑢𝑝) disappears completely and the only existing 

critical Rayleigh number is the subcritical one (𝑅𝑇𝐶
𝑠𝑢𝑏). 
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Fig. 6. Subcritical Rayleigh number, 𝑅𝑇𝐶

𝑠𝑢𝑏, and supercritical Rayleigh number, 𝑅𝑇𝐶
𝑠𝑢𝑝

, as function of 𝐿𝑒, 

and various values of 𝑛, for 𝜑 = −0.1, 𝜆𝐶𝑌 = 0.2, 𝑎 = 2 and 𝑠 = 10−2 

 
Figure 7 shows the distribution of 𝜓0 at the cavity center, 𝑁𝑢, 𝑆ℎ, and 𝜇𝐶𝑌 versus 𝐿𝑒 and 𝑛 for 

𝑅𝑇 = 50, 𝜑 = −0.8, 𝜆𝐶𝑌 = 0.2, 𝑎 = 2, 𝑠 = 10−2 and 𝜀 = 1. For 𝐿𝑒 < 1, the only possible solution is 
stable and the small amount of 𝑛 induces oscillatory flows. In addition, the convection strength 
becomes large for 𝑛 = 0.4 and 𝐿𝑒 > 32. For 0.95 ≤ 𝐿𝑒 ≤ 1.53, the rest state prevails since 𝑅𝑇 = 50 

is below (𝑅𝑇𝐶
𝑠𝑢𝑏) for the convective motion. At 𝐿𝑒 = 1.53 and 0.95, the bifurcation from conductive 

to convective regime occurs (𝜓0 = 1.74, 𝑁𝑢 = 2.06, 𝑆ℎ = 2.93 and 𝜇𝐶𝑌 = 0.52 for 𝐿𝑒 = 1.53 and 
𝜓0 = 0.00, 𝑁𝑢 = 𝑆ℎ = 𝜇𝐶𝑌 = 1.00for𝐿𝑒 = 0.95). It is seen from Figure 7(a) and Figure 7(b) that, as 
the Lewis number increases (decrease) above (below) 𝐿𝑒 = 1.53 (0.95), the strength of the 
convective motion and the thermal exchange rate augments continually until reaching a constant 
value as 𝐿𝑒 → ∞ and 𝐿𝑒 → 0, depending on 𝑛. For 𝐿𝑒 < 1, 𝑆ℎ increases until a peak, then it 
decreases toward 𝑆ℎ = 1, where this value is not affected by 𝑛, Figure 7(c). This is due to the 
considerable amount of mass diffusion coefficient and the diffusion domination in the field of species 
concentration. The heat is the lowest diffusive component when 𝐿𝑒 < 1, so the thermal exchange is 

mainly realized by convection, Figure 7(b) and Figure 7(c). Figure 8 highlights the changes in 𝑅𝑇𝐶
𝑠𝑢𝑏, 

𝑅𝑇𝐶
𝑡𝑢𝑟 and 𝑅𝑇𝐶

𝑠𝑢𝑝 with the buoyancy ratio (𝜑) for 𝐿𝑒 = 5, 𝜆𝐶𝑌 = 0.2, 𝑎 = 2 and 𝑠 = 10−2. The graph 
indicates that in the range (−0.1 ≤ 𝜑 ≤ 0.1), the subcritical Rayleigh number decreases with 
decreasing buoyancy ratio for various, 𝑛, thus the buoyancy ratio has a destabilizing effect. 

At 𝜑 = 0, it is found that 𝑅𝑇𝐶
𝑠𝑢𝑏 = 𝑅𝑇𝐶

𝑠𝑢𝑝 = 12. Upon keeping the decrease in 𝑛 and increase in the 
buoyancy ratio (𝜑 > 0), the bi-stability phenomenon happens regardless of 𝑛. However, the extent 
of the bistability region depends on 𝑛, and it arises when the system has two steady-state solutions 
at the same conditions. In this case, a bi-stability region is formed between the two turning saddle-

node points 𝑅𝑇𝐶
𝑠𝑢𝑏 and 𝑅𝑇𝐶

𝑡𝑢𝑟, as illustrated in the zoom presented in Figure 8. 
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(a) (b) 

  
(c) (d) 

Fig. 7. The effect of 𝐿𝑒 and 𝑛, on (a) 𝜓0, 𝑁𝑢, (c) 𝑆ℎ, and (d) 𝜇𝐶𝑌, for 𝑅𝑇 = 50, 𝜑 = −0.8, 
𝜆𝐶𝑌 = 0.2, 𝑎 = 2, 𝑠 = 10−2 and 𝜀 = 1 

 

 
Fig. 8. Buoyancy ratio, 𝜑, and 𝑛, effects on 𝑅𝑇𝐶

𝑠𝑢𝑝
, 𝑅𝑇𝐶

𝑠𝑢𝑏 

and 𝑅𝑇𝐶
𝑡𝑢𝑟 for 𝐿𝑒 = 5, 𝜆𝐶𝑌 = 0.2, 𝑎 = 2 and 𝑠 = 10−2 

 
 



Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 

Volume 101, Issue 1 (2023) 137-159 

151 
 

When 𝑛 = 0.1, in the range (−0.1 ≤ 𝜑 ≤ 0.035), 𝑅𝑇𝐶
𝑠𝑢𝑏 is the lowest, i.e., (𝑅𝑇𝐶

𝑠𝑢𝑏 < 𝑅𝑇𝐶
𝑠𝑢𝑝 < 𝑅𝑇𝐶

𝑡𝑢𝑟), 

as given in Figure 9. As observed, 𝑅𝑇𝐶
𝑠𝑢𝑏 = 𝑅𝑇𝐶

𝑠𝑢𝑝 = 10.2 at 𝜑 = 0.035. Even with the decrease of 𝜑, 
there is a bi-stability in the range (0.035 ≤ 𝜑 ≤ 0.082). For this situation, the bifurcation curve 

consists of lower and upper supercritical branches that exist for 𝑅𝑇 ≥ 𝑅𝑇𝐶
𝑠𝑢𝑏, as highlighted in Figure 

9 for 𝜑 = 0.04. For this value, the bifurcation curve is particular and the onsets of motion are given 

by 𝑅𝑇𝐶
𝑠𝑢𝑝 = 10, 𝑅𝑇𝐶

𝑠𝑢𝑏 = 10.17 and 𝑅𝑇𝐶
𝑡𝑢𝑟 = 10.47. Two different stable branches are observed; the 

upper branch that starts at 𝑅𝑇𝐶
𝑠𝑢𝑏 is a subcritical bifurcation, while the lower branch corresponds to a 

supercritical bifurcation. However, it is observed that the lower stable branch exists only in the range 

(𝑅𝑇𝐶
𝑠𝑢𝑝 ≤ 𝑅𝑇 ≤ 𝑅𝑇𝐶

𝑡𝑢𝑟), where 𝑅𝑇𝐶
𝑡𝑢𝑟 corresponds to a turning saddle-node point. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 9. Bifurcation diagram as a function of 𝑅𝑇 and 𝜑 for 𝐿𝑒 = 5, 𝑛 = 0.1, 𝜆𝐶𝑌 = 0.2, 𝑎 =
2, 𝑠 = 10−2and 𝜀 = 1, (a) 𝜓0, (b) 𝑁𝑢, (c) 𝑆ℎ and (d) 𝜇𝐶𝑌 

 
Figure 10(a) and Figure 10(b) presents the streamlines (𝜓), thermal distribution (𝑇), iso-

concentration (𝑆), and apparent viscosity (𝜇𝐶𝑌) obtained for 𝑅𝑇 = 10.4, 𝑛 = 0.1 and 𝜑 = 0.04. The 

results obtained for 𝜑 = 0.082 indicate that the condition 𝑅𝑇𝐶
𝑠𝑢𝑏 = 𝑅𝑇𝐶

𝑡𝑢𝑟 = 9.86 is reached. For 

0.082 ≤ 𝜑 ≤ 0.1, there is only a supercritical Rayleigh number. The impact of the rheological index 
𝑛 (0.1 ≤ 𝑛 ≤ 1) on the bi-stability region is illustrated in Figure 11 at 𝐿𝑒 = 5, 𝜑 = 0.02, 𝜆𝐶𝑌 = 0.2, 
𝑎 = 2, 𝑠 = 10−2 and 𝜀 = 1. The results are qualitatively identical to those plotted in Figure 9 while 
studying the buoyancy ratio impact. There is a development of the bifurcation from the subcritical to 
the supercritical behavior, even with decreasing 𝑛. As already mentioned, the supercritical Rayleigh 

number is not affected by the 𝑛 values and it remains at 𝑅𝑇𝐶
𝑠𝑢𝑝 = 10.90. 
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(a) (b) 

Fig. 10. Contours of stream, 𝜓, temperature, 𝑇, concentration, 𝑆, and apparent viscosity, 
𝜇𝐶𝑌, for 𝑅𝑇 = 10.4, 𝜑 = 0.04, 𝐿𝑒 = 5, 𝑛 = 0.1, 𝜆𝐶𝑌 = 0.2, 𝑎 = 2, 𝑠 = 10−2and 𝜀 = 1: (a) 
𝜓0 = 0.214, 𝑁𝑢 = 1.020, 𝑆ℎ = 1.460, 𝜇𝐶𝑌 = 0.952; (b) 𝜓0 = 1.141, 𝑁𝑢 = 1.518, 𝑆ℎ =
4.687, 𝜇𝐶𝑌 = 0.521 

 
For intermediate values of 𝑛, the bifurcation profiles mean the presence of stable supercritical 

and subcritical parts connected by an unstable one, as highlighted by the curve for 𝜑 = 0.04 depicted 
in Figure 9, showing again the zone where the bi-stability convection happens. A bistability diagram 
(𝑅𝑇𝐶 − 𝑛) is presented in Figure 11(e), where the bi-stability zone is highlighted by the hatched area. 
 

   
(a) (b) (c) 

  
(d) (e) 

Fig. 11. Bifurcation diagram in terms of (a) 𝜓0, (b) 𝑁𝑢, (c) 𝑆ℎ and (d) 𝜇𝐶𝑌 versus 𝑛 and 𝑅𝑇 for 𝐿𝑒 = 5, 𝜑 =
0.02, 𝜆𝐶𝑌 = 0.2, 𝑎 = 2, 𝑠 = 10−2 and 𝜀 = 1. (e) Stability diagram showing the bistability region (hatched) 

 
The effect of rheological parameters on the bi-stability zone is presented in Figure 12(a) to Figure 

12(d) for 𝐿𝑒 = 5. Even with increasing/decreasing buoyancy ratio, the rheological parameters are 
increasingly affecting the bi-stability zone. The evolution of the bistability zone with 𝜆𝐶𝑌 and 𝑠 in 
Figure 12(a) and Figure 12(b) is comparable to that outlined in Figure 8. In general, upon 
increasing/decreasing progressively from zero the material time constant, 𝜆𝐶𝑌, (parameter, 𝑠) the bi-
stability zone is reduced, and it disappears completely at 𝜆𝐶𝑌 = 0 and 𝑠 = 1. In Figure 12(c), the curve 
obtained for 𝑎 = 1 to 2 are the same as those discussed above for Figure 12(a) and Figure 12(b). 𝑅𝑇𝐶

𝑡𝑢𝑟 

becomes less than 𝑅𝑇𝐶
𝑠𝑢𝑝 since it degenerates into a second turning point 𝑅𝑇𝐶

𝑡𝑢𝑟2. For the range 
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(−0.019 ≤ 𝜑 ≤ −0.032) and even with the rise of the buoyancy ratio, the bifurcation profile has an 

upper supercritical part extending between (𝑅𝑇𝐶
𝑠𝑢𝑝 ≤ 𝑅𝑇 ≤ 𝑅𝑇𝐶

𝑡𝑢𝑟1) and a lower part existing at the 

condition 𝑅 ≤ 𝑅𝑇𝐶
𝑡𝑢𝑟2. This point was not observed with the change of 𝑛, 𝜆𝐶𝑌, and 𝑠. The results 

obtained at 𝜑 = −0.032, for which 𝑅𝑇𝐶
𝑡𝑢𝑟1 = 𝑅𝑇𝐶

𝑡𝑢𝑟2 = 13.55, and at 𝜑 = −0.019 (𝜑 = −0.009) are 

𝑅𝑇𝐶
𝑡𝑢𝑟1 = 𝑅𝑇𝐶

𝑠𝑢𝑝 = 13.26 (𝑅𝑇𝐶
𝑡𝑢𝑟2 = 𝑅𝑇𝐶

𝑠𝑢𝑝 = 12.56). 
 

  

  
Fig. 12. Effect of varying the Carreau-Yasuda parameters (𝜆𝐶𝑌, 𝑠 and 𝑎) and the buoyancy ratio, 𝜑, on 
the bistability region for𝐿𝑒 = 5 

 
The impact of 𝜑 is illustrated in Figure 13(a) to Figure 13(d). It has been analytical predicted that 

the bifurcation is subcritical at 𝜑 = −0.035. Upon decreasing the buoyancy ratio between 
(−0.035 ≤ 𝜑 ≤ 0), the bifurcation behavior undergoes a remarkable change. It is noted from Figure 
13 that in the range (−0.03 ≤ 𝜑 ≤ −0.01), four solutions may be obtained (two stable and two 
unstable), which confirms the presence of bi-stability. The graph obtained at 𝜑 = −0.02 in Figure 

13(a) means the presence of two stable parts. The upper part beginning from sub

TCR  is the standard 

part remarked in the subcritical bifurcation existing when 𝑅𝑇 ≥ 𝑅𝑇𝐶
𝑠𝑢𝑏 = 11.91. While the lower 

stable part that starts at 𝑅𝑇𝐶
𝑡𝑢𝑟2 = 13.11 corresponds to a turning bifurcation. In addition, the lower 

part is present within the range (𝑅𝑇𝐶
𝑡𝑢𝑟2 ≤ 𝑅𝑇 ≤ 𝑅𝑇𝐶

𝑡𝑢𝑟1), where 𝑅𝑇𝐶
𝑡𝑢𝑟1 = 13.28. The stable parts 

(upper and lower) are connected by an upper unstable part, plotted as a dotted line. There is also a 

lower unstable branch extending between (𝑅𝑇𝐶
𝑠𝑢𝑝(13.33) ≤ 𝑅𝑇 ≤ 𝑅𝑇𝐶

𝑡𝑢𝑟2(13.11)), which is due to the 
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buoyancy effect. This type of bifurcation is being similar to that depicted in Figure 11 while studying 
the effect of 𝑛. 
 

  
(a) (b) 

  
(c) (d) 

Fig. 13. Bifurcation diagram as a function of 𝑅𝑇 and 𝜑 for𝐿𝑒 = 5, 𝑎 = 5, 𝑛 = 0.1, 𝜆𝐶𝑌 =
0.2 and𝑠 = 10−2, (a) 𝜓0, (b) 𝑁𝑢, (c) 𝑆ℎ and (d) 𝜇𝐶𝑌 

 
The combination of the parallel flow and linear stability approaches was performed to reveal the 

impact of the buoyancy ratio (𝜑) on the thresholds of bifurcation (𝑅𝑇𝐶
𝑠𝑢𝑏, 𝑅𝑇𝐶

𝑡𝑢𝑟1, 𝑅𝑇𝐶
𝑡𝑢𝑟2, 𝑅𝑇𝐶

𝑠𝑢𝑝, 𝑅𝑇𝐶
𝑜𝑣𝑒𝑟, 

𝑅𝑇𝐶
𝑜𝑠𝑐 and 𝑅𝑇𝐶

𝐻𝑜𝑝𝑓
) for 𝐿𝑒 = 5 and 𝜀 = 1, Figure 14. The values of 𝑅𝑇𝐶

𝑠𝑢𝑝, 𝑅𝑇𝐶
𝑜𝑣𝑒𝑟, 𝑅𝑇𝐶

𝑜𝑠𝑐, and 𝑅𝑇𝐶
𝐻𝑜𝑝𝑓

 are 
determined by the linear stability theory of the rest state and the convective state described in 

section (5), while the values of 𝑅𝑇𝐶
𝑠𝑢𝑏, 𝑅𝑇𝐶

𝑡𝑢𝑟1, and 𝑅𝑇𝐶
𝑡𝑢𝑟2 are determined by the nonlinear parallel flow 

approximation, (Eq. (32)). The stability diagrams plotted in Figure 14(a) and Figure 14(b) are 
characterized by seven different zones. The first bifurcation zone (I) is located between the two 
points, where a subcritical bifurcation occurs and being connected to a supercritical bifurcation. For 

this region, the convective flow is at a rest state. In zone (II), when 𝑅𝑇𝐶
𝑠𝑢𝑏 ≤ 𝑅𝑇 ≤ 𝑅𝑇𝐶

𝑜𝑣𝑒𝑟, the linear 
stability theory predicts a stable rest state. Zone (III) is characterized by the existence of a bi-stability 
region leading to three solutions (two stable and one unstable) or four solutions (two stable and two 
unstable), as those discussed above for Figure 13. Thus, for 𝑅𝑇𝐶

𝑜𝑣𝑒𝑟 ≤ 𝑅𝑇 ≤ 𝑅𝑇𝐶
𝑜𝑠𝑐, zone (IV), the linear 

stability theory predicts the possible existence of oscillating flow pattern, delineated by 𝑅𝑇𝐶
𝑜𝑣𝑒𝑟and 

oscillatory 𝑅𝑇𝐶
𝑜𝑠𝑐. For this zone, the convection is amplified in an oscillatory manner. It is also observed 

that, for 𝜑 = −0.04, the condition for a codimension-2 points are reached (𝑅𝑇𝐶
𝑜𝑣𝑒𝑟 = 𝑅𝑇𝐶

𝑜𝑠𝑐 = 𝑅𝑇𝐶
𝑠𝑢𝑝). 

Below this limit, the overstability regime does not exist. In region (V), delineated by 𝑅𝑇𝐶
𝑜𝑠𝑐 ≤ 𝑅𝑇 ≤
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𝑅𝑇𝐶
𝑠𝑢𝑝, the system remains oscillatory. In region (VI), delineated by 𝑅𝑇𝐶

𝑠𝑢𝑝 ≤ 𝑅𝑇 ≤ 𝑅𝑇𝐶
𝐻𝑜𝑝𝑓

, the system is 

unstable. For 𝑅𝑇 ≥ 𝑅𝑇𝐶
𝐻𝑜𝑝𝑓

, the region (VII) presets the oscillatory finite amplitude convection that 
begins just above the threshold for Hopf bifurcation. 
 

  
(a) (b) 

Fig. 14. Stability diagrams in the 𝑅𝑇𝐶 − 𝜑 plane for 𝐿𝑒 = 5, 𝑛 = 0.1, 𝜆𝐶𝑌 = 0.2 and 𝜀 = 1 : (a) 𝑎 = 2 and 
(b) 𝑎 = 5 

 

Further insight into the effects of 𝜑 on the onset of motion is provided by Figure 15. As expected, 
the buoyancy ratio had a strong influence on the critical Rayleigh number. Zone (I)-(VII) are equivalent 
to those given in Figure 14. 

The solutions corresponding to the upper and lower stable branches, Figure 15(a) to Figure 15(d), 
may be reached only according to the hysteresis path plotted on the profile. 

The variation of the thresholds of bifurcation (𝑅𝑇𝐶
𝑠𝑢𝑏, 𝑅𝑇𝐶

𝑜𝑣𝑒𝑟, 𝑅𝑇𝐶
𝑜𝑠𝑐, 𝑅𝑇𝐶

𝑠𝑢𝑝 and 𝑅𝑇𝐶
𝐻𝑜𝑝𝑓

) with the 

normalized porosity, 𝜀, is depicted in Figure 16 for 𝐿𝑒 = 5, 𝜑 = −0.1, 𝑛 = 0.1, 𝜆𝐶𝑌 = 0.2, 𝑠 = 10−2 

and 𝑎 = 5. For this case, 𝑅𝑇𝐶
𝑠𝑢𝑝 = 24 and 𝑅𝑇𝐶

𝑠𝑢𝑏 = 12.40, which are influenced by the normalized 
porosity. Upon decreasing the normalized porosity below (𝜀 ≤ 1), the graph indicates the existence 
of an over-stability region (𝑅𝑇𝐶

𝑜𝑣𝑒𝑟). This region extends up to 𝜀 = 0.4, at which point the condition 

𝑅𝑇𝐶
𝑠𝑢𝑝 = 𝑅𝑇𝐶

𝑜𝑣𝑒𝑟 = 𝑅𝑇𝐶
𝑜𝑠𝑐 is reached. For 𝜀 < 0.4, the over-stability region (zone III) disappears 

completely. 
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(a) (b) 

  
(c) (d) 

Fig. 15. Bifurcation diagram in terms of 𝜓0 versus 𝜑 and 𝑅𝑇 for 𝐿𝑒 = 5, 𝑛 = 0.1, 𝜆𝐶𝑌 = 0.2, 𝑎 =
2 and 𝑠 = 10−2 

 

 
Fig. 16. Stability diagram in the (𝑅𝑇𝐶 − 𝜀) plane 
for 𝐿𝑒 = 5, 𝜑 = −0.1, 𝑛 = 0.1, 𝜆𝐶𝑌 = 0.2, 𝑠 =
10−2 and 𝑎 = 5 
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7. Conclusion 
 

The natural convection with double diffusive in a porous layer saturated with a non-Newtonian 
fluid and subjected to a constant heat from the bottom was examined. The main conclusions of the 
current study are the following 

 
i. For an infinite layer, a good comparison was obtained between the findings of the parallel 

flow theory and the numerical technique. The strength of convection ( 0 ), thermal and 

mass exchange rates (𝑁𝑢 and 𝑆ℎ) are intensified when (0.1 ≤ 𝑛 ≤ 1) or (0 ≤ 𝜆𝐶𝑌 ≤ 1). A 
similar trend is found for viscosity apparent (𝜇𝐶𝑌) with the rise or decrease of 𝑛 and 𝜆𝐶𝑌. 
For a significant Rayleigh number, the thermal and mass exchange rates become constant 

𝑁𝑢(𝑆ℎ) → 6.0, and this independently of the value of both 𝑛 and 𝜆𝐶𝑌.  
ii. With the rise of decrease of 𝜑, the bi-stability region was more and more affected by the 

rheological parameters of Carreau-Yassuda. The bistability region was found to shrinks 
and it disappears when increasing the values of 𝑛 and 𝑠, or when decreasing the time 
constant, 𝜆𝐶𝑌 and the parameter 𝑎. 

iii. As expected, an enhancement in the shear-thinning behavior is observed upon 
decreasing/increasing time constant (𝜆𝐶𝑌), which leads to the early appearance of 
subcritical convection. Thus, an increase of 𝑛, 𝑠 and decrease of 𝜆𝐶𝑌, the threshold of 

subcritical convection (𝑅𝑇𝐶
𝑠𝑢𝑏) increases monotonously towards a constant value, 

independently of 𝑛, 𝑠, and 𝜆𝐶𝑌. However, when the increasing of parameter, 𝑎, the 
threshold of subcritical convection behavior had slightly different from those observed for 
𝑛, 𝑠 and 𝜆𝐶𝑌. 

iv. Regarding the diffusive state stability and for an infinite horizontal layer, the onset of 

motion from the rest state (𝑅𝑇𝐶
𝑠𝑢𝑝, 𝑅𝑇𝐶

𝑜𝑣𝑒𝑟, 𝑅𝑇𝐶
𝑜𝑠𝑐) depends on 𝐿𝑒, 𝜑, 𝜀 and rheological 

parameters (𝑛, 𝜆𝐶𝑌, 𝑎 and 𝑠). 

v. For given values of 𝐿𝑒, 𝜑 and 𝜀, the onset of motion from the rest state (𝑅𝑇𝐶
𝑠𝑢𝑝, 𝑅𝑇𝐶

𝑜𝑣𝑒𝑟, 𝑅𝑇𝐶
𝑜𝑠𝑐) 

is not affected by 𝑛 and 𝑠, but the time constant, 𝜆𝐶𝑌, and the parameter, 𝑎, had a 
significant effect. When the fluid became more and more shear-thinning, both the onset 
of subcritical convection and Hopf bifurcation is reduced, which played the role of a 
destabilizing flow parameter. 
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